CN106550613A - 一种含钨材料的用途 - Google Patents

一种含钨材料的用途 Download PDF

Info

Publication number
CN106550613A
CN106550613A CN201580037964.6A CN201580037964A CN106550613A CN 106550613 A CN106550613 A CN 106550613A CN 201580037964 A CN201580037964 A CN 201580037964A CN 106550613 A CN106550613 A CN 106550613A
Authority
CN
China
Prior art keywords
tungsten oxide
tungstenic
solution
purposes
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580037964.6A
Other languages
English (en)
Inventor
张雨虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peng Yiting
Original Assignee
Suzhou Hans Energy Storage Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Hans Energy Storage Technology Co ltd filed Critical Suzhou Hans Energy Storage Technology Co ltd
Publication of CN106550613A publication Critical patent/CN106550613A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/002Compounds containing, besides ruthenium, rhodium, palladium, osmium, iridium, or platinum, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/006Compounds containing, besides tungsten, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

一种含钨材料及其应用以及制备方法。含钨材料作为电化学储能材料、燃料电池电解质和化学催化剂材料。含钨材料包括氧化钨及氧化钨水合物、掺杂的氧化钨及掺杂氧化钨水合物、氧化钨的复合物以及氧化钨水合物的复合物。

Description

一种含钨材料的用途 技术领域
本发明涉及氧化钨及其应用,包括材料及其制备方法,其特殊性能,其在储能,催化等领域的应用方案。更具体地说,涉及化学,化工,材料以及能源领域。
技术背景
从光合作用到电化学能量储存与转换,能量的转换都是通过电子与离子(如质子,锂离子等)的协同转移来实现的。在此情况下,混合电子‐离子导体具有极大的潜力,特别是对于大功率的电化学装置而言具有特殊的意义。当前,以电池和电化学电容器为主导的电化学储能器件广泛的应用于便携式电子设备,而且正快速的扩展到电动交通工具,电网储能,可再生能源存储等。在这类器件中,电荷的物理分离或化学能的转换,是通过电子与离子的协同转移来实现的,进而实现能量的存储与释放。具有电子‐离子混合导电性的材料已经广泛的应用于很多领域,比如固体氧化物燃料电池,电致变色材料,化学传感器,气体分离等。但是,绝大多数的混合电子‐离子导体是基于高温条件下(例如,大于500摄氏度)工作的氟化物或者钙钛矿结构的陶瓷材料。同时,室温条件下工作的混合电子‐锂离子导体,例如氧化钴锂(LiCoO2)氧化锰锂(LiMn2O4)等,广泛应用于锂离子电池的电极材料中,但是在这些材料中,锂离子在固相中的传导往往伴随着明显的相变行为,因而限制了材料的动力学特性和工作寿命。因此当前的普通的商用锂离子电池的循环寿命往往只有几百次。尽管低温条件下的电子‐质子导体材料可以通过简单的混合导电材料(例如金属,碳材料,导电高分子,导电氧化物等)与导质子材料(例如水,含水高分子,水合氧化物等),但是这些材料本身都不具有电荷存储能力,因此不能用作储能材料。虽然具有水合结构的氧化钌具有室温条件下的电子‐质子导电性,而且具有很高的电化学电容(700法每克),但是其昂贵的价格限制了大规模的应用。
一般而言,电池和电化学电容器等电化学储能器件的电极都是通过集成导电材料(石墨,碳黑等),氧化还原活性材料(氧化物等),与多孔导离子网络而形成的。其多孔网络结构提供了电解液的传输通道。但是这种简单的混合多种材料组分形成的电极的电子与离子导电性不高,结构也欠稳定。因此,这类储能器件的能量密度,功率密度,循环寿命极大的受限制于电极的导电性,离子迁移率,氧化还原反应的可逆性,副反应等。为了实现更高性能的能量储存,利用混合电子‐离子导体直接作为电极材料将具有更大的前景。这种材料可以同时提供氧化还原电容量,高导电性,以及快速的例子传导性能,以及稳定的结构,因此可以同时实现大容量,大功率以及长寿命。除了可以用来制造储能器件,混合电子‐离子导体也具有其他广阔的应用,例如催化,分离等。但是,到目前为止,设计和制造具有这样材料还十分困难。
事实上,离子传导在自然界中是非常普遍存在的现象。例如,很多生物行为,例如光和作用,三磷酸腺苷合成,以及生物组织酸性环境的维持等都涉及到质子的传输。在这些过程中,质子的传导都是通过高效的质子通道来实现的。这种质子通道普遍存在于特殊的蛋白质结构中,质子通道可以通过形成内在的单链水结构来构造。例如,短杆菌肽A是一种被广泛研究的简单的导质子多肽,它可以在细胞的磷脂双分子层的疏水内部二聚形成β螺旋结构,这种β螺旋结构包含单链水通道,因此可以有效的进行质子传导。
模拟这种生物材料的天然结构,我们设计合成了一种新型的混合电子‐质子导电材料。通过控制合成过程中晶体的生长,我们制备了特殊结构的氧化钨材料,其具有内部连续的孔道可以高效的传导质子。通过进行简单的掺杂,氧化钨材料可以变成高效的电子导体,从而形成一种性能优异的电子‐质子导体。这种材料应用于电化学存储器件中显示出比普通材料优异的能量,功率和循环性能。因其特殊的结构,可以预见这种氧化钨材料也可以应用于其他领域。
发明概要
本发明的目的在于提供一种新型的混合电子‐质子材料,其制造方法及应用。这样材料是具有特殊性质的氧化钨。该方法通过合成特殊性质的氧化钨材料,进而实现高的质子导电性;简单的阳离子掺杂可以实现高的电子导电性。这种材料可以用作电化学储能材料,燃料电池催化剂材料等领域。
本发明的技术方案如下:
一种新型电池新型的混合电子‐质子材料,其制造方法及应用,该材料具有以下特点:
1)具有混合电子‐质子导电性(附图1,2);
2)具有高的氧化还原活性(附图2);
3)具有高的热稳定性(附图3;
4)具有结构稳定性,长时间工作结构不劣化(附图4);
可能的一种制造方法包含如下步骤:
1)将含钨的前躯体材料,形成溶液或分散液,其中前躯体材料的浓度为0.1%‐20%(质量百分比);
2)加入酸等,调节步骤1中溶液或分散液的pH值至1‐3,进行酸化形成中间体;
3)将中间体转移至水热反应釜,加热至90‐200摄氏度反应1‐96小时,使中间体脱水沉淀形成最终产物(三氧化钨水合物)。
其中,具体的前躯体材料可为例如钨酸钠或钨酸铵。
具体的酸可为盐酸或硫酸等酸性pH调节剂。
其中,需要说明的是,本申请对该水合物所含水的份数并没有特别限定,凡经过以上方法所制备得到的三氧化钨水合物,均在本申请的保护范围之内。但是最优选的,水合物的份数为0‐1,即WO3xH2O,其中x=0‐1。
其中,需要说明的是,前躯体材料只要是能够使最终产物获得钨元素的 物质即可,可以使用任何的化合物,但特别优选是钨酸钠、钨酸铵。其中,具体步骤可如下所示:
1)将含钨的前躯体材料,如钨酸铵,使其形成钨酸铵溶液或分散液,其浓度为0.1%‐20%;
2)加入酸,如盐酸,硫酸等,调节溶液pH值至1‐3,进行酸化形成中间体;
3)中间体专业至水热反应釜,加热至90‐200摄氏度反应1‐96小时,使中间体脱水沉淀形成最终产物(三氧化钨水合物)。
此外,更进一步地,可将上述方法所制备得到的氧化钨进行杂元素掺杂处理。即,可将上述方法所制备得到的氧化钨通过浸泡于不同掺杂元素的盐溶液中,离心后加入处理一定时间获得。其中盐溶液为0.1‐6摩尔每升的氧化锶溶液、氧化钙溶液、氯化锶溶液、氧氯化钙溶液、氯化钠溶液、氯铂酸溶液、氯化钯溶液、乙酸铜溶液,加热处理的一定时间为4‐8小时,加热处理的温度为200‐800摄氏度。需要说明的是,上述各种溶液仅是为了提供最终产物中的杂元素,故事实上,所使用的溶液的种类并不限于此,此处的溶液仅作为举例。
此外,酸化中间体由酸化的含钨的前躯体材料与硫酸铵一起形成。硫酸铵含量为质量分数1%‐10%。
其中,需要说明的是,本申请对该掺杂元素的比例并没有特别限定,凡经过以上方法所制备得到的掺杂氧化钨或氧化钨水合物,均在本申请的保护范围之内。
通过本申请方法所获的材料的应用包括:
1)电化学储能材料;2)燃料电池电解质和电化学催化剂材料。
如前所述,本申请旨在保护通过上述方法所能获得特定含钨材料。该种材料在电化学储能材料以及燃料电池电解质和电化学催化剂材料领域具有优异的效果(在以下将详述)。即凡通过本发明以上方法所获得的含钨材料,均应纳入本申请的保护范围。但为了更清楚地说明,在本发明中,所述的含钨材料包括氧化钨(WO3)及氧化钨水合物(WO3·xH2O),掺杂的氧化钨(MxWO3,M=Li,Na,K,Ca,Mg,Sr,Ba等)及掺杂氧化钨水合物(MxWO3·xH2O,M=Li,Na,K,Ca,Mg,Sr,Ba等),氧化钨的复合物(包括氧化钨与金属,金属氧化物,碳材料,高分子组成的复合物),氧化钨水合物的复合物(包括氧化钨水合物与金属,金属氧化物,碳材料,高分子组成的复合物)
在本发明中,所述的氧化钨,氧化钨水合物,具有高导电性和快速导质子能力。
本发明的积极进步效果在于:
①材料的合成工艺过程简单,工业装置已经广泛应用于大量化工产品的合成,容易大规模生产;
②所得到的新型活性材料具有高氧化还原活性,可以快速的发生电化学氧化还原反应,实现较高的电容量和充放电速度;
③在所得到的新型活性材料具有高电子和质子导电性,从而实现大电流充放电性能;
④所得到的新型材料具有稳定的结构,材料工作过程中结构不发生改变,稳定性好,长时间循环性能优异;
⑤所得到的活性材料可以构建高效电极,可以在特殊的工作电压条件下充放电,与正极组合时可以实现大工作电压;
⑥所得到的活性材料具有催化活性,可以用作电极催化剂。
附图说明
图1.氧化钨材料的离子导电性能,图1显示氧化钨材料的质子导电性随温度的变化特性。
图2.掺杂氧化钨材料的电子导电性能,图2显示400摄氏度掺杂氧化钨材料的电子导电性随温度的变化特性。
图3.氧化钨材料的循环伏安图,图3显示氧化钨材料的高氧化还原活性。
图4.氧化钨材料不同温度下的x‐射线图谱,图4显示氧化钨材料在室温(下图)以及经过400度加热处理过后的x‐射线图谱。
图5.氧化钨材料作为电极的循环寿命图,图5显示氧化钨材料作为电极的稳定充放电循环特性。
图6产物9催化甲烷部分氧化钾结果。
图7产物10催化甲烷部分氧化钾结果。
图8产物11催化甲烷部分氧化钾结果。
图9产物9催化甲烷完全氧化生成H2O与CO2的浓度。
图10产物10催化甲烷完全氧化生成H2O与CO2的浓度。
图11产物11催化甲烷完全氧化生成H2O与CO2的浓度。
图12产物9‐11(样品1‐3)不同温度下甲烷氧化转化率。
发明内容
下面通过具体实施例进一步阐述本发明的优点,但本发明的保护范围不仅仅局限于下述实施例。
本发明所用试剂及原料均市售可得。
首先用水热法,共沉淀法,热分解法或喷雾干燥法合成具有特殊性质的氧化钨材料。例如以氧化钨水合物(WO3xH2O)的合成为例,将钨酸钠或钨酸钠水合物溶于去离子水,形成浓度为0.1%‐20%的均匀溶液,加入适量硫酸或盐酸等调剂pH值至1‐3,使溶液酸化;然后加入质量分数为1%‐10%的硫酸 铵形成中间体;所得混合溶液转移至反应釜中加热反应,于90‐200摄氏度下反应1‐96个小时得到产物;反应结束后冷却,洗涤产物干燥后得到氧化钨材料。
具体实施例1(电化学储能材料)
(1)以钨酸钠作为钨前驱体材料,溶于去离子水中,形成浓度为5%(质量百分比)的均匀溶液,加入适量的盐酸,使得该溶液的pH值=1.5,随后,在该溶液中加入5%的硫酸铵形成中间体,将该混合溶液转移至反应釜中在160摄氏度下反应72小时,最终获得三氧化钨材料。且该氧化钨材料的离子导电性能如图1所示,该氧化钨材料的电流密度性能如图3所示,该氧化钨材料的X射线结果如图4所示。
此外,将上述制备所得到的氧化钨制备为电极,以了解该种材料在电化学储能材料领域的应用效果。本实施例以电化学电容器应用为例,例如可将氧化钨材料配置成电极浆料或直接与导电材料结合做成电极。具体到本实施例,具体为将上述氧化钨与导电剂,粘结剂,分散溶剂以一定质量比例(8:1:1)混合均匀得到电极浆料,涂敷于集流体上,于80摄氏度干燥10小时形成电极。所得电极与正极组合,加玻璃纤维隔膜和电解液(2摩尔硫酸)形成初始电池;电池经过活化后边得到性能优异的钨酸电池。所得电极与氧化铅电极配对,利用隔膜分隔,加入酸性电解液后组成单体电池,并进行电化学测试,其结果如图5所示,该结果显示所合成氧化钨具有高的电化学氧化还原活性。
除通过以上具体方法外,本申请的发明人还通过以下比例,制备得到不同种类的钨材料以及电极,均获得了与实施例1类似的性能(除表1中所列的参数外,其余参数相同):
表1氧化钨的制备
  钨元素前驱体 含量 pH 硫酸铵含量 反应釜温度以及时间
产物1 钨酸铵 0.5 2 1 90摄氏度5小时
产物2 钨酸铵 10 1 1 130摄氏度40小时
产物3 钨酸钠 2 1.5 2 200摄氏度20小时
产物4 钨酸钠 15 3 5 150摄氏度70小时
产物5 钨酸钠 20 3 4 200摄氏度96小时
需要说明的是,通过以上方法所制备得到的氧化钨,可能包含具有水合物氧化钨的情形,其与反应釜温度及时间有关,但对于所含水合分子的份数,本申请并不做特殊限定。凡通过以上方法所获得的氧化钨和/或氧化钨水合物,均属于本申请的保护范围。
(2)掺杂氧化钨可以通过浸泡氧化钨于不同掺杂元素的盐溶液中,离心后加热处理一定时间获得。
其中盐溶液为0.1‐6摩尔每升的氯化锶溶液、氯化钙溶液,加热处理的一定时间为4‐8小时,加热处理的温度为200‐800摄氏度。具体比例如表2所示:
表2掺杂元素氧化钨的制备
其中,对产物6的电子导电性能进行检测,性能如图2所示。
具体实施方式二(燃料电池电解质和化学催化剂材料)
(1)首先合成氧化钨材料(具体包含氧化钨水合物(WO3·xH2O)。具体方法如前所述,将钨酸钠或钨酸钠水合物溶于去离子水,形成浓度为0.1%‐20%的均匀钨盐溶液,加入适量硫酸或盐酸等调剂pH值至1‐3,使溶液酸化;然后加入质量分数为1%‐10%的硫酸铵形成中间体;所得混合溶液转移至反应釜中加热反应,于90‐200摄氏度下反应1‐96个小时得到产物;反应结束后冷却,洗涤产物干燥后得到氧化钨材料。在表3中,具体使用的氧化钨材料为具体实施例1详细描述的氧化钨。
(2)掺杂氧化钨可以通过将氧化钨与不同掺杂元素的盐溶液反应,实施例中以氯铂酸(H2PtCl6·6H2O)、氯化钯、乙酸铜(一水)溶液为例(以上材料均为商业购买),氧化钨和上述材料、水的质量比例如表3所示:
表3掺杂元素氧化钨的制备
(3)催化剂的测试条件:
测试条件1:0.1g产物9‐11与0.9g石英砂均匀混合后置于管式反应器中,测试前样品在250℃在5%H2气氛中活化30min。原料气体总流量为500 mL/min,其中;氮气作为平衡器,甲烷含量2%,氧气含量0.5%O2。控制升温速率10℃/min,将反应温度由250℃升至450℃,监测甲烷部分氧化产物浓度。
测试条件2:0.1g产物9‐11与0.9g石英砂均匀混合后置于管式反应器中(内径约4mm),测试前样品在250℃在5%H2气氛中活化30min。原料气体总流量为210mL/min,200mL/min甲烷含量为20%的甲烷/氮气混合气与10mL/min纯氧气预混合后通入反应器。在250℃,300℃,350℃以及400℃保持温度30min,通入混合原料气,监测甲烷完全氧化转化率以及产物H2O与CO2生成量。
(4)催化性能比较
测试甲烷在所制备催化剂表面发生催化氧化反应。首先甲烷分子吸附在贵金属活性位上;接着将电子与质子传递至氧化钨载体(WO3),形成HWO3bronze;最后气相氧气氧化HWO3bronze生成WO3与水,同时甲烷可被部分氧化转化为甲醇。继续增加氧气供给量,可将甲醇进一步氧化,即甲烷完全氧化为CO2与水。
在测试条件1下测试产物9‐11催化甲烷部分氧化的转化效率,比较甲醇产量即可以定量比较产物9‐11甲烷部分氧化催化性能。产物9‐10在250℃下即可催化甲烷部分氧化反应将甲烷有效转化为甲醇与水,并在低温范围内(250℃-400℃)一直保持较高的甲醇产量,显示出优越的低温催化性能。而产物10仅300℃以上显示出有限的催化活性。温度升至400℃以上,甲烷在产物9‐11上主要发生完全氧化反应,即氧化产物转变为CO2与水。
在测试条件2下测试产物9‐11催化甲烷完全氧化的转化效率,比较CO2与水的生成浓度,可定量比较产物9‐11的甲烷完全氧化反应效率差异。产物9在250℃下即可高效催化氧化反应,全部甲烷反应气体均完全氧化生成CO2与水。产物10仅在温度升至350℃以上显示出一定的完全催化活性,温 度到达400℃后全部甲烷可被完全氧化。而产物11在整个测试温度范围内均未显示出催化活性,无CO2与水生成。
为对比产物9‐11的催化效率,对甲烷在不同温度下的氧化转化率进行了直接比较。产物9在250℃即可实现14%的转化率,即70%以上的甲烷被有效转化,该转化率随反应温度的升高并未发生明显变化。产物10在350℃以下未有明显的甲烷催化氧化反应发生,直到温度升至400℃才达到和产物9相似的转化率。产物11在250‐400℃的温度范围内未显示有效的催化氧化活性。由此可见,以氧化钨为载体,合理选择活性金属组分可以制备有效的甲烷氧化催化剂,并适用于固体氧化物燃料电池。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (11)

  1. 一种含钨材料的用途,其中所述含钨材料作为电化学储能材料,燃料电池电解质和化学催化剂材料。
  2. 如权利要求1所述的含钨材料的用途,包括氧化钨(WO3)及氧化钨水合物(WO3 xH2O),掺杂的氧化钨(MxWO3,)及掺杂氧化钨水合物(MxWO3xH2O),氧化钨的复合物,氧化钨水合物的复合物。
  3. 如权利要求2所述的含钨材料的用途,其中所述的掺杂的氧化钨中M=Li,Na,K,Ca,Mg,Sr,Ba,所述的掺杂氧化钨水合物,M=Li,Na,K,Ca,Mg,Sr,Ba,所述的氧化钨的复合物包括氧化钨与金属,金属氧化物,碳材料,高分子组成的复合物,所述的氧化钨水合物的复合物包括氧化钨水合物与金属,金属氧化物,碳材料,高分子组成的复合物。
  4. 如权利要求1所述的含钨材料的用途,其中所述含钨材料的制备方式为:水热法,共沉淀法,热分解法或喷雾干燥法。
  5. 如权利要求4所述的含钨材料的用途,其中所述水热法为:
    1)将含钨的前躯体材料,形成溶液或分散液,其中所述前躯体材料的浓度为0.1%‐20%;
    2)加入酸调节所述溶液或分散液的pH值至1‐3,进行酸化形成中间体;
    3)将所述中间体转移至水热反应釜,加热至90‐200摄氏度反应1‐96小时,使中间体脱水沉淀形成最终产物。
  6. 如权利要求5所述的含钨材料的用途,其中所述前躯体材料为钨酸钠和/或钨酸铵。
  7. 如权利要求5所述的含钨材料的用途,其中所述酸为硫酸和/或盐酸。
  8. 如权利要求2所述的含钨材料的用途,其中所述掺杂的氧化钨可通过浸泡氧化钨材料于不同掺杂元素的盐溶液,离心后加热处理一定时间后制成。
  9. 如权利要求8所述的含钨材料的用途,其中所述盐溶液为0.1‐6摩尔每升的氧化锶溶液、氧化钙溶液、氯化锶溶液、氯化钙溶液、氯化钠溶液、氯铂酸溶液、氯化钯溶液、乙酸铜溶液,所述加热处理的一定时间为4‐8小时,加热处理的温度为200‐800摄氏度。
  10. 一种氧化钨材料的制备方法,包含如下步骤:
    1)将含钨的前躯体材料,形成溶液或分散液,其中前躯体材料的浓度为0.1%‐20%;
    2)加入酸等,调节步骤1中溶液或分散液的pH值至1‐3,进行酸化形成中间体;
    3)将中间体转移至水热反应釜,加热至90‐200摄氏度反应1‐96小时,使中间体脱水沉淀形成最终产物。
  11. 如权利要求10所述的制备方法,进一步包括:可将上述方法所制备得到的氧化钨浸泡于不同掺杂元素的溶液中,离心后加热处理一定时间。
CN201580037964.6A 2014-07-25 2015-07-24 一种含钨材料的用途 Pending CN106550613A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2014103565831 2014-07-25
CN201410356583 2014-07-25
PCT/CN2015/084998 WO2016011970A1 (zh) 2014-07-25 2015-07-24 一种含钨材料的用途

Publications (1)

Publication Number Publication Date
CN106550613A true CN106550613A (zh) 2017-03-29

Family

ID=55162529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580037964.6A Pending CN106550613A (zh) 2014-07-25 2015-07-24 一种含钨材料的用途

Country Status (9)

Country Link
US (1) US20170203973A1 (zh)
EP (1) EP3174141B1 (zh)
JP (1) JP2017528401A (zh)
KR (1) KR20170012456A (zh)
CN (1) CN106550613A (zh)
AU (1) AU2015292008B2 (zh)
MX (1) MX2017001132A (zh)
RU (1) RU2017105824A (zh)
WO (1) WO2016011970A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113042032A (zh) * 2021-04-01 2021-06-29 辽宁石油化工大学 一种具有高效异相结的氧化钨光催化剂及其制备方法和应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108821344A (zh) * 2018-07-02 2018-11-16 合肥萃励新材料科技有限公司 一种掺杂态蓝色氧化钨的制备方法
CN109107566B (zh) * 2018-09-27 2021-05-18 青岛科技大学 一种wo3·0.33h2o纳米长方体的制备方法及其光催化应用
CN110898827A (zh) * 2019-12-11 2020-03-24 哈尔滨芳新佳环保科技有限公司 掺杂诱导制备钨系光催化剂异质结的方法
CN112279302A (zh) * 2020-10-09 2021-01-29 哈尔滨理工大学 一种三氧化钨变色材料的制备方法
CN112264004B (zh) * 2020-11-25 2022-04-08 安徽大学 基于钨酸盐的催化材料及其在水氧化产过氧化氢中的应用
CN114551794B (zh) * 2021-12-17 2023-08-25 远景动力技术(江苏)有限公司 正极活性材料、正极及制备方法和锂离子电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291100B1 (en) * 1999-09-15 2001-09-18 Irma America, Inc. Electrode composition comprising doped tungsten oxides and electrochemical cell comprising same
CN1794363A (zh) * 2004-12-23 2006-06-28 三星Sdi株式会社 质子导体和使用该质子导体的电化学装置
CN101407339A (zh) * 2007-10-12 2009-04-15 新疆大学 一种四方形氧化钨纳米粉体的合成方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1095117A (en) * 1977-04-25 1981-02-03 Charles C. Liang Cells with solid electrolytes and electrodes
US5494762A (en) * 1992-01-16 1996-02-27 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
US5741540A (en) * 1996-01-16 1998-04-21 Industrial Technology Research Institute Method of forming solid state humidity sensor
JP4184583B2 (ja) * 2000-08-18 2008-11-19 セイコーインスツル株式会社 コイン型非水電解質電池
EP1401576A1 (en) * 2001-05-31 2004-03-31 AUSTRALIAN NUCLEAR SCIENCE & TECHNOLOGY ORGANISATION Inorganic ion exchangers for removing contaminant metal ions from liquid streams
CN1344671A (zh) * 2001-10-17 2002-04-17 中国科学院兰州化学物理研究所 甲烷和二氧化碳重整制合成气催化剂
CN1317197C (zh) * 2005-01-27 2007-05-23 北京科技大学 超声喷雾微波干燥制备纳米三氧化钨粉末的装置及方法
US8062552B2 (en) * 2005-05-19 2011-11-22 Brookhaven Science Associates, Llc Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates
CN1725536A (zh) * 2005-06-08 2006-01-25 广州市培源燃料电池有限公司 自保湿质子交换膜及其制备方法
WO2007129560A1 (ja) * 2006-05-09 2007-11-15 Kao Corporation 多価アルコールの水素化分解物の製造方法
TWI393673B (zh) * 2008-03-04 2013-04-21 Toshiba Kk Water dispersions and their use of coatings, films and products
CN101240164B (zh) * 2008-03-05 2010-07-28 湖北大学 一种甲醛诱导合成敏感光致变色wo3纳米粉体的方法
JP5219137B2 (ja) * 2008-04-23 2013-06-26 独立行政法人産業技術総合研究所 樹状物質およびそれを含む構造体
CN101381599B (zh) * 2008-10-20 2011-06-15 中国地质大学(武汉) 纳米wo3光致变色粉体及其制备方法
WO2010069997A1 (en) * 2008-12-16 2010-06-24 Dyrup A/S Self-cleaning coating composition
KR101009583B1 (ko) * 2009-03-10 2011-01-20 충남대학교산학협력단 전이금속산화물 나노입자의 제조방법
CN101834290A (zh) * 2009-03-12 2010-09-15 复旦大学 一种用于锂离子电池的氧化钨负极材料及其制备方法
JP5443838B2 (ja) * 2009-06-08 2014-03-19 関東電化工業株式会社 酸化タングステン微粒子及びその製造方法
JP2011100710A (ja) * 2009-10-06 2011-05-19 Tohoku Univ 導電性微粒子の製造方法および導電性微粒子
JP2011142049A (ja) * 2010-01-08 2011-07-21 Sumitomo Electric Ind Ltd 電極、マグネシウムイオン2次電池、および電力システム
CN101805244B (zh) * 2010-04-08 2013-06-26 华东理工大学 环己烯水合工艺
CN102531063A (zh) * 2011-11-20 2012-07-04 湖南理工学院 一种石墨烯负载wo3纳米线复合材料及其制备方法
CN102561007A (zh) * 2011-12-14 2012-07-11 天津大学 金属氧化物与碳纳米管复合纤维及其制备方法
CN102659182A (zh) * 2012-02-24 2012-09-12 上海大学 Wo3纳米球的制备方法
JP5580356B2 (ja) * 2012-03-13 2014-08-27 株式会社東芝 電池用電極材料、電池用電極材料ペースト、及びそれを使った太陽電池、蓄電池及び太陽電池の製造方法
TWI480229B (zh) * 2012-03-26 2015-04-11 Toshiba Kk A battery electrode material, a battery electrode paste, a method for manufacturing an electrode material for a battery, a dye-sensitized solar cell, and a battery
BR102012027339B1 (pt) * 2012-10-25 2019-08-27 Instituto Nac De Tecnologia Int processo para síntese direta de ácido lático
CN103011293A (zh) * 2013-01-05 2013-04-03 吉林大学 一种三氧化钨的合成方法
US10483595B2 (en) * 2013-10-16 2019-11-19 Suzhou Hans Energy Storage Technology Co., Ltd. Tungsten-based material super battery and supercapacitor
CN103936074B (zh) * 2014-04-02 2015-08-19 长安大学 一种水热法合成超细三氧化钨全纳米棒的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291100B1 (en) * 1999-09-15 2001-09-18 Irma America, Inc. Electrode composition comprising doped tungsten oxides and electrochemical cell comprising same
CN1794363A (zh) * 2004-12-23 2006-06-28 三星Sdi株式会社 质子导体和使用该质子导体的电化学装置
CN101407339A (zh) * 2007-10-12 2009-04-15 新疆大学 一种四方形氧化钨纳米粉体的合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANUKORN PHURUANGRAT 等: "Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction", 《JOURNAL OF MATERIALS CHEMISTRY》 *
傅小明等: "水热条件对合成WO3纳米棒形貌和光吸收特性的影响", 《人工晶体学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113042032A (zh) * 2021-04-01 2021-06-29 辽宁石油化工大学 一种具有高效异相结的氧化钨光催化剂及其制备方法和应用
CN113042032B (zh) * 2021-04-01 2023-08-11 辽宁石油化工大学 一种具有高效异相结的氧化钨光催化剂及其制备方法和应用

Also Published As

Publication number Publication date
KR20170012456A (ko) 2017-02-02
AU2015292008A1 (en) 2017-01-19
EP3174141A4 (en) 2018-05-02
MX2017001132A (es) 2017-05-09
WO2016011970A1 (zh) 2016-01-28
RU2017105824A3 (zh) 2018-08-27
US20170203973A1 (en) 2017-07-20
RU2017105824A (ru) 2018-08-27
EP3174141A1 (en) 2017-05-31
EP3174141B1 (en) 2019-06-19
JP2017528401A (ja) 2017-09-28
AU2015292008B2 (en) 2018-05-10

Similar Documents

Publication Publication Date Title
CN106550613A (zh) 一种含钨材料的用途
Jin et al. Preparation and electrochemical properties of urchin-like La0. 8Sr0. 2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction
CA2812928C (en) Redox flow batteries based on supporting solutions containing chloride
CA2812932C (en) Fe-v redox flow batteries
CN108295870B (zh) 硫化物-石墨烯复合材料光电催化剂的制备方法
Tian et al. Achieving strong coherency for a composite electrode via one-pot method with enhanced electrochemical performance in reversible solid oxide cells
CN112968185B (zh) 植物多酚改性的超分子网络框架结构锰基纳米复合电催化剂的制备方法
Zhang et al. High-cycle-performance aqueous magnesium ions battery capacitor based on a Mg-OMS-1/graphene as cathode and a carbon molecular sieves as anode
Galal et al. Voltammetry study of electrocatalytic activity of lanthanum nickel perovskite nanoclusters-based composite catalyst for effective oxidation of urea in alkaline medium
CN111389411A (zh) 一种钙钛矿电催化剂及其制备方法和应用
CN102867965A (zh) 一种多孔微球钙钛矿型钙锰氧化合物及其制备方法和应用
He et al. Partial surface oxidation of manganese oxides as an effective treatment to improve their activity in electrochemical oxygen reduction reaction
CN110227452A (zh) 一种铋掺杂的钌酸钇及其制备方法和析氧应用
CN108172841A (zh) 一种应用于微生物燃料电池改性石墨毡电极及其制备方法
CN116621143A (zh) Mn、Ni共掺杂非化学计量焦磷酸铁钠的制备方法及其在钠离子电池中的应用
CN116135791A (zh) 具不同浓度梯度的锌铁钴尖晶石催化剂的合成方法及应用
CN102867966A (zh) 一种多孔微球后尖晶石型钙锰氧化合物及其制备和应用
Li et al. The design and synthesis of polyhedral Ti-doped Co 3 O 4 with enhanced lithium-storage properties for Li-ion batteries
CN112701307B (zh) 用于质子膜燃料电池的双mof连接结构纳米复合电催化剂及其制备方法
CN114400340A (zh) 氮硫共掺杂纳米碳管复合材料及其制备方法和应用
CN112670525B (zh) 一种固体氧化物燃料电池电极材料
CN111416130B (zh) 磷、氮共掺杂多孔碳阴极氧还原铁基催化剂、制备及应用
CN110065932B (zh) 一种锂插入式硒类化合物、其制备方法及应用
CN109546164A (zh) 一种经修饰的固体氧化物燃料电池阴极材料及其制备方法
Kısa et al. Transition metal doped solid oxide fuel cell cathodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
TA01 Transfer of patent application right

Effective date of registration: 20170323

Address after: Science and Technology City kolding road high tech Zone of Suzhou City, Jiangsu province 215163 No. 78 Su Gaoxin Software Park Building 8, 3 floor

Applicant after: SUZHOU HANS ENERGY STORAGE TECHNOLOGY Co.,Ltd.

Applicant after: NANTONG VOLTA MATERIALS Ltd.

Address before: Science and Technology City kolding road high tech Zone of Suzhou City, Jiangsu province 215163 No. 78 Su Gaoxin Software Park Building 8, 3 floor

Applicant before: SUZHOU HANS ENERGY STORAGE TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200603

Address after: 515824 shanghuadutou Industrial Zone, Chenghai District, Shantou City, Guangdong Province

Applicant after: Lu Yunfeng

Address before: Science and Technology City kolding road high tech Zone of Suzhou City, Jiangsu province 215163 No. 78 Su Gaoxin Software Park Building 8, 3 floor

Applicant before: SUZHOU HANS ENERGY STORAGE TECHNOLOGY Co.,Ltd.

Applicant before: Nantong Volta Materials Ltd.

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20201103

Address after: Room 1402, building 15, shanhuwan North District, Huqiu District, Suzhou City, Jiangsu Province

Applicant after: Peng Yiting

Address before: 515824 shanghuadutou Industrial Zone, Chenghai District, Shantou City, Guangdong Province

Applicant before: Lu Yunfeng

TA01 Transfer of patent application right
RJ01 Rejection of invention patent application after publication

Application publication date: 20170329

RJ01 Rejection of invention patent application after publication