CN106654197A - 一种含有Mg、Al的三元前驱体的制备方法 - Google Patents

一种含有Mg、Al的三元前驱体的制备方法 Download PDF

Info

Publication number
CN106654197A
CN106654197A CN201611065542.2A CN201611065542A CN106654197A CN 106654197 A CN106654197 A CN 106654197A CN 201611065542 A CN201611065542 A CN 201611065542A CN 106654197 A CN106654197 A CN 106654197A
Authority
CN
China
Prior art keywords
preparation
ternary
precursor containing
ternary precursor
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611065542.2A
Other languages
English (en)
Inventor
许开华
王家良
张云河
乐绪清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jingmen GEM New Material Co Ltd
Original Assignee
Jingmen GEM New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jingmen GEM New Material Co Ltd filed Critical Jingmen GEM New Material Co Ltd
Priority to CN201611065542.2A priority Critical patent/CN106654197A/zh
Publication of CN106654197A publication Critical patent/CN106654197A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种含有Mg、Al的三元前驱体的制备方法,具体包括以下步骤:步骤1,配置含有镍、钴、锰的三元溶液;步骤2,给步骤1的三元溶液中加入络合剂;步骤3,给步骤2所述的混合溶液中加入镁盐溶液和铝盐溶液;步骤4,将步骤3所述的混合溶液中加入氢氧化钠溶液以及氨水,完成沉淀反应,即得到含有Mg、Al的三元前驱体。本发明通过在镍钴锰三元溶液中直接加入镁、铝掺杂元素,并通过加入络合剂稳定掺杂元素,并缩小各金属离子在反应体系中的沉淀速度差异,实现均匀共沉淀,使掺杂元素能够均匀的分布在前驱体颗粒中,从而充分发挥掺杂元素稳定结构的作用,并将掺杂带来的放电容量降低问题减小的最低,实现放电比容量与结构稳定性的平衡。

Description

一种含有Mg、Al的三元前驱体的制备方法
技术领域
本发明属于三元前驱体制备工艺技术领域,具体涉及一种含有Mg、Al的三元前驱体的制备方法。
背景技术
镍钴锰三元锂离子电池正极材料由于具有较高的能量密度以及相对较低的价格被广泛应用于IT产品以及新能源汽车领域。但单纯的镍钴锰酸锂(LNCM)由于结构稳定性欠佳,在充放电过程中很容易由于Li离子的脱嵌以及Ni、Co、Mn离子价态的变化造成材料结构的塌陷,对材料的循环寿命及安全性造成极大的危害。针对这些问题一般采用掺入适量Mg、Al离子的方式改善,传统的Mg、Al掺杂方式是在前驱体工序之后,通过固相混合掺入MgO和Al2O3,这种方法虽然简单易操作,但难免会产生混合不均匀的问题,造成局部Mg、Al含量偏高,放电比容量显著恶化、而另一些位置又会含量偏低,循环寿命得不到有效提高。
发明内容
本发明的目的是提供一种含有Mg、Al的三元前驱体的制备方法,在制备三元前驱体时加入掺杂元素,并通过加入络合剂以及控制合适的工艺条件使掺杂元素与主元素形成均匀的共沉淀,实现原子级混合。
本发明所采用的技术方案是,一种含有Mg、Al的三元前驱体的制备方法,具体包括以下步骤:
步骤1,配置含有镍、钴、锰的三元溶液;
步骤2,给步骤1所述的三元溶液中加入络合剂;
步骤3,给步骤2所述的混合溶液中加入镁盐溶液和铝盐溶液;
步骤4,将步骤3所述的混合溶液中加入氢氧化钠溶液以及氨水,完成沉淀反应,即得到含有Mg、Al的三元前驱体。
本发明的特点还在于,
步骤2中络合剂为1,10-邻二氮菲,乙二胺四乙酸二钠,二巯基丙醇,二巯基丙烷磺酸钠,巯基乙胺,巯基乙酸,硫脲,氟化氨,8-羟基喹啉,氰化钾,乙酰丙酮,柠檬酸,酒石酸,草酸,磺基水杨酸,三乙醇胺,乙二醇双(2-氨基乙基醚)四乙酸,乙二胺四丙酸,三乙撑四胺中的一种或一种以上的组合。
步骤2中络合剂的添加量为镍、钴和锰总质量的0.1%-10%。
步骤3中镁盐为氯化镁、乙酸镁、硫酸镁、硝酸镁中的一种或一种以上的组合。
步骤3中铝盐为三氯化铝、乙酸铝、异丙醇铝、正丙醇铝、硫酸铝、硝酸铝中的一种或一种以上的组合。
步骤3中镁盐的掺入量为镍、钴和锰总质量的0.001%-2%,铝盐的掺入量为镍、钴和锰总质量的0.001%-2%。
步骤4中混合溶液、氢氧化钠溶液和氨水的流量比为1.8~2.2:1.8~2.2:1。
氢氧化钠溶液的摩尔浓度为4mol/L,氨水的摩尔浓度为6mol/L。
步骤4中沉淀反应在反应釜中进行,反应温度为:70~80℃,反应时间为:22~36h。
本发明的有益效果是,本发明一种含有Mg、Al的三元前驱体的制备方法,通过在镍钴锰三元溶液中直接加入镁、铝掺杂元素,并通过加入络合剂稳定掺杂元素,并缩小各金属离子在反应体系中的沉淀速度差异,实现均匀共沉淀,使掺杂元素能够均匀的分布在前驱体颗粒中,从而充分发挥掺杂元素稳定结构的作用,并将掺杂带来的放电容量降低问题减小的最低,实现放电比容量与结构稳定性的平衡。
附图说明
图1为本发明提供实施例1中常规方法与本发明方法制备的三元前驱体的容量对比图;
图2为本发明提供实施例2中常规方法与本发明方法制备的三元前驱体的容量对比图;
图3为本发明提供实施例3中常规方法与本发明方法制备的三元前驱体的容量对比图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种含有Mg、Al的三元前驱体的制备方法,具体包括以下步骤:
步骤1,配置含有镍、钴、锰的三元溶液;
镍、钴、锰的摩尔比为:1:0.3~0.5:0.5~0.7;
步骤2,给步骤1所述的三元溶液中加入络合剂;
络合剂为1,10-邻二氮菲,乙二胺四乙酸二钠,二巯基丙醇,二巯基丙烷磺酸钠,巯基乙胺,巯基乙酸,硫脲,氟化氨,8-羟基喹啉,氰化钾,乙酰丙酮,柠檬酸,酒石酸,草酸,磺基水杨酸,三乙醇胺,乙二醇双(2-氨基乙基醚)四乙酸,乙二胺四丙酸,三乙撑四胺中的一种或一种以上的组合;
络合剂的添加量为镍、钴和锰总质量的0.1%-10%;
步骤3,给步骤2所述的混合溶液中加入镁盐溶液和铝盐溶液;
镁盐为氯化镁、乙酸镁、硫酸镁、硝酸镁中的一种或一种以上的组合;铝盐为三氯化铝、乙酸铝、异丙醇铝、正丙醇铝、硫酸铝、硝酸铝中的一种或一种以上的组合;镁盐的掺入量为镍、钴和锰总质量的0.001%-2%,铝盐的掺入量为镍、钴和锰总质量的0.001%-2%;
步骤4,将步骤3所述的混合溶液中加入氢氧化钠溶液以及氨水,完成沉淀反应,即得到含有Mg、Al的三元前驱体;
其中,混合溶液、氢氧化钠溶液以及氨水的流量比为1.8~2.2:1.8~2.2:1;所述氢氧化钠溶液的摩尔浓度为4mol/L,氨水的摩尔浓度为6mol/L;沉淀反应在反应釜中进行,反应温度为:70~80℃,反应时间为:22~36h。
同现有制备方法相比,本发明主要有以下技术优势:通过在镍钴锰三元溶液中直接加入镁、铝掺杂元素,并通过加入络合剂稳定掺杂元素,并缩小各金属离子在反应体系中的沉淀速度差异,实现均匀共沉淀,使掺杂元素能够均匀的分布在前驱体颗粒中,从而充分发挥掺杂元素稳定结构的作用,并将掺杂带来的放电容量降低问题减小的最低,实现放电比容量与结构稳定性的平衡。
实施例1
给2mol/L的镍钴锰摩尔比为55:25:20的三元溶液中加入5g/L的乙二醇双(2-氨基乙基醚)四乙酸,然后分别加入0.5g/L的硫酸镁和0.5g/L的三氯化铝,充分搅拌溶解;与4mol/L的氢氧化钠溶液以及6mol/L的氨水溶液按照1.8:1.8:1的流量比通过计量泵并流加入到反应釜中,反应温度70℃,反应时间为22h,得到一种含有Mg、Al的三元前驱体。
将上述三元前驱体与相同合成条件、相同镁铝掺杂量,通过常规方法制备的三元前驱体进行循环寿命对比测试,测试结果见图1。从图1中可以看出,本发明方法(Liquidfase doping)制备的三元前驱体,在相同的寿命下,其容量大于常规方法(Solid fasedoping)制备的三元前驱体。
实施例2
给2mol/L的镍钴锰摩尔比为5:2:3的三元溶液中加入5g/L的草酸,然后分别加入0.3g/L的硝酸镁和1.0g/L的硫酸铝,充分搅拌溶解;与4mol/L的氢氧化钠溶液以及6mol/L的氨水溶液按照2:2:1的流量比通过计量泵并流加入到反应釜中,反应温度75℃,反应时间为24h,得到一种含有Mg、Al的三元前驱体。
将上述三元前驱体与相同合成条件、相同镁铝掺杂量,通过常规方法制备的三元前驱体进行循环寿命对比测试,测试结果见图2。从图2中可以看出,本发明制备的三元前驱体,在相同的寿命下,其容量大于常规方法制备的三元前驱体。
实施例3
给2mol/L的镍钴锰摩尔比为6:2:2的三元溶液中加入10g/L的二巯基丙烷磺酸钠,然后分别加入1.0g/L的氯化镁和1.5g/L的三氯化铝,充分搅拌溶解;与4mol/L的氢氧化钠溶液以及6mol/L的氨水溶液按照1.9:2:1的流量比通过计量泵并流加入到反应釜中,反应温度70℃,反应时间为36h,得到一种含有Mg、Al的三元前驱体。
将上述三元前驱体与相同合成条件、相同镁铝掺杂量,通过常规方法制备的三元前驱体进行循环寿命对比测试,测试结果见图3。从图3中可以看出,本发明制备的三元前驱体,在相同的寿命下,其容量大于常规方法制备的三元前驱体。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (10)

1.一种含有Mg、Al的三元前驱体的制备方法,其特征在于,具体包括以下步骤:
步骤1,配置含有镍、钴、锰的三元溶液;
步骤2,给步骤1所述的三元溶液中加入络合剂;
步骤3,给步骤2所述的混合溶液中加入镁盐溶液和铝盐溶液;
步骤4,将步骤3所述的混合溶液中加入氢氧化钠溶液以及氨水,完成沉淀反应,即得到含有Mg、Al的三元前驱体。
2.根据权利要求1所述的一种含有Mg、Al的三元前驱体的制备方法,其特征在于,所述步骤1中镍、钴、锰的摩尔比为:1:0.3~0.5:0.5~0.7。
3.根据权利要求1所述的一种含有Mg、Al的三元前驱体的制备方法,其特征在于,所述步骤2中络合剂为1,10-邻二氮菲,乙二胺四乙酸二钠,二巯基丙醇,二巯基丙烷磺酸钠,巯基乙胺,巯基乙酸,硫脲,氟化氨,8-羟基喹啉,氰化钾,乙酰丙酮,柠檬酸,酒石酸,草酸,磺基水杨酸,三乙醇胺,乙二醇双(2-氨基乙基醚)四乙酸,乙二胺四丙酸,三乙撑四胺中的一种或一种以上的组合。
4.根据权利要求3所述的一种含有Mg、Al的三元前驱体的制备方法,其特征在于,所述步骤2中络合剂的添加量为镍、钴和锰总质量的0.1%-10%。
5.根据权利要求1所述的一种含有Mg、Al的三元前驱体的制备方法,其特征在于,所述步骤3中镁盐为氯化镁、乙酸镁、硫酸镁、硝酸镁中的一种或一种以上的组合。
6.根据权利要求1所述的一种含有Mg、Al的三元前驱体的制备方法,其特征在于,所述步骤3中铝盐为三氯化铝、乙酸铝、异丙醇铝、正丙醇铝、硫酸铝、硝酸铝中的一种或一种以上的组合。
7.根据权利要求1所述的一种含有Mg、Al的三元前驱体的制备方法,其特征在于,所述步骤3中镁盐的掺入量为镍、钴和锰总质量的0.001%-2%,铝盐的掺入量为镍、钴和锰总质量的0.001%-2%。
8.根据权利要求1所述的一种含有Mg、Al的三元前驱体的制备方法,其特征在于,所述步骤4中混合溶液、氢氧化钠溶液以及氨水的流量比为1.8~2.2:1.8~2.2:1。
9.根据权利要求8所述的一种含有Mg、Al的三元前驱体的制备方法,其特征在于,所述氢氧化钠溶液的摩尔浓度为4mol/L,氨水的摩尔浓度为6mol/L。
10.根据权利要求9所述的一种含有Mg、Al的三元前驱体的制备方法,其特征在于,所述步骤4中沉淀反应在反应釜中进行,反应温度为:70~80℃,反应时间为22~36h。
CN201611065542.2A 2016-11-28 2016-11-28 一种含有Mg、Al的三元前驱体的制备方法 Pending CN106654197A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611065542.2A CN106654197A (zh) 2016-11-28 2016-11-28 一种含有Mg、Al的三元前驱体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611065542.2A CN106654197A (zh) 2016-11-28 2016-11-28 一种含有Mg、Al的三元前驱体的制备方法

Publications (1)

Publication Number Publication Date
CN106654197A true CN106654197A (zh) 2017-05-10

Family

ID=58812839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611065542.2A Pending CN106654197A (zh) 2016-11-28 2016-11-28 一种含有Mg、Al的三元前驱体的制备方法

Country Status (1)

Country Link
CN (1) CN106654197A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107500366A (zh) * 2017-08-31 2017-12-22 山东精工电子科技有限公司 高性能球形镍钴铝酸锂正极材料的制备方法
CN108232185A (zh) * 2017-12-18 2018-06-29 佛山市德方纳米科技有限公司 液相掺杂三元前驱体的合成方法
CN109336193A (zh) * 2018-10-21 2019-02-15 圣戈莱(北京)科技有限公司 多元素原位共掺杂三元材料前驱体及其制备方法和应用
CN109896552A (zh) * 2019-02-19 2019-06-18 湖南中伟新能源科技有限公司 一种掺铝锂离子正极材料前驱体的制备方法
CN111533183A (zh) * 2020-05-09 2020-08-14 中伟新材料股份有限公司 一种熔融金属包覆型的三元前驱体及其制备方法
CN114843504A (zh) * 2022-06-08 2022-08-02 中南大学 一种单晶形貌的锂离子电池三元正极材料及其制备方法与应用
CN116969521A (zh) * 2023-07-31 2023-10-31 中国科学院过程工程研究所 一种钠离子电池正极材料前驱体及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997113A (zh) * 2009-08-17 2011-03-30 北京当升材料科技股份有限公司 一种锂离子电池用多层包覆结构的多元材料及其制备方法
CN103367704A (zh) * 2012-04-06 2013-10-23 协鑫动力新材料(盐城)有限公司 梯度分布的复合多元材料前驱体及其制备方法和应用
CN103500825A (zh) * 2013-09-26 2014-01-08 东莞新能源科技有限公司 多元层状锂离子电池正极材料及其制备方法
CN104362308A (zh) * 2014-09-19 2015-02-18 青岛乾运高科新材料股份有限公司 一种锂离子电池正极多元复合材料及制备方法
CN104701530A (zh) * 2015-01-30 2015-06-10 天津巴莫科技股份有限公司 原位掺杂改性的氧化镍钴锰锂正极材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997113A (zh) * 2009-08-17 2011-03-30 北京当升材料科技股份有限公司 一种锂离子电池用多层包覆结构的多元材料及其制备方法
CN103367704A (zh) * 2012-04-06 2013-10-23 协鑫动力新材料(盐城)有限公司 梯度分布的复合多元材料前驱体及其制备方法和应用
CN103500825A (zh) * 2013-09-26 2014-01-08 东莞新能源科技有限公司 多元层状锂离子电池正极材料及其制备方法
CN104362308A (zh) * 2014-09-19 2015-02-18 青岛乾运高科新材料股份有限公司 一种锂离子电池正极多元复合材料及制备方法
CN104701530A (zh) * 2015-01-30 2015-06-10 天津巴莫科技股份有限公司 原位掺杂改性的氧化镍钴锰锂正极材料的制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107500366A (zh) * 2017-08-31 2017-12-22 山东精工电子科技有限公司 高性能球形镍钴铝酸锂正极材料的制备方法
CN108232185A (zh) * 2017-12-18 2018-06-29 佛山市德方纳米科技有限公司 液相掺杂三元前驱体的合成方法
CN108232185B (zh) * 2017-12-18 2020-11-10 佛山市德方纳米科技有限公司 液相掺杂三元前驱体的合成方法
CN109336193A (zh) * 2018-10-21 2019-02-15 圣戈莱(北京)科技有限公司 多元素原位共掺杂三元材料前驱体及其制备方法和应用
CN109896552A (zh) * 2019-02-19 2019-06-18 湖南中伟新能源科技有限公司 一种掺铝锂离子正极材料前驱体的制备方法
CN111533183A (zh) * 2020-05-09 2020-08-14 中伟新材料股份有限公司 一种熔融金属包覆型的三元前驱体及其制备方法
CN111533183B (zh) * 2020-05-09 2024-02-20 中伟新材料股份有限公司 一种熔融金属包覆型的三元前驱体及其制备方法
CN114843504A (zh) * 2022-06-08 2022-08-02 中南大学 一种单晶形貌的锂离子电池三元正极材料及其制备方法与应用
CN116969521A (zh) * 2023-07-31 2023-10-31 中国科学院过程工程研究所 一种钠离子电池正极材料前驱体及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN106654197A (zh) 一种含有Mg、Al的三元前驱体的制备方法
EP3297072B1 (en) Methods for preparing nickel-cobalt-aluminum precursor material and cathode material with gradient distribution of aluminum element
CN111129463B (zh) 一种mof包覆的单晶三元正极材料及其前驱体的制备方法
CN107346824B (zh) 一种梯度三元正极材料的制备方法及其应用
CN106684344A (zh) 一种含有Ti、Zr的三元前驱体的制备方法
CN108373175A (zh) 铝掺杂四氧化三钴及其制备方法和应用
CN104201324B (zh) 一种模板法合成锂离子电池正极材料镍钴锰酸锂的方法
CN106654198A (zh) 一种钛、锆原位掺杂镍钴铝前驱体材料的制备方法
CN104134798B (zh) 一种复合掺杂型镍钴正极材料及其制备方法
CN110190241B (zh) 一种镍钴锰前驱体颗粒的制备方法
CN106315694A (zh) 掺杂型镍钴酸锂前驱体的制备方法
CN104810521A (zh) 一种镍钴锰酸锂三元正极材料的制备方法
CN104916837A (zh) 一种铝元素掺杂三元正极材料的制备方法
CN107342398A (zh) 一种锂离子电池正极活性材料及其制备方法
CN108878869A (zh) 锂离子电池用梯度结构的ncm三元正极材料及制法与应用
CN114956202A (zh) 一种钠离子正极材料的前驱体、制备方法及正极材料
CN103682323A (zh) 锂镍锰氧正极材料及其前驱体及制备方法
CN105244490A (zh) 一种高镍正极材料及其制备方法
CN105810933B (zh) 一种钼掺杂氧化锌包覆富锂锰基正极材料的制备方法
CN108075132A (zh) 一种具有特殊内部结构的镍钴锰前驱体材料的制备方法
CN105016394A (zh) 一种锂离子电池用锰酸锂正极材料的工业制备方法
WO2023138220A1 (zh) 具有大通道的正极材料前驱体的制备方法及其应用
CN104362335A (zh) 一种镍钴锰酸锂正极材料的制备方法
CN104332624A (zh) 一种镍钴锰酸锂材料前驱体的制备方法
CN109103446A (zh) 氧化硅包覆高镍前驱体、改性高镍材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510