CN106602081A - 一种用于直接甲酸燃料电池的氧化钯催化剂及其制备方法 - Google Patents

一种用于直接甲酸燃料电池的氧化钯催化剂及其制备方法 Download PDF

Info

Publication number
CN106602081A
CN106602081A CN201611101975.9A CN201611101975A CN106602081A CN 106602081 A CN106602081 A CN 106602081A CN 201611101975 A CN201611101975 A CN 201611101975A CN 106602081 A CN106602081 A CN 106602081A
Authority
CN
China
Prior art keywords
palladium
preparation
palladium oxide
catalyst
oxide catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611101975.9A
Other languages
English (en)
Other versions
CN106602081B (zh
Inventor
曾建皇
蒋扬程
刘真
廖世军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201611101975.9A priority Critical patent/CN106602081B/zh
Publication of CN106602081A publication Critical patent/CN106602081A/zh
Priority to US16/466,642 priority patent/US20190326608A1/en
Priority to PCT/CN2017/113795 priority patent/WO2018103580A1/zh
Application granted granted Critical
Publication of CN106602081B publication Critical patent/CN106602081B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/923Compounds thereof with non-metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种用于直接甲酸燃料电池的氧化钯催化剂及其制备方法。该制备方法如下:将氯化钯溶解配制成水溶液,加入柠檬酸钠或柠檬酸钾,调节溶液的pH值为9~13;然后将上述溶液置于微波反应器中微波反应3~30分钟,反应同时回流和磁力搅拌,得到氧化钯胶体溶液。待氧化钯胶体冷却后,加入商业碳粉或者碳纳米管收集氧化钯;最后抽滤,将滤饼洗涤干净,真空干燥,研磨后得到碳载的氧化钯催化剂。本发明用水为溶剂,绿色环保,全程无任何有机物质参与反应;不添加任何高分子量的保护剂,催化剂制备后无需后处理;反应时间短,节省能耗;本发明制备氧化钯电催化剂的过程简单,易于实现批量工业化生产。

Description

一种用于直接甲酸燃料电池的氧化钯催化剂及其制备方法
技术领域
本发明属于直接甲酸燃料电池电催化剂领域,具体涉及一种用于直接甲酸燃料电池的氧化钯催化剂及其制备方法。
背景技术
在燃料电池中,电催化剂扮演着电化学反应“工厂”的作用,是电池中的核心材料,电催化剂的研制是燃料电池的关键之一。贵金属铂、钯、或者铂钯合金对氢气、甲酸、甲醇、乙醇等燃料分子的氧化反应以及氧还原反应均具有非常高的催化活性,因此现阶段商业和实用的电催化剂绝大部分为碳载铂或者碳载钯电催化剂。对于直接甲酸燃料电池甲酸氧化的阳极电催化剂而言,钯催化剂或者碳载钯催化剂被公认为是具有最佳活性的甲酸氧化的电催化剂。然而这种催化剂的甲酸氧化活性仍然有待提高,且稳定性差。
化学还原制备钯电催化剂遵循的主要目标是粒径小和粒径分布均匀,使贵金属钯的比表面积最大化,提高利用效率。为了制备小粒径的钯,通常在化学还原过程中加入高分子保护剂,避免粒子成核后长大。这种方法的缺点是,高分子保护剂如果在使用前不去除,将覆盖钯的活性中心,使催化活性不能有效发挥;而去除高分子保护剂通常采用高温处理,这将不可避免的导致粒径长大。钯电催化剂制备方法有很多,最常用的是乙二醇还原法。加热过程中,乙二醇同时作为保护剂和还原剂,将钯前驱体还原为钯电催化剂。这种方法所制备的电催化剂粒径小且分散均匀,其缺点是能耗高,且乙二醇在反应过程中本身氧化,不能回收利用,成本高。
发明内容
为了解决现有技术的不足,本发明提供一种制备能耗低、简单、绿色环保、快速、成本低廉、易于实现批量工业化生产的贵金属电催化剂及其制备方法,即一种用于直接甲酸燃料电池的氧化钯催化剂及其制备方法。本发明与其它发明最突出的技术特征是制备的电催化剂为氧化钯催化剂而非钯催化剂。
本发明通过以下技术方案实现。
一种用于直接甲酸燃料电池的氧化钯催化剂的制备方法,包括如下步骤:
(1)将水溶性钯前驱体加水溶解配制成钯前驱体溶液,再加入柠檬酸盐,待完全溶解后调节溶液的pH为9~13;
(2)将步骤(1)所得溶液置于微波反应器中微波反应,微波反应同时保持冷凝水回流和磁力搅拌,得氧化钯胶体溶液;
(3)待氧化钯胶体溶液冷却后,加入碳载体收集氧化钯胶体;
(4)将步骤(3)所得混合液抽滤,再将滤饼洗涤干净,真空干燥,研磨后得到碳载的氧化钯催化剂。
优选的,步骤(1)所述水溶性钯前驱体为氯化钯、氯钯酸钠和氯钯酸钾中的一种。
进一步优选的,所述水溶性钯前驱体为氯化钯。
优选的,步骤(1)所述柠檬酸盐为柠檬酸钠或柠檬酸钾。
优选的,步骤(1)所述柠檬酸盐与水溶性钯前驱体的摩尔比为5:1~0.5:1。
优选的,步骤(2)所述微波反应的功率为600~1500W,进一步优选为900W;微波反应的时间为3~30分钟。
优选的,步骤(3)所述碳载体为商业碳粉或者碳纳米管。
优选的,步骤(3)所述碳载体的加入量占氧化钯胶体中钯金属的60~90wt%。
由以上所述的制备方法制得的一种用于直接甲酸燃料电池的氧化钯催化剂。
优选的,在该氧化钯催化剂中氧化钯的质量比为10~40%。
本发明的主要原理为,碱性条件下,钯前驱体在柠檬酸盐的保护下水解成氧化钯颗粒;由于采用微波快速加热,水解速度非常快,且水解生成的为氧化钯,有效的避免了钯的自催化效应,导致氧化钯粒径小,分散均匀。
与现有技术相比,本发明具有如下优点与技术效果:
(1)本发明采用水为溶剂,绿色环保,全程无任何有机物质参与反应;
(2)本发明不添加任何高分子量的保护剂,使催化剂制备后无需后处理;
(3)本发明的反应时间短,节省能耗;
(4)本发明制备的电催化剂为氧化钯而非通常的钯;
(5)本发明制备的电催化剂粒径小且在载体上分散均匀。
附图说明
图1是实施例1制备的氧化钯胶体的透射电镜照片。
图2是实施例1制备的氧化钯催化剂的X射线衍射图。
图3是室温下氧化钯电催化剂在0.5 mol L-1 HCOOH+0.5 mol L-1 H2SO4溶液中的循环伏安图。
图4是室温下商业钯碳电催化剂在0.5 mol L-1 HCOOH+0.5 mol L-1 H2SO4溶液中的循环伏安图。
具体实施方式
以下结合附图和实例对本发明的具体实施作进一步的说明,但本发明的保护范围不限于此。
实施例1
将2.5 ml 配制好的0.12 mol L-1氯化钯溶液加入100 ml水中,然后加入1.5 ×10-3mol柠檬酸钠,柠檬酸钠与氯化钯的摩尔比为5:1。调节pH为9;将溶液置于功率为1200W的微波反应器中,微波回流反应17分钟并保持磁力搅拌,得到氧化钯胶体溶液;待氧化钯胶体溶液冷却后,加入120mg 碳粉收集氧化钯;最后抽滤,将滤饼洗涤干净,真空干燥,研磨后得到碳载的氧化钯催化剂,在该氧化钯催化剂中氧化钯的质量比为20%。图1为本实施例制备的氧化钯胶体的透射电镜照片,从图1可以看出,氧化钯的平均粒径为2.5 nm,分布均匀。图2为本实施例制备的氧化钯催化剂的X射线衍射图(XRD),图2可以明显看出氧化钯的特征衍射峰。图3是室温下氧化钯催化剂在0.5 mol L-1 HCOOH+0.5 mol L-1 H2SO4溶液中的循环伏安图(图中的数字表示圈数),扫描速度为20mV s-1。从图3可以看出,第1圈时,甲酸氧化的峰电流密度为2172 A g-1, 40圈后,电流密度衰减到675 A g-1,衰减了69%。图4是室温下商业钯碳催化剂在0.5 mol L-1 HCOOH+0.5 mol L-1 H2SO4溶液中的循环伏安图(图中数字表示圈数),扫描速度为20mV s-1。从图4可以看出,第1圈时,甲酸氧化的峰电流密度为1022 A g-1, 40圈后,电流密度衰减到162 A g-1,衰减了84%。
实施例2
将2.5 ml 配制好的0.12 mol L-1氯化钯溶液加入100 ml水中,然后加入1.5 ×10-4mol柠檬酸钠,柠檬酸钠与氯化钯的摩尔比为0.5:1。调节pH为13;将溶液置于功率为600W的微波反应器中,微波回流反应30分钟并保持磁力搅拌,得到氧化钯胶体溶液;待氧化钯胶体溶液冷却后,加入47mg 碳纳米管收集氧化钯;最后抽滤,将滤饼洗涤干净,真空干燥,研磨后得到碳载的氧化钯催化剂,在该氧化钯催化剂中氧化钯的质量比为40%。本实施例制备的氧化钯的平均粒径为2.2 nm, X射线衍射图谱可以看出本实施例所制备的催化剂为氧化钯。本实施例制备的氧化钯催化剂室温下0.5 mol L-1 HCOOH+0.5 mol L-1 H2SO4溶液中,扫描速度为20mV s-1,第1圈甲酸氧化的峰电流密度为1600 A g-1
实施例3
将4 ml 配制好的0.12 mol L-1氯化钯溶液加入100 ml水中,然后加入1.32 ×10-3mol柠檬酸钠,柠檬酸钠与氯化钯的摩尔比为2.75:1。调节pH为11;将溶液置于功率为1500W的微波反应器中,微波回流反应3分钟并保持磁力搅拌,得到氧化钯胶体溶液;待氧化钯胶体溶液冷却后,加入400mg碳粉收集氧化钯;最后抽滤,将滤饼洗涤干净,真空干燥,研磨后得到碳载的氧化钯催化剂,在该氧化钯催化剂中氧化钯的质量比为10%。本实施例制备的氧化钯催化剂的平均粒径为2.3nm。室温下0.5 mol L-1 HCOOH+0.5 mol L-1 H2SO4溶液中,扫描速度为20mV s-1,本实施例制备的氧化钯催化剂第1圈甲酸氧化的峰电流密度为1800 Ag-1

Claims (9)

1.一种用于直接甲酸燃料电池的氧化钯催化剂的制备方法,其特征在于,包括如下步骤:
(1)将水溶性钯前驱体加水溶解配制成钯前驱体溶液,再加入柠檬酸盐,待完全溶解后调节溶液的pH为9~13;
(2)将步骤(1)所得溶液置于微波反应器中微波反应,同时保持冷凝水回流和磁力搅拌,得氧化钯胶体溶液;
(3)待氧化钯胶体溶液冷却后,加入碳载体收集氧化钯胶体;
(4)将步骤(3)所得混合液抽滤,再将滤饼洗涤干净,真空干燥,研磨后得到碳载的氧化钯催化剂。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述水溶性钯前驱体为氯化钯、氯钯酸钠和氯钯酸钾中的一种。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述柠檬酸盐为柠檬酸钠或柠檬酸钾。
4.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述柠檬酸盐与水溶性钯前驱体的摩尔比为5:1~0.5:1。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述微波反应的功率为600~1500W,时间为3~30分钟。
6.根据权利要求1所述的制备方法,其特征在于,步骤(3)所述碳载体为商业碳粉或者碳纳米管。
7.根据权利要求1所述的制备方法,其特征在于,步骤(3)所述碳载体的加入量占氧化钯胶体中钯金属的60~90wt%。
8.由权利要求1-7任一项所述的制备方法制得的一种用于直接甲酸燃料电池的氧化钯催化剂。
9.根据权利要求8所述的一种用于直接甲酸燃料电池的氧化钯催化剂,其特征在于,在该氧化钯催化剂中氧化钯的质量比为10~40%。
CN201611101975.9A 2016-12-05 2016-12-05 一种用于直接甲酸燃料电池的氧化钯催化剂及其制备方法 Active CN106602081B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201611101975.9A CN106602081B (zh) 2016-12-05 2016-12-05 一种用于直接甲酸燃料电池的氧化钯催化剂及其制备方法
US16/466,642 US20190326608A1 (en) 2016-12-05 2017-11-30 Palladium oxide catalyst for direct formic acid fuel cell and preparation method thereof
PCT/CN2017/113795 WO2018103580A1 (zh) 2016-12-05 2017-11-30 一种用于直接甲酸燃料电池的氧化钯催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611101975.9A CN106602081B (zh) 2016-12-05 2016-12-05 一种用于直接甲酸燃料电池的氧化钯催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN106602081A true CN106602081A (zh) 2017-04-26
CN106602081B CN106602081B (zh) 2019-04-09

Family

ID=58595749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611101975.9A Active CN106602081B (zh) 2016-12-05 2016-12-05 一种用于直接甲酸燃料电池的氧化钯催化剂及其制备方法

Country Status (3)

Country Link
US (1) US20190326608A1 (zh)
CN (1) CN106602081B (zh)
WO (1) WO2018103580A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482230A (zh) * 2017-09-14 2017-12-15 苏州格拉菲英新能源科技有限公司 一种燃料电池用钯碳催化剂的制备方法
WO2018103580A1 (zh) * 2016-12-05 2018-06-14 华南理工大学 一种用于直接甲酸燃料电池的氧化钯催化剂及其制备方法
CN109216716A (zh) * 2018-08-06 2019-01-15 浙江高成绿能科技有限公司 一种高Pt载量的燃料电池用Pt/C催化剂的制备方法
CN114182283A (zh) * 2021-11-29 2022-03-15 华中科技大学 一种负载型贵金属化合物及其制备和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111044666B (zh) * 2019-12-31 2022-03-25 无锡殷达尼龙有限公司 一种二元酸中痕量炭粉及盐分残留的分析方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406121A (zh) * 2013-07-18 2013-11-27 浙江工业大学 一种炭载氧化钯催化剂及其制备方法和应用
CN103706355A (zh) * 2013-12-17 2014-04-09 华南理工大学 一种无机盐辅助保护的碳载钯或钯铂直接甲酸燃料电池电催化剂的制备方法
CN104409741A (zh) * 2014-11-06 2015-03-11 中南大学 一种炭载氧化钯氧还原反应电催化剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306810A (zh) * 2011-07-21 2012-01-04 华南理工大学 自增湿燃料电池复合催化剂及其制备方法与应用
CN106602081B (zh) * 2016-12-05 2019-04-09 华南理工大学 一种用于直接甲酸燃料电池的氧化钯催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406121A (zh) * 2013-07-18 2013-11-27 浙江工业大学 一种炭载氧化钯催化剂及其制备方法和应用
CN103706355A (zh) * 2013-12-17 2014-04-09 华南理工大学 一种无机盐辅助保护的碳载钯或钯铂直接甲酸燃料电池电催化剂的制备方法
CN104409741A (zh) * 2014-11-06 2015-03-11 中南大学 一种炭载氧化钯氧还原反应电催化剂及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018103580A1 (zh) * 2016-12-05 2018-06-14 华南理工大学 一种用于直接甲酸燃料电池的氧化钯催化剂及其制备方法
CN107482230A (zh) * 2017-09-14 2017-12-15 苏州格拉菲英新能源科技有限公司 一种燃料电池用钯碳催化剂的制备方法
CN109216716A (zh) * 2018-08-06 2019-01-15 浙江高成绿能科技有限公司 一种高Pt载量的燃料电池用Pt/C催化剂的制备方法
CN109216716B (zh) * 2018-08-06 2023-09-05 浙江高成绿能科技有限公司 一种高Pt载量的燃料电池用Pt/C催化剂的制备方法
CN114182283A (zh) * 2021-11-29 2022-03-15 华中科技大学 一种负载型贵金属化合物及其制备和应用
CN114182283B (zh) * 2021-11-29 2022-12-09 华中科技大学 一种负载型贵金属化合物及其制备和应用

Also Published As

Publication number Publication date
US20190326608A1 (en) 2019-10-24
WO2018103580A1 (zh) 2018-06-14
CN106602081B (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN105289695B (zh) 一种石墨烯负载Co-N-C氧还原催化剂及其制备方法
CN106602081A (zh) 一种用于直接甲酸燃料电池的氧化钯催化剂及其制备方法
CN101572316B (zh) 用于低温燃料电池的修饰型催化剂及其制备方法
CN102078826B (zh) 离子液体修饰的碳球负载铂纳米粒子催化剂的制法及应用
CN102489314B (zh) 用于甲醇、乙醇燃料电池的石墨烯负载双金属纳米粒子及制备方法
CN100531914C (zh) 用于燃料电池的铂碳类催化剂的固相还原制备方法
CN105845948B (zh) 一种花状铜/氧化铜微纳米复合材料负载贵金属燃料电池催化剂的制备方法
CN104368357B (zh) 一种PdPtNi/C金属纳米催化剂及其制备方法和用途
CN102723504A (zh) 一种多壁碳纳米管载核壳型银-铂阴极催化剂及制备方法
CN102294239B (zh) 用于燃料电池氧还原反应的金属纳米电催化剂及其制备方法和应用
CN111261886A (zh) 一种用于燃料电池的非贵金属修饰的铂基催化剂及其制备方法与应用
CN101607197A (zh) 一种燃料电池催化剂的制备方法
CN109860643A (zh) 一种芳香重氮盐表面修饰MXene负载铂的氧还原电催化剂及其制备方法
CN109433193A (zh) 一种纳米Pd/M-rGO复合催化剂及其制备方法
CN103170334A (zh) 一种碳载钴氧化物催化剂及其制备和应用
Luo et al. Synthesis and electrochemical properties of graphene supported PtNi nanodendrites
CN108520965A (zh) 一种铂-贵金属-铜三元合金纳米空心立方体的制备方法
CN108110261B (zh) 一种燃料电池用金属粒子-液态金属催化剂及制备方法
CN110492112A (zh) 一种氧还原复合催化剂及其制备方法
CN113540481A (zh) 一种质子交换膜燃料电池铂钴合金碳催化剂及其制备方法
CN111326753B (zh) 一种担载型纳米电催化剂及其制备方法与应用
RU2324538C1 (ru) Катализатор с наноразмерными частицами на носителе и способ его изготовления
CN103560255B (zh) 一种锌空气电池用氧还原催化剂的载体材料及其制备方法
CN103887530A (zh) 一种Pt/(C-Pb)催化剂及其制备
CN102784665A (zh) 一种用于燃料电池氧还原反应的碳-银铜-聚苯胺复合电催化剂的制备方法及其产品和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant