CN108479761B - 一种以酪蛋白为生物模板制备球形钙钛矿催化剂的方法 - Google Patents

一种以酪蛋白为生物模板制备球形钙钛矿催化剂的方法 Download PDF

Info

Publication number
CN108479761B
CN108479761B CN201810053082.4A CN201810053082A CN108479761B CN 108479761 B CN108479761 B CN 108479761B CN 201810053082 A CN201810053082 A CN 201810053082A CN 108479761 B CN108479761 B CN 108479761B
Authority
CN
China
Prior art keywords
casein
mixed solution
metal salt
citric acid
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810053082.4A
Other languages
English (en)
Other versions
CN108479761A (zh
Inventor
王颖
顾清秀
王丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201810053082.4A priority Critical patent/CN108479761B/zh
Publication of CN108479761A publication Critical patent/CN108479761A/zh
Application granted granted Critical
Publication of CN108479761B publication Critical patent/CN108479761B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本发明公开了一种以酪蛋白为生物模板制备球形钙钛矿催化剂的方法,特点是包括以下步骤:(1)将酪蛋白溶于去离子水中,然后加入氨水搅拌溶解得到酪蛋白混合液;(2)称取一定质量的柠檬酸和总金属盐,溶于去离子水中得到柠檬酸和金属盐的混合溶液;(3)将柠檬酸和金属盐的混合溶液按体积比3:20的比例滴加到酪蛋白混合液中,置于60‑100℃水浴锅中0.5‑2h,并置于鼓风干燥箱中制得干凝胶,将干凝胶置于马弗炉中以2℃/min的速率升温至600‑750℃进行煅烧保温3 h,即得到球形钙钛矿催化剂,优点是制备工艺简单且周期较短,绿色无污染,所得产物尺寸均匀,结晶度高,且具有较高的比表面积。

Description

一种以酪蛋白为生物模板制备球形钙钛矿催化剂的方法
技术领域
本发明涉及钙钛矿型复合材料的制备方法,尤其是涉及一种以酪蛋白为生物模板制备球形钙钛矿催化剂的方法。
背景技术
钙钛矿型金属氧化物是一种具有独特物理性质和化学性质的无机非金属材料,具有良好的催化活性等特性,是用途多样的新型功能材料。钙钛矿常见的合成方法主要包括溶胶凝胶法,水热合成法(溶剂热法),沉淀法,微乳液法,高温固相法,浸渍法等,近年来生物模板法逐渐受到关注,生物模板法是利用具备特定结构的生物大分子或组织为模板,利用生物自组装,通过物理,化学等合成目标产物的方法,生物模板法是目前材料结构和形貌可控合成的最有效,最直接的方法,具有工艺简单,应用条件简单,低成本,绿色的优点。例如CN105668647公开了利用葡萄糖微球为模板,直接水热合成具有空心球的LaCoO3钙钛矿材料,所得产物尺寸均匀,纯度较高,分散性好,晶型好且可控制备,具有较高的比表面积。球形结构的钙钛矿因比表面积远大于传统方法制备的钙钛矿比表面积,具有良好的催化活性而广受关注。球形钙钛矿的常见合成方法有水热合成法,固溶体前驱体法,硬模板法等,例如中国专利CN101979327 A公布,采用PMMA作为硬模版,以六水硝酸镧和50%的Mn(NO3)2水溶液为前躯体,以聚乙二醇和甲醇为溶剂,经浸渍,抽滤干燥后将所得产物氮气气氛下300℃下处理,750℃下煅烧得LaMnO3空心球结构。例如CN103357396 A中报道,将乙二醇,乙醇,柠檬酸,尿素及金属盐混合均匀,通过溶剂热法制备催化剂前躯体,再经750℃氧气或空气气氛中煅烧形成LaMnO3空心球结构。上述方法中虽然能够形成钙钛矿的球形结构,但是硬模版法操作步骤复杂,收率较低,水热法要求化学条件苛刻。
发明内容
本发明所要解决的技术问题是提供一种制备工艺简单且周期较短,绿色无污染,所得产物尺寸均匀,结晶度高,且具有较高的比表面积的以酪蛋白为生物模板制备球形钙钛矿催化剂的方法。
本发明解决上述技术问题所采用的技术方案为:一种以酪蛋白为生物模板制备球形钙钛矿催化剂的方法,包括以下步骤:
(1)将酪蛋白溶于去离子水中,然后加入氨水搅拌溶解得到酪蛋白混合液;其中酪蛋白、去离子水和氨水的混合比例为0.1 g:20-60mL:1-10mL;
(2)称取一定质量的柠檬酸和总金属盐,溶于去离子水中得到柠檬酸和金属盐的混合溶液;其中柠檬酸与总金属盐比例为5-15mol:1mol;
(3)在搅拌条件下,将柠檬酸和金属盐的混合溶液按体积比3:20的比例滴加到酪蛋白混合液中,置于60 -100℃水浴锅中0.5-2h,并置于鼓风干燥箱中制得干凝胶,将干凝胶置于马弗炉中以2 ℃ /min的速率升温至600 -750 ℃进行煅烧,保温3 h,即得到球形钙钛矿催化剂。
所述的金属盐为硝酸金属盐和/或者乙酸金属盐,所述的金属盐中金属元素为铁、锰和钴中的任一种。
与现有技术相比,本发明的优点在于:本发明首次公开了一种以酪蛋白为生物模板制备球形钙钛矿催化剂的方法,利用天然生物酪蛋白为生物模板,具有制备工艺简单,周期较短,反应条件温和绿色环保,选取原料对人体无毒,得到大小均匀直径约为300 nm的球形钙钛矿催化剂,所得产物尺寸均匀,球形形貌可控制备,结晶度高,且具有较高的比表面积,比表面积为41.701m2/g,从而具有较高的催化活性性能。
附图说明
图1为本发明实例1中所制得的LaMnO3催化剂SEM图;
图2为本发明实例1中所制得的LaMnO3催化剂TEM图;
图3为本发明实例1中所制得的球形LaMnO3催化剂XRD图;
图4为本发明实例1中所制得的球形LaMnO3催化剂氮物理吸附/解吸等温线;
图5为本发明实例1中所制得的球形LaMnO3催化剂孔径分布曲线;
图6为本发明实例1中所制得的球形LaMnO3催化剂氮气转化率曲线;
图7为本发明实例2中所制得的LaFeO3催化剂SEM图;
图8为本发明实例2中所制得的LaFeO3催化剂TEM图;
图9为本发明实例2中所制得的球形LaFeO3催化剂XRD图;
图10为本发明实例2中所制得的球形LaFeO3催化剂氮物理吸附/解吸等温线;
图11为本发明实例2中所制得的球形LaFeO3催化剂孔径分布曲线;
图12为本发明实例2中所制得的球形LaFeO3催化剂氮气转化率曲线。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例1
一种以酪蛋白为生物模板制备球形钙钛矿催化剂的方法,包括以下步骤:
(1)将0.1 g酪蛋白溶于20 mL去离子水中,然后加入3.5 mL氨水搅拌溶解得到酪蛋白混合液;
(2)称取一定质量的柠檬酸和总金属盐,溶于去离子水中得到柠檬酸和金属盐的混合溶液;其中柠檬酸与总金属盐比例为10mol:1mol;总金属盐为硝酸镧和硝酸锰摩尔比为1:1;
(3)在搅拌条件下,将柠檬酸和金属盐的混合溶液按体积比3:20的比例滴加到酪蛋白混合液中,置于80℃水浴锅中0.5 h,并置于鼓风干燥箱中制得干凝胶,将干凝胶置于马弗炉中以2 ℃ /min的速率升温至700 ℃进行煅烧,保温3 h,即得到球形钙钛矿催化剂。
图1为本发明实例1中所制得的LaMnO3催化剂SEM图。图中LaMnO3催化剂为球型,平均粒径约为253nm,插图中为单个球形貌。
图2为本发明实例1中所制得的LaMnO3催化剂TEM图。表明LaMnO3催化剂球形貌为实心球。
图3为本发明实例1中所制得的球形LaMnO3催化剂XRD图。表明LaMnO3催化剂为钙钛矿纯相。
图4为本发明实例1中所制得的球形LaMnO3催化剂氮物理吸附/解吸等温线。根据IUPAC分类,LaMnO3催化剂氮物理吸附/解吸等温线显示II型和IV型之间的介入等温线,表明样品主要由大孔和中孔结构。等温线显示出H3型回字环,表明为介孔结构。
图5为本发明实例1中所制得的球形LaMnO3催化剂孔径分布曲线。表明LaMnO3催化剂具有较窄的孔径(2-50 nm,集中在32 nm),表明了介孔结构,同时具有大孔结构(>50nm),具有较宽的孔径分布。
图6为本发明实例1中所制得的球形LaMnO3催化剂氮气转化率曲线。表明LaMnO3催化剂在325℃时NO达到最高转化率,并且比没有模板的提高20 %的转化率。
实施例2
一种以酪蛋白为生物模板制备球形钙钛矿催化剂的方法,包括以下步骤:
(1)将0.1 g酪蛋白溶于40 mL去离子水中,然后加入3.5 mL氨水搅拌溶解得到酪蛋白混合液;
(2)称取一定质量的柠檬酸和总金属盐,溶于去离子水中得到柠檬酸和金属盐的混合溶液;其中柠檬酸与总金属盐比例为10mol:1mol;总金属盐为硝酸镧和硝酸铁摩尔比为1:1;
(3)在搅拌条件下,将柠檬酸和金属盐的混合溶液按体积比3:20的比例滴加到酪蛋白混合液中,置于80℃水浴锅中1 h,并置于鼓风干燥箱中制得干凝胶,将干凝胶置于马弗炉中以2 ℃ /min的速率升温至650 ℃进行煅烧,保温3 h,即得到球形钙钛矿催化剂。
图7为本发明实例2中所制得的LaFeO3催化剂SEM图。图中LaFeO3催化剂为球形,平均粒径为308 nm。
图8为本发明实例2中所制得的LaFeO3催化剂TEM图。表明LaFeO3催化剂球形貌为实心球。
图9为本发明实例2中所制得的球形LaFeO3催化剂XRD图。表明LaFeO3催化剂为钙钛矿纯相。
图10为本发明实例2中所制得的球形LaFeO3催化剂氮物理吸附/解吸等温线。LaFeO3催化剂氮物理吸附/解吸等温线显示为V型等温线,在相对压力为0.6-1.0有明显的回滞环,为H2回滞环,说明有介孔出现。在相对压力位0.9-1.0脱附段明显陡降是因为墨水瓶型孔结构,孔的口小,体积大导致脱附段陡降。
图11为本发明实例2中所制得的球形LaFeO3催化剂孔径分布曲线。表明LaFeO3催化剂具有较窄的孔径(2-50 nm,集中在20 nm),表明了介孔结构,同时具有大孔结构(>50nm)。
图12为本发明实例2中所制得的球形LaFeO3催化剂氮气转化率曲线。表明LaFeO3催化剂在345℃时NO达到最高转化率,并且与没有模板的对比,转化率提高26 %。
实施例3
同上述实施例1,其区别在于:
步骤(1)中将0.1g酪蛋白溶于60mL去离子水中,然后加入1mL氨水;
步骤(2)中柠檬酸与总金属盐的比例为5mol:1mol;
步骤(3)中置于60℃水浴锅中2 h,并置于鼓风干燥箱中制得干凝胶,将干凝胶置于马弗炉中以2 ℃ /min的速率升温至600℃进行煅烧。
实施例4
同上述实施例1,其区别在于:
步骤(1)中将0.1 g酪蛋白溶于20mL去离子水中,然后加入10mL氨水;
步骤(2)中柠檬酸与总金属盐比例为15mol:1mol;
步骤(3)中置于100 ℃水浴锅中1.5h,并置于鼓风干燥箱中制得干凝胶,将干凝胶置于马弗炉中以2 ℃ /min的速率升温至750℃进行煅烧。
除上述实施例外,金属盐还可以为硝酸铁、硝酸锰、硝酸钴、乙酸铁、乙酸锰或者乙酸钴中至少一种。
当然,上述说明并非对本发明的限制,本发明也并不限于上述举例。本技术领域的普通技术人员在本发明的实质范围内,作出的变化、改型、添加或替换,也应属于本发明的保护范畴。

Claims (1)

1.一种以酪蛋白为生物模板制备球形钙钛矿催化剂的方法,其特征在于包括以下步骤:
(1)将酪蛋白溶于去离子水中,然后加入氨水搅拌溶解得到酪蛋白混合液;其中酪蛋白、去离子水和氨水的混合比例为0.1g:20-60mL:1-10mL;
(2)称取一定质量的柠檬酸和总金属盐,溶于去离子水中得到柠檬酸和总金属盐的混合溶液;其中柠檬酸与总金属盐的比例为10mol:1mol,总金属盐为硝酸镧和硝酸锰按摩尔比1:1混合而成或者总金属盐为硝酸镧和硝酸铁按摩尔比1:1混合而成;
(3)在搅拌条件下,将柠檬酸和总金属盐的混合溶液按体积比3:20的比例滴加到酪蛋白混合液中,置于60-100℃水浴锅中0.5-2h,并置于鼓风干燥箱中制得干凝胶,将干凝胶置于马弗炉中以2℃/min的速率升温至600-750℃进行煅烧,保温3h,即得到球形钙钛矿催化剂。
CN201810053082.4A 2018-01-19 2018-01-19 一种以酪蛋白为生物模板制备球形钙钛矿催化剂的方法 Active CN108479761B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810053082.4A CN108479761B (zh) 2018-01-19 2018-01-19 一种以酪蛋白为生物模板制备球形钙钛矿催化剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810053082.4A CN108479761B (zh) 2018-01-19 2018-01-19 一种以酪蛋白为生物模板制备球形钙钛矿催化剂的方法

Publications (2)

Publication Number Publication Date
CN108479761A CN108479761A (zh) 2018-09-04
CN108479761B true CN108479761B (zh) 2020-10-23

Family

ID=63343661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810053082.4A Active CN108479761B (zh) 2018-01-19 2018-01-19 一种以酪蛋白为生物模板制备球形钙钛矿催化剂的方法

Country Status (1)

Country Link
CN (1) CN108479761B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624202A (zh) * 2021-01-13 2021-04-09 中国计量大学 一种高比表面积铁酸镧气敏材料的制备方法
CN112939092A (zh) * 2021-04-07 2021-06-11 昆明理工大学 多层蜂窝孔状钙钛矿型LaMnO3的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724908A (zh) * 2009-12-22 2010-06-09 中国科学技术大学 钙钛矿型锰氧化合物多晶纳米棒功能材料的可控宏量制备方法
CN102744082A (zh) * 2012-07-23 2012-10-24 中国科学院福建物质结构研究所 用于汽车尾气处理的NOx净化催化剂及其制备方法
CN105753058A (zh) * 2016-01-24 2016-07-13 上海应用技术学院 一种利用天然有机模板合成钙钛矿的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130266809A1 (en) * 2012-04-10 2013-10-10 Massachusetts Institute Of Technology Biotemplated perovskite nanomaterials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724908A (zh) * 2009-12-22 2010-06-09 中国科学技术大学 钙钛矿型锰氧化合物多晶纳米棒功能材料的可控宏量制备方法
CN102744082A (zh) * 2012-07-23 2012-10-24 中国科学院福建物质结构研究所 用于汽车尾气处理的NOx净化催化剂及其制备方法
CN105753058A (zh) * 2016-01-24 2016-07-13 上海应用技术学院 一种利用天然有机模板合成钙钛矿的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Biocatalytic Synthesis of a Nanostructured and Crystalline Bimetallic Perovskite-like Barium Oxofluorotitanate at Low Temperature;Richard L. Brutchey等;《J. AM. CHEM. SOC.》;20060719;第128卷(第31期);10288-10294 *
Fabrication of Uniform Casein/CaCO3 Vaterite Microspheres and Investigation of Its Formation Mechanism;Yan Li等;《Crystal Growth & Design》;20171026;第17卷;6178-6188 *

Also Published As

Publication number Publication date
CN108479761A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
US11345608B2 (en) Method for prepareing copper-nickel cobaltate nanowire
US11027259B2 (en) Preparation method for hollow molybdate composite microspheres and method for catalyzing ammonia borane hydrolysis to produce hydrogen
CN106563481B (zh) 一种氨化的超薄石墨相氮化碳光催化剂及其制备方法
CN113058633B (zh) 氮化硼空心复合材料及其制备方法与应用
CN111545192A (zh) 一种MOFs衍生的钙钛矿催化剂及其制备与催化降解有机污染物的应用
CN105668647A (zh) 一种高比表面积钙钛矿型纳米LaCoO3多孔空心球材料及其制备方法
CN101318708B (zh) 以介孔二氧化硅为模板合成高比表面积纳米铁酸镧的方法
CN108479761B (zh) 一种以酪蛋白为生物模板制备球形钙钛矿催化剂的方法
CN108380203B (zh) 一种介孔壁中空核壳球形LaMnO3钙钛矿催化剂及其制备方法
CN109734056A (zh) 金属氧化物/褶皱rGO复合纳米材料的制备方法及褶皱纳米金属氧化物的制备方法
CN108996557B (zh) 一种空心球结构氧化镍/氧化铜复合纳米材料及其制备方法
CN107460019B (zh) 一种纳米氧化镍/镍铝尖晶石氧载体的制备方法
CN106082298B (zh) 一种铈铋复合氧化物纳米棒材料的制备方法
CN104437501B (zh) 一种钴基催化剂及其制备方法与应用
CN101723333A (zh) 一种形貌各异介孔金属氧化物的制备方法
CN113736094B (zh) 一种分级多孔zif-9的合成方法
CN114602508A (zh) 具有光催化性能的MnS@ZnS核壳空心球制备及其应用
CN108395542B (zh) 一种多孔膜基底调控的MOFs纳米晶材料及其制备方法
CN109879317B (zh) 一种多级孔ZrO2固体材料、制备方法及其应用
CN105036183B (zh) 一种纳米Bi2Ti2O7粉体的制备方法
CN108313989B (zh) 一种类菌褶状氮化碳微球的制备方法及所得产品
CN115092966B (zh) 一种用于甲苯催化燃烧的三维片层结构的混相MnO2的制备方法
CN115090281B (zh) 一种三维片状Na-α-MnO2的制备方法及其VOCs催化燃烧中的应用
CN113388645B (zh) 尿素酶解法批量合成碱式碳酸盐和金属氧化物纳米管
CN103771535B (zh) 一种多面体纳米四氧化三铁及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180904

Assignee: Ningbo Science and Technology Innovation Association

Assignor: Ningbo University

Contract record no.: X2023980033633

Denomination of invention: A method for preparing spherical perovskite catalysts using casein as a biological template

Granted publication date: 20201023

License type: Common License

Record date: 20230317

EE01 Entry into force of recordation of patent licensing contract