CN106542576A - 一种二氧化锆介观晶体及其制备方法与应用 - Google Patents

一种二氧化锆介观晶体及其制备方法与应用 Download PDF

Info

Publication number
CN106542576A
CN106542576A CN201710056381.9A CN201710056381A CN106542576A CN 106542576 A CN106542576 A CN 106542576A CN 201710056381 A CN201710056381 A CN 201710056381A CN 106542576 A CN106542576 A CN 106542576A
Authority
CN
China
Prior art keywords
crystal
zirconium dioxide
situated
sees
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710056381.9A
Other languages
English (en)
Other versions
CN106542576B (zh
Inventor
张燕杰
林棋
娄本勇
郑国才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Spectrum Science And Technology Fuzhou Co ltd
Original Assignee
Minjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minjiang University filed Critical Minjiang University
Priority to CN201710056381.9A priority Critical patent/CN106542576B/zh
Publication of CN106542576A publication Critical patent/CN106542576A/zh
Application granted granted Critical
Publication of CN106542576B publication Critical patent/CN106542576B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)

Abstract

本发明公开了一种二氧化锆介观晶体及其制备方法与应用,属于金属氧化物功能材料制备领域。本发明将十六烷基三甲基溴化铵与氧氯化锆按比例溶解于水中形成混合溶液,经145~150℃水热反应5~8小时制得所述二氧化锆介观晶体。本发明制备方法简便易行,成本低,介观晶体产率高,所制得的二氧化锆介观晶体具有良好的单分散性,呈纳米圆片状,内部多孔,BET比表面积高达152~158 m2/g,是一种优良的水煤气变换催化剂载体。

Description

一种二氧化锆介观晶体及其制备方法与应用
技术领域
本发明属于金属氧化物功能材料制备领域,具体涉及一种二氧化锆介观晶体及其制备方法和应用。
背景技术
二氧化锆(ZrO2)具有独特的物理化学性质,它是唯一同时具有表面酸性、表面碱性、氧化性和还原性四种性能的金属氧化物,控制不同的焙烧温度可以实现其在单斜相、四方相和立方相三种晶相间的转化。这些特殊的性能使其被广泛用作催化剂载体,在很多领域中甚至表现出了优于传统的氧化硅、氧化铝等载体的催化性能。因此,以二氧化锆为载体制备的催化剂受到越来越多的关注。
介观晶体(简称介晶)是由纳米晶基元按照特定晶体取向有序堆积而成的纳米晶超结构,其内部通常存在大量堆积孔并可以显示类单晶的电子衍射行为。这种有序组装结构集合了多晶和单晶的结构特点,可以同时具有高孔隙率、高比表面积、高缺陷浓度、高晶度化、特定的暴露晶面。因此,将二氧化锆制备成介观晶体结构有望大大提高以其为载体的负载型金属催化剂的性能。然而,目前尚未有二氧化锆介观晶体及其制备技术的公开报道。
发明内容
本发明的目的在于提供一种二氧化锆介观晶体及其制备方法与应用,其制备方法简便易行,产品单分散性好,BET比表面积高达152~158 m2/g,内部具有丰富孔道,是一种优良的催化剂材料,特别适合用作水煤气变换催化剂载体。
为实现上述目的,本发明采用如下技术方案:
一种二氧化锆介观晶体,其为单斜晶相,圆片状,厚度为30~50 nm,直径为100~150nm,BET比表面积为152~158 m2/g,内部多孔,最可几孔径为2~3 nm。
所述二氧化锆介观晶体的制备方法包括以下步骤:
(1)将十六烷基三甲基溴化铵、氧氯化锆溶解于去离子水中制得混合溶液;
(2)将步骤(1)所得混合溶液转入高温反应釜中,控制反应温度为145~155 ℃,反应时间为5~8 h;所得反应产物经离心分离、洗涤、干燥后得到所述二氧化锆介观晶体。
步骤(1)混合溶液中氧氯化锆的浓度为0.4~0.5 mol/L,十六烷基三甲基溴化铵与氧氯化锆的摩尔比为0~0.4:1。
所得二氧化锆介观晶体可用作载体制备水煤气变换催化剂,其制备方法为:在超声波破碎辅助条件下,将所述二氧化锆介观晶体分散于氯金酸水溶液中,然后向上述溶液中滴加碱液至溶液pH=8,所得沉淀经离心洗涤、干燥、焙烧后制得水煤气变换介晶催化剂Au/ZrO2;所用碱液为碳酸钠、碳酸钾、氢氧化钾或氢氧化钠的水溶液。
本发明首次实现了二氧化锆介观晶体的一步法可控制备。其制备过程中,氧氯化锆在水热条件下发生水解反应,通过“均匀饱和析出”机制,析出大量二氧化锆纳米晶基元,纳米晶基元在反应体系固有场(纳米晶固有偶极矩)的作用下及十六烷基三甲基溴化铵的诱导下实现晶体学取向聚集,形成多孔性二氧化锆介观晶体超结构。
本发明的显著优点在于:
(1)本方法首次制备出纳米圆片状二氧化锆介观晶体,其制备方法简便易行,所得二氧化锆介晶产率高,单分散性好,结晶性好,产物暴露晶面均一,BET比表面积高达152~158m2/g,产物颗粒内部孔道丰富,颗粒内部最可几孔径为2~3 nm。
(2)本发明所制备的二氧化锆介晶是一种优良的催化剂载体,以其为载体制备的Au/ZrO2催化剂表现出优异的水煤气变换反应制氢催化性能,当Au的含量为1 wt%时,Au/ZrO2催化剂在150℃就表现出优异的催化性能,其CO转化率可达59%;反应温度为270 ℃时的CO转化率更是高达93%,接近于该反应温度下的平衡转化率,明显优于以传统多晶ZrO2为载体的Au/ZrO2催化剂,显示了该二氧化锆介观晶体作为催化剂载体的优越性。
附图说明
图1是实施例1制备的二氧化锆介观晶体的XRD图。
图2是实施例1制备的二氧化锆介观晶体的SEM图。
图3是实施例1制备的二氧化锆介观晶体的TEM图。
图4是实施例1制备的二氧化锆介观晶体的选区电子衍射(SAED)图。
图5是实施例2制备的二氧化锆介观晶体的SEM图。
图6是实施例3制备的二氧化锆介观晶体的SEM图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
将9.02 g 氧氯化锆溶于50 mL去离子水中,将上述溶液液用去离子水标定到70mL后转入容积为100mL的高温反应釜中(即氧氯化锆摩尔浓度为0.4 mol/L,十六烷基三甲基溴化铵与氧氯化锆的摩尔比为0:1)。将反应釜放入鼓风干燥箱内,控制反应温度为150℃,反应时间为6 h。所得产物经离心洗涤脱除杂质离子后于60℃干燥8 h,得到ZrO2介观晶体。
图1是本实施例制备的二氧化锆介观晶体的XRD图。由图1可知,所制备的ZrO2呈单斜晶相。
图2、图3分别是本实施例制备的二氧化锆介观晶体的SEM图和TEM图。由图2和图3可知,ZrO2颗粒呈纳米圆片状且由众多小晶粒聚集而成,圆片厚度约为30~50 nm,直径约为100~150 nm。
图4是本实施例制备的二氧化锆介观晶体的选区电子衍射(SAED)图。由图4可见,单个ZrO2颗粒呈现类单晶电子衍射行为,即颗粒内部一次晶粒间的晶格高度匹配,表明ZrO2为介观晶体。
N2-物理吸脱附实验表明,该ZrO2介晶的BET比表面积为152 m2/g,颗粒内部最可几孔径为2 nm。
实施例2
将4.59 g十六烷基三甲基溴化铵和10.15 g氧氯化锆溶于50 mL去离子水中制得混合溶液,将上述混合液用去离子水标定到70 mL后转入容积为100 mL的高温反应釜中(即氧氯化锆摩尔浓度为0.45 mol/L,十六烷基三甲基溴化铵与氧氯化锆的摩尔比为0.4:1)。将反应釜放入鼓风干燥箱内,控制反应温度为145℃,反应时间为8 h。所得产物经离心洗涤脱除杂质离子后于60℃干燥8 h,得到ZrO2介观晶体。
图5为本实施例制备的二氧化锆介观晶体的SEM图。图5表明所制备的ZrO2颗粒同样为纳米圆片状介观晶体。
N2-物理吸脱附实验表明,该ZrO2介晶的BET比表面积为158 m2/g,颗粒内部最可几孔径为2 nm。
实施例3
将2.55 g十六烷基三甲基溴化铵和11.28 g氧氯化锆溶于50 mL去离子水中制得混合溶液,将上述混合液用去离子水标定到70 mL后转入容积为100 mL的高温反应釜中(即氧氯化锆摩尔浓度为0.5 mol/L,十六烷基三甲基溴化铵与氧氯化锆的摩尔比为0.2:1)。将反应釜放入鼓风干燥箱内,控制反应温度为155℃,反应时间为5 h。所得产物经离心洗涤脱除杂质离子后于60℃干燥8 h,得到ZrO2介观晶体。
图6为本实施例制备的二氧化锆介观晶体的SEM图。图6表明所制备的ZrO2颗粒同样为纳米圆片状介观晶体。
N2-物理吸脱附实验表明,该ZrO2介晶的BET比表面积为157 m2/g,颗粒内部最可几孔径为3 nm。
应用实施例1
以实施例1制得的ZrO2介观晶体为载体负载Au制备Au/ZrO2介晶催化剂,方法如下:首先将2 g 于350 ℃焙烧4 h的ZrO2介观晶体分散到100 mL去离子水中,超声处理10 min后转移到三口烧瓶中。将0.52 mL氯金酸溶液(0.2 mol/L)滴加入已超声分散后的ZrO2载体乳浊液中,搅拌十分钟后,开始滴加0.5 mol/L的KOH溶液,控制终点pH=8,沉淀温度为60 ℃,搅拌器转速为600 r/min。然后在60 ℃陈化1 h,并保持pH=8。陈化结束后对沉淀进行离心洗涤数次,以AgNO3检测不出Cl-为止。所得沉淀在50 ℃下干燥8 h,制得Au/ZrO2介晶催化剂。
应用实施例2
以实施例2制得的ZrO2介观晶体为载体负载Au制备Au/ZrO2介晶催化剂,其制备方法和条件与应用实施例1相同。
应用实施例3
以实施例3制得的ZrO2介观晶体为载体负载Au制备Au/ZrO2介晶催化剂,其制备方法和条件与应用实施例1相同。
应用对比例
取60 mL 0.4 mol/L的ZrOCl2·8H2O水溶液,与1 mol/L的氨水并流沉淀。控制反应条件如下:底液为100 mL去离子水,沉淀温度60 ℃,终点pH=8,陈化1 h。将沉淀物洗涤至无Cl-后,经120 ℃干燥8 h,350 ℃焙烧4 h后,制得ZrO2多晶。
将2 g ZrO2多晶研磨后分散到100 mL去离子水中,超声处理10 min后转移到三口烧瓶中。将0.52 mL氯金酸溶液(0.2 mol/L)滴加入已超声分散后的ZrO2载体乳浊液中,搅拌十分钟后,开始滴加0.5 mol/L的KOH溶液,控制终点pH=8,沉淀温度为60 ℃,搅拌器转速为600 r/min。然后在60 ℃陈化1 h,并保持pH=8。陈化结束后对沉淀进行离心洗涤数次,以AgNO3检测不出Cl-为止。所得沉淀在50 ℃下干燥8 h,制得Au/ZrO2多晶催化剂。
活性评价
以水煤气变换反应为探针反应测试催化剂的催化活性,活性评价在常压固定床反应器上进行,评价条件:原料气为模拟甲烷重整气,其体积百分含量组成为15% CO,55% H2,7%CO2,23% N2
以CO转化率表示催化活性,对应用实施例1-3和应用对比例所得催化剂的活性进行评价,其结果如表1。
表1 应用实施例1-3及应用对比例所得催化剂的活性评价结果
由此可见,与Au/ZrO2多晶催化剂相比,以本发明ZrO2介观晶体为载体制备的Au/ZrO2介晶催化剂对水煤气变换反应具有更高的催化活性,说明本发明所制备的ZrO2介晶是一种优良的催化剂载体。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (5)

1. 一种二氧化锆介观晶体,其特征在于,其晶相为单斜相,形貌为圆片状,厚度为30~50 nm,直径为100~150 nm,BET比表面积为152~158 m2/g,内部多孔,最可几孔径为2~3nm。
2.一种如权利要求1所述二氧化锆介观晶体的制备方法,其特征在于,包括以下步骤:
(1)将十六烷基三甲基溴化铵、氧氯化锆溶解于去离子水中制得混合溶液;
(2)将步骤(1)所得混合溶液转入高温反应釜中,控制反应温度为145~155℃,反应时间为5~8 h;所得反应产物经离心分离、洗涤、干燥后得到所述二氧化锆介观晶体。
3. 根据权利要求2所述二氧化锆介观晶体的制备方法,其特征在于,步骤(1)混合溶液中氧氯化锆的浓度为0.4~0.5 mol/L,十六烷基三甲基溴化铵与氧氯化锆的摩尔比为0~0.4:1。
4.一种如权利要求1所述的二氧化锆介观晶体的应用,其特征在于,用作载体制备水煤气变换催化剂。
5.根据权利要求4所述的二氧化锆介观晶体的应用,其特征在于,其制备方法为:在超声波破碎辅助条件下,将所述二氧化锆介观晶体分散于氯金酸水溶液中,然后向上述溶液中滴加碱液至溶液pH=8,所得沉淀经离心洗涤、干燥、焙烧后制得水煤气变换介晶催化剂Au/ZrO2
CN201710056381.9A 2017-01-25 2017-01-25 一种二氧化锆介观晶体及其制备方法与应用 Active CN106542576B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710056381.9A CN106542576B (zh) 2017-01-25 2017-01-25 一种二氧化锆介观晶体及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710056381.9A CN106542576B (zh) 2017-01-25 2017-01-25 一种二氧化锆介观晶体及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN106542576A true CN106542576A (zh) 2017-03-29
CN106542576B CN106542576B (zh) 2018-03-16

Family

ID=58398609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710056381.9A Active CN106542576B (zh) 2017-01-25 2017-01-25 一种二氧化锆介观晶体及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN106542576B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112573570A (zh) * 2020-12-31 2021-03-30 广东先导稀材股份有限公司 一种掺杂钪铈氧化锆超细粉体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1636881A (zh) * 2004-10-16 2005-07-13 太原理工大学 介孔二氧化锆分子筛的合成方法
CN101327953A (zh) * 2008-07-24 2008-12-24 中南大学 一种介孔氧化锆的制备方法
JP2009114008A (ja) * 2007-11-02 2009-05-28 Sakai Chem Ind Co Ltd 酸化ジルコニウム微粉末とその製造方法とそれを含む樹脂組成物
CN103599778A (zh) * 2013-11-13 2014-02-26 福州大学 一种Cu-Zr二元氧化物低温水煤气变换催化剂及其制备方法
CN104353455A (zh) * 2014-11-05 2015-02-18 上海纳米技术及应用国家工程研究中心有限公司 金负载不同晶相二氧化锆催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1636881A (zh) * 2004-10-16 2005-07-13 太原理工大学 介孔二氧化锆分子筛的合成方法
JP2009114008A (ja) * 2007-11-02 2009-05-28 Sakai Chem Ind Co Ltd 酸化ジルコニウム微粉末とその製造方法とそれを含む樹脂組成物
CN101327953A (zh) * 2008-07-24 2008-12-24 中南大学 一种介孔氧化锆的制备方法
CN103599778A (zh) * 2013-11-13 2014-02-26 福州大学 一种Cu-Zr二元氧化物低温水煤气变换催化剂及其制备方法
CN104353455A (zh) * 2014-11-05 2015-02-18 上海纳米技术及应用国家工程研究中心有限公司 金负载不同晶相二氧化锆催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张燕杰等: "以水热法合成的 ZrO2 负载 Au 催化剂上的低温水煤气变换反应", 《催化学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112573570A (zh) * 2020-12-31 2021-03-30 广东先导稀材股份有限公司 一种掺杂钪铈氧化锆超细粉体及其制备方法

Also Published As

Publication number Publication date
CN106542576B (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
WO2019109831A1 (zh) 一种钴酸铜镍纳米线的制备方法及其在催化氨硼烷水解产氢上的应用
Wu et al. The roles of density-tunable surface oxygen vacancy over bouquet-like Bi 2 O 3 in enhancing photocatalytic activity
CN108101116B (zh) 一种羟基氧化铁的制备方法及其应用
CN106824163B (zh) 复合氧化物及其制备方法
CN100558640C (zh) 单晶类钙钛矿型氧化物La2CuO4纳微米棒的制备方法
CN106622199B (zh) 一种大比表面多孔ZrO2介观晶体
Shi et al. Rapid microwave-assisted hydrothermal synthesis of CeO 2 octahedra with mixed valence states and their catalytic activity for thermal decomposition of ammonium perchlorate
CN108786822A (zh) 一种甲烷重整多核壳空心型镍-镍硅酸盐-CeO2的制备方法
Yuan et al. Engineering well-defined rare earth oxide-based nanostructures for catalyzing C1 chemical reactions
CN106784817A (zh) 磷酸铁/石墨烯复合材料的制备方法
CN107597119A (zh) 抗积碳型钴基低温甲烷二氧化碳重整催化剂及其制备方法
CN115335326A (zh) 还原剂和气体的制造方法
CN107262095A (zh) 铜掺杂石墨烯催化剂的制备方法
CN112844444A (zh) 一种利用载体孔道自吸附原理制备二氧化铈催化材料的方法
Wang et al. Designed synthesis of Zr-based ceria–zirconia–neodymia composite with high thermal stability and its enhanced catalytic performance for Rh-only three-way catalyst
CN106542576B (zh) 一种二氧化锆介观晶体及其制备方法与应用
CN106698511B (zh) 一种掺钇二氧化锆介观晶体及其制备方法和应用
CN109354053A (zh) 一种超细二氧化铈纳米材料的合成方法
CN111111676B (zh) 一种包裹型镍基催化剂及其制备方法
CN106622200B (zh) 一种大比表面多孔二氧化锆介观晶体及其制备方法与应用
CN107482229B (zh) 一种无表面活性剂制备CeO2/C纳米网的方法
CN111215092A (zh) 一种MOFs衍生蛋黄-壳型铜锰复合双金属氧化物及其制备方法
CN103774236B (zh) 一种隐钾锰型K2-xCoyNizMn8-y-zO16纳米线及其制备方法
CN108479783A (zh) 二维超薄自独立NiCu-SiO2纳米复合材料及其合成方法
JP5641349B2 (ja) 直方体形状のセリアナノ粒子に富む粉体材料及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240621

Address after: Room 2-72V, Building 1, No. 27 Huli Road, Mawei District, Fuzhou City, Fujian Province, 350000 (within the Free Trade Zone)

Patentee after: China Spectrum Science and Technology (Fuzhou) Co.,Ltd.

Country or region after: China

Address before: 200 xiyuangong Road, Shangjie Town, Minhou County, Fuzhou City, Fujian Province

Patentee before: MINJIANG University

Country or region before: China