CN106711426A - 一种磷酸铁锂正极材料的制备方法 - Google Patents

一种磷酸铁锂正极材料的制备方法 Download PDF

Info

Publication number
CN106711426A
CN106711426A CN201710057008.5A CN201710057008A CN106711426A CN 106711426 A CN106711426 A CN 106711426A CN 201710057008 A CN201710057008 A CN 201710057008A CN 106711426 A CN106711426 A CN 106711426A
Authority
CN
China
Prior art keywords
iron phosphate
lithium iron
preparation
lithium
phosphate positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710057008.5A
Other languages
English (en)
Other versions
CN106711426B (zh
Inventor
焦奇方
杨泛明
饶睦敏
李瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen OptimumNano Energy Co Ltd
Original Assignee
Shenzhen OptimumNano Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen OptimumNano Energy Co Ltd filed Critical Shenzhen OptimumNano Energy Co Ltd
Priority to CN201710057008.5A priority Critical patent/CN106711426B/zh
Publication of CN106711426A publication Critical patent/CN106711426A/zh
Priority to EP18152633.6A priority patent/EP3351508A1/en
Priority to US15/876,231 priority patent/US20180212244A1/en
Application granted granted Critical
Publication of CN106711426B publication Critical patent/CN106711426B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供一种磷酸铁锂正极材料的制备方法,包括如下步骤:步骤一:称取石墨、浓硝酸和浓磷酸混合,置于水浴中搅拌,温度升高至80‑90℃,加入双氧水,搅拌,将产物降温至室温,水洗并抽滤,干燥,得到氧化石墨GO;步骤二:称取碳酸锂、碳酸钠和碳酸钾,混合并球磨,加热,插入铁丝和Ni‑Cr合金丝,通入CO2,通电进行电解,利用盐酸和去离子水对电解产物进行交替清洗,直至清洗后液体呈中性,烘干,得到蜂窝状碳材料HC;步骤三:称取磷酸铁锂和氧化石墨GO溶于无水乙醇中,将混合物置于微波反应器中保持一段时间后,加入蜂窝状碳材料HC,进行水热反应,将水热反应的产物进行水洗、抽滤及干燥,得到改性的磷酸铁锂材料LiFePO4/GO/HC。

Description

一种磷酸铁锂正极材料的制备方法
【技术领域】
本发明涉及电池材料技术领域,尤其涉及一种磷酸铁锂正极材料的制备方法。
【背景技术】
磷酸铁锂能够可逆地嵌入和脱嵌锂离子,具有原材料来源丰富、比容量高、循环寿命长、安全无毒、环境友好等特点,被认为是新能源动力电池的理想正极材料。
然而,磷酸铁锂电导率低,导电性差,极片在充放电过程中容易产生极化,低温环境中,Li+在活性物质中迁移路径较长,迁移速率慢,迁移过程中所受阻力较大,低温充放电性能差;此外,电流密度增大时,Li+在活性物质迁移所受阻力增大,极化加剧,电池倍率性能急剧下降,使其在低温环境中应用受到限制。
目前,对磷酸铁锂改性的方法主要有三种:一、利用金属离子对磷酸铁锂进行掺杂,提高材料本征电导率,降低极化,但此方法但并不能解决Li+迁移速率慢的问题,因此极片极化仍然严重;二、利用碳材料对磷酸铁锂进行包覆,增大磷酸铁锂颗粒之间电导率,并改善颗粒表面各相异性,降低极片极化,并保证Li+顺利迁移,然而,目前所使用碳材料多为无定形碳,孔结构无序,孔径分布不均,无法解决大电流密度下低温电池倍率性能差的问题;三、将磷酸铁锂纳米化,缩短Li+迁移路径,但无法解决磷酸铁锂电导率低等根本性问题。
鉴于此,实有必要提供一种新型的磷酸铁锂正极材料的制备方法以克服以上缺陷。
【发明内容】
本发明的目的是提供一种具有较好低温充放电性能及低温倍率性能的磷酸铁锂正极材料的制备方法。
为了实现上述目的,本发明提供一种磷酸铁锂正极材料的制备方法,包括如下步骤:步骤一:按照一定质量比称取石墨、浓硝酸和浓磷酸混合,置于水浴中搅拌,温度升高至80-90℃,按照一定质量比加入双氧水,搅拌,将产物降温至室温,水洗并抽滤,将抽滤后的滤饼进行干燥,得到氧化石墨GO;步骤二:按照一定质量比称取碳酸锂、碳酸钠和碳酸钾,混合并进行球磨,对球磨后的混合物进行加热,插入铁丝和Ni-Cr合金丝,通入CO2,通电进行电解,利用盐酸和去离子水对电解产物进行交替清洗,直至清洗后液体呈中性,烘干,得到蜂窝状碳材料HC;步骤三:按照一定质量比称取磷酸铁锂和氧化石墨GO溶于无水乙醇中,将混合物置于微波反应器中保持一段时间后,按照一定质量比加入蜂窝状碳材料HC,转移至高压反应釜中,进行水热反应,将水热反应后的产物进行水洗、抽滤及干燥,得到改性的磷酸铁锂材料LiFePO4/GO/HC。
在一个优选实施方式中,所述步骤一中的石墨、浓硝酸和浓磷酸的质量比为1:6:4-1:6:6。
在一个优选实施方式中,所述步骤一中的双氧水与石墨质量比为1:2-1:2.5。
在一个优选实施方式中,所述步骤一中滤饼的干燥温度为90-100℃,干燥时间为6-8h。
在一个优选实施方式中,所述步骤二中的碳酸锂、碳酸钠和碳酸钾的质量比为4:1:1-5:1:1。
在一个优选实施方式中,所述步骤二中进行电解的电流密度为200-300mA/cm3
在一个优选实施方式中,所述步骤二中的盐酸的浓度为1%-2%。
在一个优选实施方式中,所述步骤三中的磷酸铁锂与氧化石墨GO的质量比为10:1-12:1。
在一个优选实施方式中,所述步骤三中的磷酸铁锂与蜂窝状碳材料HC的质量比为10:0.2-10:0.3。
在一个优选实施方式中,所述步骤三中的水热反应温度为110-120℃,水热反应时间为20-24h。
相比于现有技术,本发明提供的磷酸铁锂正极材料的制备方法,所制备的正极材料具有较好低温充放电性能及低温倍率性能。
【附图说明】
图1为本发明实施例1制备的氧化石墨GO、及改性的磷酸铁锂材料LiFePO4/GO/HC的XRD图;
图2为传统碳材料及本发明实施例1所制得蜂窝状碳材料HC的N2吸附-脱附曲线图;
图3为本发明实施例1所制得的蜂窝状碳材料HC的SEM图。
【具体实施方式】
为了使本发明的目的、技术方案和有益技术效果更加清晰明白,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并不是为了限定本发明。
本发明提供一种磷酸铁锂正极材料的制备方法,包括如下步骤:
步骤一:按照一定质量比称取石墨、浓硝酸和浓磷酸混合,置于水浴中搅拌,温度升高至80-90℃,按照一定质量比加入双氧水,搅拌,将产物降温至室温,水洗并抽滤,将抽滤后的滤饼进行干燥,得到氧化石墨GO;
步骤二:按照一定质量比称取碳酸锂、碳酸钠和碳酸钾,混合并进行球磨,对球磨后的混合物进行加热,插入铁丝和Ni-Cr合金丝,通入CO2,通电进行电解,利用盐酸和去离子水对电解产物进行交替清洗,直至清洗后液体呈中性,烘干,得到蜂窝状碳材料HC;
步骤三:按照一定质量比称取磷酸铁锂和氧化石墨GO溶于无水乙醇中,将混合物置于微波反应器中保持一段时间后,按照一定质量比加入蜂窝状碳材料HC,转移至高压反应釜中,进行水热反应,将水热反应后的产物进行水洗、抽滤及干燥,得到改性的磷酸铁锂材料LiFePO4/GO/HC,即最终的磷酸铁锂正极材料。
具体的,所述步骤一中的石墨、浓硝酸和浓磷酸的质量比为1:6:4-1:6:6,其中,所述浓硝酸和浓磷酸均为溶液,所述浓硝酸摩尔浓度为14.5mol/L,即质量分数为65%,所述浓磷酸摩尔浓度为14.75mol/L,即质量分数85.5%。所述步骤一中的双氧水与石墨质量比为1:2-1:2.5。所述步骤一中滤饼的干燥温度为90-100℃,干燥时间为6-8h。
具体的,所述步骤二中的碳酸锂、碳酸钠和碳酸钾的质量比为4:1:1-5:1:1,其中,对碳酸锂、碳酸钠和碳酸钾进行加热后,三中碳酸盐在高温下熔化形成离子熔体即熔融盐,熔融态的碳酸盐具有较好的导电性,能够作为电解质。所述步骤二中进行电解的电流密度为200-300mA/cm3,电解时,铁丝和Ni-Cr合金分别作为电解池中阴极和阳极,进行导电,在高温下,电解过程中发生氧化还原过程:CO2在阴极表面还原得到蜂窝状碳材料HC,在阳极表面氧化得到氧气。所述步骤二中的盐酸的浓度为1%-2%。
具体的,所述步骤三中的磷酸铁锂与氧化石墨GO的质量比为10:1-12:1。所述步骤三中的磷酸铁锂与蜂窝状碳材料HC的质量比为10:0.2-10:0.3。所述步骤三中的水热反应温度为110-120℃,水热反应时间为20-24h。其中,磷酸铁锂为尖晶石结构,其中磷酸亚铁离子与磷酸根离子以头对尾方式进行接触,导电性差,锂离子分散于晶体空隙之中,氧化石墨GO为层状物质,利用氧化石墨GO与磷酸铁锂混合,经过步骤3,氧化石墨片插入磷酸亚铁离子与磷酸根离子之间,提高了最终的正极材料的导电性及正极材料与电解液兼容性,提高了充放电性能。其中,微波反应器传热好,受热均匀,蜂窝状碳材料HC包覆效果好,且微波反应器反应速度快,可以缩短制备周期。
实施例1:
1、称取10g石墨、60g浓硝酸和40g浓磷酸混合,于0℃水浴中搅拌6h,将温度升高至90℃,加入20g双氧水,搅拌2h,将产物降温至室温,水洗并抽滤,将滤饼置于100℃中空干燥箱中干燥6h,得到氧化石墨GO;
2、称取8g碳酸锂、2g碳酸钠和2g碳酸钾混合并进行球磨至200nm,将球磨后的混合物置于陶瓷加热器中,盖上电解槽盖,并加热至550℃后,插入铁丝和Ni-Cr合金丝,通入CO2,通电进行电解,电解的电流密度为200mA/cm3,使碳纳米管的粗产物在铁丝表面沉积;利用1%的盐酸和去离子水对碳纳米管的粗产物进行交替清洗,直至清洗后液体呈中性,将所得产物置于100℃干燥箱中干燥4h,得到蜂窝状碳材料HC;
3、称取25g磷酸铁锂和2.5g氧化石墨GO溶于320ml无水乙醇中,将反应物置于微波反应器中保持3h后,加入0.5g步骤2制得的蜂窝状碳材料HC,将混合物转移至高压反应釜中,置于110℃干燥箱中进行水热处理24h,将所得产物进行水洗、抽滤,将所得产物置于110℃干燥箱中干燥8h,得到改性的磷酸铁锂材料LiFePO4/GO/HC。
实施例2:
1、称取10g石墨、60g浓硫酸和40g浓磷酸混合,于0℃水浴中搅拌6h,将温度升高至90℃,加入20g双氧水,搅拌2h,将产物降温至室温,水洗并抽滤,将滤饼置于100℃中空干燥箱中干燥6h,得到氧化石墨GO;
2、称取8g碳酸锂、2g碳酸钠和2g碳酸钾混合并进行球磨至200nm,将球磨后的混合物置于陶瓷加热器中,盖上电解槽盖,并加热至600℃后,插入铁丝和Ni-Cr合金丝,通入CO2,通电进行电解,电解的电流密度为200mA/cm3,使碳纳米管的粗产物在铁丝表面沉积;利用1%的盐酸和去离子水对碳纳米管的粗产物进行交替清洗,直至清洗后液体呈中性,将所得产物置于100℃干燥箱中干燥4h,得到蜂窝状碳材料HC;
3、称取25g磷酸铁锂和2.5g氧化石墨GO溶于320ml无水乙醇中,将反应物置于微波反应器中保持3h后,加入0.5g骤2制得的蜂窝状碳材料HC,将混合物转移至高压反应釜中,置于110℃干燥箱中进行水热处理24h,将所得产物进行水洗、抽滤,将所得产物置于110℃干燥箱中干燥8h,得到改性的磷酸铁锂材料LiFePO4/GO/HC。
实施例3:
1、称取10g石墨、60g浓硝酸和40g浓硫酸混合,于0℃水浴中搅拌6h,将温度升高至90℃,加入20g双氧水,搅拌2h,将产物降温至室温,水洗并抽滤,将滤饼置于100℃中空干燥箱中干燥6h,得到氧化石墨GO;
2、称取8g碳酸锂、2g碳酸钠和2g碳酸钾混合并进行球磨至200nm,将球磨后的混合物置于陶瓷加热器中,盖上电解槽盖,并加热至600℃后,插入铁丝和Ni-Cr合金丝,通入CO2,通电进行电解,电解的电流密度为300mA/cm3,使碳纳米管的粗产物在铁丝表面沉积;利用1%的盐酸和去离子水对碳纳米管的粗产物进行交替清洗,直至清洗后液体呈中性,将所得产物置于100℃干燥箱中干燥4h,得到蜂窝状碳材料HC;
3、称取25g磷酸铁锂和2.5g氧化石墨GO溶于320ml无水乙醇中,将反应物置于微波反应器中保持3h后,加入0.5g步骤2制得的蜂窝状碳材料HC,将混合物转移至高压反应釜中,置于110℃干燥箱中进行水热处理24h,将所得产物进行水洗、抽滤,将所得产物置于110℃干燥箱中干燥8h,得到改性磷酸铁锂材料LiFePO4/GO/HC。
正极极片的制备及扣式电池的组装与测试:
正极分别以传统方法制备的碳包覆的磷酸铁锂和本发明实施例1制备的改性的磷酸铁锂材料LiFePO4/GO/HC为活性物质,Super-P为导电极,聚偏氟乙烯(PVDF)为粘结剂,依次按照94:3:3的比例与N-甲基吡咯烷酮(NMP)混合并搅拌均匀后得到浆料。负极材料选用人造石墨(D50为8.39μm),电解液选用电解质为LiPF6的低温电解液,隔膜选用16μm厚PP隔膜。经过配料、涂布、棍压、制片、卷绕、装配、注液、封口等工序制成圆柱钢壳型电池。
传统方法制备的碳包覆的磷酸铁锂正极的电池编号为A,本发明实施例1制备的改性的磷酸铁锂材料LiFePO4/GO/HC正极的电池编号为B。
测定电池A及电池B的低温充放电性能及循环性能,充放电截止电压范围2.0~3.6V,测试温度-20℃。
表1为传统方法制备的碳包覆的磷酸铁锂正极的电池A与本发明实施例1制备的改性的磷酸铁锂材料LiFePO4/GO/HCB正极的电池B在-20℃下的充放电性能对照表:
表1:
由表1可知,电流密度分别由0.5C增大至1C时,A、B两支电池充电恒流比和放电比率均逐渐减小。增大电流密度,极片极化增大,充放电性能降低,因此充电恒流比和放电比率均减小。然而,实验条件下,电池A的充电恒流比和放电比率电压均明显低于电池B,这是由于本发明实施例1中改性的磷酸铁锂材料LiFePO4/GO/HC含有氧化石墨,可以提高正极活性物质电导率,并增大Li+迁移速率,降低极化。同时,活性物质外表面包覆的蜂窝状碳材料可以提高活性物质与电解液浸润性,并且可以接收从各个方向扩散的Li+,有利于Li+嵌入。此外,包覆层碳材料孔径较大,可以保证大电流密度下Li+顺利嵌入与脱出,提高电池低温倍率性能。
图1为本发明实施例1制备的氧化石墨GO、及改性的磷酸铁锂材料LiFePO4/GO/HC的XRD图,由图1可以看出,改性后的磷酸铁锂材料中出现氧化石墨GO的对应峰,说明氧化石墨GO被成功引入至磷酸铁锂中,利用氧化石墨GO对磷酸铁锂进行改姓,有利于提高磷酸铁锂导电性,降低极化,并且有利于提高Li+迁移速率。
图2为传统碳材料及本发明实施例1所制得蜂窝状碳材料HC的N2吸附-脱附曲线图,由图2可以看出,吸附-脱附曲线呈第Ⅲ型吸附等温线,并且含有回滞环,传统碳材料及本发明实施例1所制得蜂窝状碳材料HC的比表面积分别为1124m2/g和1942m2/g,平均孔径分别为7nm和13nm;与传统碳材料相较,本发明实施例1中的蜂窝状碳材料HC具有更大的比表面积和孔径,可以使Li+更容易实现嵌入/脱出,更容易通过碳材料进入至活性中心,提高电池低温性能。
图3为本发明实施例1所制得的蜂窝状碳材料HC的SEM图,由图3可以看出,本发明中实施例1中的蜂窝状碳材料HC呈蜂窝状结构,利用此蜂窝状碳材料HC对磷酸铁锂进行改性,有利于增大电解液浸润性,并且有利于Li+更容易从各个方向进行嵌入/脱出,提高电池充放电性能。
本发明提供的磷酸铁锂正极材料的制备方法,以石墨为碳源,利用浓硝酸、浓磷酸和双氧水对石墨进行氧化,制备氧化石墨GO;以CO2为碳源,通过调节温度及电流密度制备具有较大比表面积和孔径并且呈蜂窝状的碳材料HC,通过调节电流密度可以调控蜂窝状碳材料的孔径;以所制得的氧化石墨GO和蜂窝状碳材料HC对磷酸铁锂进行改性,制得石墨插层、碳材料包覆的正极材料LiFePO4/GO/HC,提高了材料导电性,使Li+在迁移更短的距离后即可到达导电性较好的氧化石墨GO表面,增大迁移速率;碳材料呈蜂窝状,可以增大电解液浸润性,并且有利于Li+更容易从各个方向进行嵌入/脱出,提高电池充放电性能;并且,蜂窝状碳材料HC的比表面积较大,孔径较大,可以保证更多Li+进入碳材料后容易通过碳材料孔道进入至活性中心,提高材料低温倍率性能,同时减小Li+在材料表面沉积,提高电池安全性。
本发明提供的磷酸铁锂正极材料的制备方法所制备的正极材料具有较好低温充放电性能及低温倍率性能。
本发明并不仅仅限于说明书和实施方式中所描述,因此对于熟悉领域的人员而言可容易地实现另外的优点和修改,故在不背离权利要求及等同范围所限定的一般概念的精神和范围的情况下,本发明并不限于特定的细节、代表性的设备和这里示出与描述的图示示例。

Claims (10)

1.一种磷酸铁锂正极材料的制备方法,其特征在于:包括如下步骤:
步骤一:按照一定质量比称取石墨、浓硝酸和浓磷酸混合,置于水浴中搅拌,温度升高至80-90℃,按照一定质量比加入双氧水,搅拌,将产物降温至室温,水洗并抽滤,将抽滤后的滤饼进行干燥,得到氧化石墨GO;
步骤二:按照一定质量比称取碳酸锂、碳酸钠和碳酸钾,混合并进行球磨,对球磨后的混合物进行加热,插入铁丝和Ni-Cr合金丝,通入CO2,通电进行电解,利用盐酸和去离子水对电解产物进行交替清洗,直至清洗后液体呈中性,烘干,得到蜂窝状碳材料HC;
步骤三:按照一定质量比称取磷酸铁锂和氧化石墨GO溶于无水乙醇中,将混合物置于微波反应器中保持一段时间后,按照一定质量比加入蜂窝状碳材料HC,转移至高压反应釜中,进行水热反应,将水热反应后的产物进行水洗、抽滤及干燥,得到改性的磷酸铁锂材料LiFePO4/GO/HC。
2.如权利要求1所述的磷酸铁锂正极材料的制备方法,其特征在于:所述步骤一中的石墨、浓硝酸和浓磷酸的质量比为1∶6∶4-1∶6∶6。
3.如权利要求2所述的磷酸铁锂正极材料的制备方法,其特征在于:所述步骤一中的双氧水与石墨质量比为1∶2-1∶2.5。
4.如权利要求3所述的磷酸铁锂正极材料的制备方法,其特征在于:所述步骤一中滤饼的干燥温度为90-100℃,干燥时间为6-8h。
5.如权利要求1所述的磷酸铁锂正极材料的制备方法,其特征在于:所述步骤二中的碳酸锂、碳酸钠和碳酸钾的质量比为4∶1∶1-5∶1∶1。
6.如权利要求5所述的磷酸铁锂正极材料的制备方法,其特征在于:所述步骤二中进行电解的电流密度为200-300mA/cm3
7.如权利要求6所述的磷酸铁锂正极材料的制备方法,其特征在于:所述步骤二中的盐酸的浓度为1%-2%。
8.如权利要求1所述的磷酸铁锂正极材料的制备方法,其特征在于:所述步骤三中的磷酸铁锂与氧化石墨GO的质量比为10∶1-12∶1。
9.如权利要求8所述的磷酸铁锂正极材料的制备方法,其特征在于:所述步骤三中的磷酸铁锂与蜂窝状碳材料HC的质量比为10∶0.2-10∶0.3。
10.如权利要求9所述的磷酸铁锂正极材料的制备方法,其特征在于:所述步骤三中的水热反应温度为110-120℃,水热反应时间为20-24h。
CN201710057008.5A 2017-01-22 2017-01-22 一种磷酸铁锂正极材料的制备方法 Expired - Fee Related CN106711426B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710057008.5A CN106711426B (zh) 2017-01-22 2017-01-22 一种磷酸铁锂正极材料的制备方法
EP18152633.6A EP3351508A1 (en) 2017-01-22 2018-01-19 Method for modifying lithium iron phosphate, positive electrode, and lithium ion battery
US15/876,231 US20180212244A1 (en) 2017-01-22 2018-01-22 Method for modifying lithium iron phosphate, positive electrode, and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710057008.5A CN106711426B (zh) 2017-01-22 2017-01-22 一种磷酸铁锂正极材料的制备方法

Publications (2)

Publication Number Publication Date
CN106711426A true CN106711426A (zh) 2017-05-24
CN106711426B CN106711426B (zh) 2018-05-15

Family

ID=58909736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710057008.5A Expired - Fee Related CN106711426B (zh) 2017-01-22 2017-01-22 一种磷酸铁锂正极材料的制备方法

Country Status (3)

Country Link
US (1) US20180212244A1 (zh)
EP (1) EP3351508A1 (zh)
CN (1) CN106711426B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995248A (zh) * 2020-07-09 2020-11-27 中国人民解放军63653部队 一种用于污染土壤原位玻璃固化的启动剂材料配方
CN114852985A (zh) * 2022-05-23 2022-08-05 东莞理工学院 一种磷酸铁锂正极材料的制备方法、锂离子电池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082060A (zh) * 2019-12-23 2020-04-28 中国电子科技集团公司第十八研究所 一种基于微波辅助的锂离子电池正极材料的表面包覆方法
CN111584873B (zh) * 2020-05-26 2021-09-14 大连中比能源科技有限公司 一种改性石墨负极材料及其制备方法与应用
CN112713272B (zh) * 2020-12-18 2022-11-18 浙江金鹰瓦力新能源科技有限公司 一种改性锂电池正极材料的制备方法
CN114380308B (zh) * 2021-08-20 2023-12-08 山东瑞福锂业有限公司 一种锂离子电池用具有优良储能性能碳酸锂纳米线的制备工艺与方法
CN114314553A (zh) * 2021-12-31 2022-04-12 欣旺达电动汽车电池有限公司 改性磷酸铁锂、其制备方法及锂离子电池
CN114804211B (zh) * 2022-05-20 2024-02-23 洛阳师范学院 一种锂离子电池用高首效铁酸锂负极材料及其制备方法
CN115000347B (zh) * 2022-05-26 2024-06-25 广东奥德迈新能源有限责任公司 一种改性氧化亚铁锂正极极片、包含其的电池及制备方法
CN115020855B (zh) * 2022-06-24 2023-10-17 广东邦普循环科技有限公司 一种磷酸铁锂废旧电池的回收利用方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105977465A (zh) * 2016-06-29 2016-09-28 上海应用技术学院 一种石墨烯/磷酸铁锂复合正极材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029898B2 (ja) * 2011-09-09 2016-11-24 株式会社半導体エネルギー研究所 リチウム二次電池用正極の作製方法
US9290853B2 (en) * 2013-01-22 2016-03-22 Saratoga Energy Research Partners, LLC Electrolytic generation of graphite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105977465A (zh) * 2016-06-29 2016-09-28 上海应用技术学院 一种石墨烯/磷酸铁锂复合正极材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONGJUN WU,ET AL.: ""One-pot synthesis of nanostructured carbon materials from carbon dioxide via electrolysis in molten carbonate salts"", 《CARBON》 *
杨虎,等: ""LiFePO4/C/GO 的制备及其电化学性能研究"", 《新疆有色金属》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995248A (zh) * 2020-07-09 2020-11-27 中国人民解放军63653部队 一种用于污染土壤原位玻璃固化的启动剂材料配方
CN111995248B (zh) * 2020-07-09 2022-10-04 中国人民解放军63653部队 一种用于污染土壤原位玻璃固化的启动剂材料配方
CN114852985A (zh) * 2022-05-23 2022-08-05 东莞理工学院 一种磷酸铁锂正极材料的制备方法、锂离子电池

Also Published As

Publication number Publication date
US20180212244A1 (en) 2018-07-26
CN106711426B (zh) 2018-05-15
EP3351508A1 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
CN106711426B (zh) 一种磷酸铁锂正极材料的制备方法
CN103094552B (zh) 一种5V锂离子电池正极材料LiNi0.5-x Mn1.5MxO4的表面包覆方法
Liu et al. Electrochemical performance of LiFePO4 cathode material coated with ZrO2 nanolayer
CN105355908B (zh) 锂离子电池复合负极材料及其制备方法、使用该材料的负极和锂离子电池
CN104617271B (zh) 一种用于钠离子电池的硒化锡/氧化石墨烯负极复合材料及其制备方法
CN101964411B (zh) LiFePO4复合型正极材料的制备方法
CN100448772C (zh) 高密度超微复合型磷酸铁锂正极材料的制备方法
CN107768743A (zh) 一种锂离子电池补锂方法
CN102034971B (zh) 锂离子电池磷酸铁锂/聚并吡啶复合正极材料及其制备方法
CN103911627B (zh) 一种熔盐电解添加剂及其用于制备硅复合材料方法
CN103682251B (zh) 一种多孔三氧化二铁/碳纳米片复合材料及其制备方法和其在制备锂离子电池中的应用
Zhao et al. Effect of microstructure on low temperature electrochemical properties of LiFePO4/C cathode material
CN105680041A (zh) 三维Na3V2(PO4)3纳米线网络电极材料及其制备方法和应用
Cheng et al. Hydrothermal synthesis of LiNi0. 5Mn1. 5O4 sphere and its performance as high-voltage cathode material for lithium ion batteries
CN106129388B (zh) 一种磷酸铁锂/三维碳架/碳复合材料的制备方法
Huang et al. Aligned nickel–cobalt oxide nanosheet arrays for lithium ion battery applications
CN105047898B (zh) 一种双生球形锂离子二次电池富锂正极材料及其制备方法
CN106340621A (zh) 一种锂电池用铁系负极材料及其制备方法
CN106099077A (zh) 碳/四氧化三铁复合材料的制备方法、锂离子电池
CN106450279B (zh) 一种石墨烯包覆镍钴锰锂离子电池正极材料的制备方法
CN103078115A (zh) 碳包覆多孔结构纳米磷酸铁锂材料的制备方法及以该材料为正极材料的锂离子电池
CN113140713B (zh) 一种LiFePO4/C包覆三元正极材料及其制备方法和用途
CN109980221A (zh) 一种高压锂离子电池正极材料及其制备方法和应用
CN108288698A (zh) 一种磷酸铁锂正极材料的制备方法
CN104332628B (zh) 锂离子电池正极材料的制备方法及其锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PP01 Preservation of patent right

Effective date of registration: 20180920

Granted publication date: 20180515

PP01 Preservation of patent right
PD01 Discharge of preservation of patent

Date of cancellation: 20200320

Granted publication date: 20180515

PD01 Discharge of preservation of patent
PP01 Preservation of patent right

Effective date of registration: 20200429

Granted publication date: 20180515

PP01 Preservation of patent right
PD01 Discharge of preservation of patent

Date of cancellation: 20230331

Granted publication date: 20180515

PD01 Discharge of preservation of patent
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180515

CF01 Termination of patent right due to non-payment of annual fee