CN106698511B - 一种掺钇二氧化锆介观晶体及其制备方法和应用 - Google Patents

一种掺钇二氧化锆介观晶体及其制备方法和应用 Download PDF

Info

Publication number
CN106698511B
CN106698511B CN201710055984.7A CN201710055984A CN106698511B CN 106698511 B CN106698511 B CN 106698511B CN 201710055984 A CN201710055984 A CN 201710055984A CN 106698511 B CN106698511 B CN 106698511B
Authority
CN
China
Prior art keywords
yttrium
zirconium dioxide
crystal
preparation
jie
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710055984.7A
Other languages
English (en)
Other versions
CN106698511A (zh
Inventor
张燕杰
陈崇启
詹瑛瑛
林棋
娄本勇
郑国才
杨冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minjiang University
Original Assignee
Minjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minjiang University filed Critical Minjiang University
Priority to CN201710055984.7A priority Critical patent/CN106698511B/zh
Publication of CN106698511A publication Critical patent/CN106698511A/zh
Application granted granted Critical
Publication of CN106698511B publication Critical patent/CN106698511B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种掺钇二氧化锆介观晶体及其制备方法,属于金属氧化物功能材料的制备领域。本发明将硝酸钇、氧氯化锆和尿素按比例溶解于水中形成混合溶液,经150℃水热反应24 h,制得所述掺钇二氧化锆介观晶体。本发明制备方法简便易行,成本低,介观晶体产率高;所制得的掺钇二氧化锆介观晶体具有良好的单分散性,呈橄榄状,内部多孔,比表面积高达150~161m2/g,是一种优良的水煤气变换催化剂载体。

Description

一种掺钇二氧化锆介观晶体及其制备方法和应用
技术领域
本发明属于金属氧化物功能材料的制备领域,具体涉及一种掺钇二氧化锆介观晶体及其制备方法和应用。
背景技术
介观晶体(简称介晶)是指纳米晶基元按照特定晶体取向有序堆积而成的纳米晶超结构或有序聚集体,是由纳米晶粒通过自组装形成一个较大的微纳晶体。宏观上,微纳晶体因纳米晶粒的有序外延排列而呈单晶形态;微观上,微纳晶体内部纳米晶粒之间存在清晰可见的界面或空隙。介晶材料由于其特殊的结构使其在工业上具有重要的应用价值,成为单晶和多晶材料的有力竞争者。目前,有关功能性氧化物介晶材料的可控制备和性能研究仍是一个颇具挑战性的研究课题。
二氧化锆(ZrO2)是一种十分重要的结构和功能材料,它不但具有良好的热稳定性、而且同时具有表面酸性、碱性和氧化性、还原性,还富含表面羟基,这些性能使二氧化锆成为一种很重要的催化剂材料。由于Y3+与Zr4+具有相似的离子半径,Y3+很容易置换ZrO2中的Zr4+形成置换固溶体,同时在其表面和内部形成氧空位,因而Y元素常被作为助剂来调变ZrO2或含锆催化剂的结构性能。然而,目前尚未有钇掺杂的ZrO2介观晶体及其制备技术和应用的公开报道。
发明内容
本发明的目的在于提供一种掺钇二氧化锆介观晶体及其制备方法和应用,其制备方法简便易行,适合规模化生产,制得的掺钇二氧化锆介观晶体产品单分散性好,比表面积高达150~161m2/g,内部具有丰富孔道,是一种优良的催化剂材料,特别适合用作水煤气变换催化剂载体。
为实现上述目的,本发明采用如下技术方案:
一种掺钇二氧化锆介观晶体的制备方法,其包括以下步骤:
(1)将硝酸钇、氧氯化锆和尿素溶解于去离子水中,室温下搅拌后制得混合溶液;
(2)将步骤(1)所得混合溶液转入高温反应釜中,控制反应温度为150 ℃,反应时间为24 h;所得反应产物经离心分离、洗涤、干燥后得到掺钇二氧化锆介观晶体。
步骤(1)混合溶液中硝酸钇与氧氯化锆的物质的量浓度之和为0.75 mol/L;尿素的物质的量浓度为1.5 mol/L;硝酸钇的物质的量占硝酸钇与氧氯化锆总物质的量的2%~10%。
所得掺钇二氧化锆介观晶体为单斜晶相,形貌为橄榄状,长度为50~150 nm,直径为20~80 nm;比表面积为150~161 m2/g,内部多孔,最可几孔径为2 nm。
所得掺钇二氧化锆介观晶体可用作载体制备水煤气变换催化剂,其制备方法为:在超声波破碎辅助条件下,将所述掺钇二氧化锆介观晶体分散于硝酸铜水溶液中,然后向上述溶液中滴加碱液至溶液pH=9.0,所得沉淀经离心洗涤、干燥、焙烧后制得水煤气变换催化剂;所用碱液为碳酸钠、碳酸钾、氢氧化钾或氢氧化钠的水溶液。
本发明制备过程中硝酸钇及氧氯化锆与尿素在水热条件下均匀反应,反应遵循“原位结晶”机制,即经均匀沉淀生成的氢氧化物前驱物经过脱去羟基(或脱水),原子原位重排而转变为结晶态掺钇二氧化锆,析出掺钇二氧化锆一次纳米晶粒,一次晶粒在反应体系固有场(纳米晶固有偶极矩)下实现晶体学取向聚集,形成掺杂钇的二氧化锆介观晶体超结构。
本发明的显著优点在于:
(1)本方法首次制备出橄榄状掺杂钇的二氧化锆介观晶体,其制备方法简便易行,适合规模化生产,在较宽的钇含量(2%~10%)掺杂范围内,所得掺钇二氧化锆介晶产率高,单分散性好,结晶性好,比表面积高达150~161 m2/g,产物颗粒内部孔道丰富,颗粒内部最可几孔径为2 nm。
(2)本发明所制备的掺钇二氧化锆介晶是一种优良的催化剂载体,以其为载体制备的铜基催化剂表现出优异的水煤气变换反应制氢催化性能,当氧化铜质量含量为10%时,掺钇二氧化锆介晶负载氧化铜催化剂在反应温度为240℃时的CO转化率高达91%,明显高于无掺杂钇的二氧化锆介晶负载氧化铜催化剂(反应温度为240℃时,CO转化率为83%)和传统多晶二氧化锆负载氧化铜催化剂(反应温度为240℃时,CO转化率为69%)。
附图说明
图1是实施例1制备的掺钇二氧化锆介观晶体的XRD图。
图2是实施例1制备的掺钇二氧化锆介观晶体的SEM图。
图3是实施例1制备的掺钇二氧化锆介观晶体的TEM图。
图4是实施例1制备的掺钇二氧化锆介观晶体的选区电子衍射(SAED)图。
图5是实施例2制备的掺钇二氧化锆介观晶体的SEM图。
图6是实施例3制备的掺钇二氧化锆介观晶体的SEM图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
将0.40 g硝酸钇,16.58 g氧氯化锆及6.31 g尿素溶于50mL去离子水中,室温下搅拌后制得混合溶液(硝酸钇的物质的量占硝酸钇与氧氯化锆总物质的量的2%),将上述混合液用去离子水标定到70mL后转入容积为100mL的高温反应釜中。将反应釜放入鼓风干燥箱内,控制反应温度为150℃,反应时间为24小时。所得产物经离心洗涤脱除杂质离子后于60℃干燥8小时得到掺钇二氧化锆介观晶体。
图1是本实施例制备的掺钇二氧化锆介观晶体的XRD图。由图1可知,所制备的掺钇二氧化锆呈单斜晶相。
图2、图3分别是本实施例制备的掺钇二氧化锆介观晶体的SEM图和TEM图。由图2和图3可知,掺钇二氧化锆颗粒呈橄榄状且由众多小晶粒聚集而成,橄榄状颗粒的长度为50~150 nm,直径为20~80 nm。
图4是本实施例制备的掺钇二氧化锆介观晶体的选区电子衍射(SAED)图。由图4可见单个掺钇二氧化锆颗粒呈现类单晶电子衍射行为,即颗粒内部一次晶粒间的晶格高度匹配,表明掺钇二氧化锆为介观晶体。
N2-物理吸脱附实验表明,该掺钇二氧化锆介晶的BET比表面积为150 m2/g,颗粒内部最可几孔径为2 nm。
实施例2
将1.00 g硝酸钇,16.07 g氧氯化锆及6.31 g尿素溶于50mL去离子水中,室温下搅拌后制得混合溶液(硝酸钇的物质的量占硝酸钇与氧氯化锆总物质的量的5%),将上述混合液用去离子水标定到70mL后转入容积为100mL的高温反应釜中。将反应釜放入鼓风干燥箱内,控制反应温度为150℃,反应时间为24小时。所得产物经离心洗涤脱除杂质离子后于60℃干燥8小时得到掺钇二氧化锆介观晶体。
图5是本实施例制备的掺钇二氧化锆介观晶体的SEM图。图5表明,所制备的掺钇二氧化锆颗粒同样为橄榄状介观晶体。
N2-物理吸脱附实验表明,该掺钇二氧化锆介晶的BET比表面积为157 m2/g,颗粒内部最可几孔径为2 nm。
实施例3
将2.01 g硝酸钇,15.23 g氧氯化锆及6.31 g尿素溶于50mL去离子水中,室温下搅拌后制得混合溶液(硝酸钇的物质的量占硝酸钇与氧氯化锆总物质的量的10%),将上述混合液用去离子水标定到70mL后转入容积为100mL的高温反应釜中。将反应釜放入鼓风干燥箱内,控制反应温度为150℃,反应时间为24小时。所得产物经离心洗涤脱除杂质离子后于60℃干燥8小时得到掺钇二氧化锆介观晶体。
图6是本实施例制备的掺钇二氧化锆介观晶体的SEM图。图6表明,所制备的掺钇二氧化锆颗粒同样为橄榄状介观晶体。
N2-物理吸脱附实验表明,该掺钇二氧化锆介晶的BET比表面积为161 m2/g,颗粒内部最可几孔径为2 nm。
应用实施例1
以实施例1制得的掺钇二氧化锆介观晶体为载体负载氧化铜制备铜基介晶催化剂,方法如下:在超声破碎的辅助下将3g 250℃焙烧后的掺钇二氧化锆介观晶体分散于200mL 0.021mol/L的三水合硝酸铜水溶液中,然后向上述溶液中滴加0.5mol/L的氢氧化钾水溶液至终点pH = 9.0。所得产物经洗涤脱除杂质离子后于120℃干燥8小时,再于400℃焙烧4小时制得掺钇二氧化锆介晶负载氧化铜催化剂。
应用实施例2
以实施例2制得的掺钇二氧化锆介观晶体为载体负载氧化铜制备铜基介晶催化剂,其制备方法和条件与应用实施例1相同。
应用实施例3
以实施例3制得的掺钇二氧化锆介观晶体为载体负载氧化铜制备铜基介晶催化剂,其制备方法和条件与应用实施例1相同。
应用对比例1:二氧化锆多晶负载氧化铜催化剂
将7.85g 八水合氧氯化锆溶解于200mL去离子水中制得反应底液,将0.5mol/L的氢氧化钾水溶液加入上述反应底液至终点pH = 9.0。所得产物经洗涤脱除杂质离子后于60℃干燥8小时,再于250℃焙烧4小时制得二氧化锆多晶。
在超声波破碎的辅助下将3g 二氧化锆多晶分散于200mL 0.021mol/L的三水合硝酸铜水溶液中,然后向上述溶液中滴加0.5mol/L的氢氧化钾水溶液至终点pH = 9.0。所得产物经洗涤脱除杂质离子后于120℃干燥8小时,再于400℃焙烧4小时制得二氧化锆多晶负载氧化铜催化剂。
应用对比例2:二氧化锆介晶负载氧化铜催化剂
将16.92g氧氯化锆及6.31 g尿素溶于50mL去离子水中,室温下搅拌后制得混合溶液。将上述混合液用去离子水标定到70mL后转入容积为100mL的高温反应釜中。将反应釜放入鼓风干燥箱内,控制反应温度为150℃,反应时间为24小时。所得产物经离心洗涤脱除杂质离子后于60℃干燥8小时得到二氧化锆介观晶体。
在超声波破碎的辅助下将3g 250℃焙烧后的不掺钇的二氧化锆介观晶体分散于200mL 0.021mol/L的三水合硝酸铜水溶液中,然后向上述溶液中滴加0.5mol/L的氢氧化钾水溶液至终点pH = 9.0。所得产物经洗涤脱除杂质离子后于120℃干燥8小时,再于400℃焙烧4小时制得二氧化锆介晶负载氧化铜催化剂。
活性评价
以水煤气变换反应为探针反应测试催化剂的催化活性,活性评价在常压固定床反应器上进行,评价条件:原料气为模拟甲烷重整气,其体积百分含量组成为15% CO,55% H2,7% CO2,23% N2
以CO转化率表示催化活性,对应用实施例1-3及应用对比例1-2所得催化剂的活性进行评价,其结果如表1。
由此可见,与传统二氧化锆多晶负载氧化铜催化剂及未掺钇的二氧化锆介晶负载氧化铜催化剂相比,以本发明掺钇二氧化锆介观晶体为载体制备的铜基催化剂对水煤气变换反应具有更高的催化活性,即说明本发明所制备的掺钇二氧化锆介观晶体是一种优良的催化剂载体。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (1)

1.一种掺钇二氧化锆介观晶体,其特征在于,其制备方法包括以下步骤:
(1)将硝酸钇、氧氯化锆和尿素溶解于去离子水中,室温下搅拌后制得混合溶液;
(2)将步骤(1)所得混合溶液转入高温反应釜中,控制反应温度为150℃,反应时间为24h;所得反应产物经离心分离、洗涤、干燥后得到所述掺钇二氧化锆介观晶体;
步骤(1)混合溶液中硝酸钇与氧氯化锆的物质的量浓度之和为0.75 mol/L;尿素的物质的量浓度为1.5 mol/L;硝酸钇的物质的量占硝酸钇与氧氯化锆总物质的量的2%~10%;
所述晶体形貌为橄榄状,长度为50~150 nm,直径为20~80 nm;比表面积为150~161m2/g,内部多孔,最可几孔径为2 nm。
CN201710055984.7A 2017-01-25 2017-01-25 一种掺钇二氧化锆介观晶体及其制备方法和应用 Active CN106698511B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710055984.7A CN106698511B (zh) 2017-01-25 2017-01-25 一种掺钇二氧化锆介观晶体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710055984.7A CN106698511B (zh) 2017-01-25 2017-01-25 一种掺钇二氧化锆介观晶体及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106698511A CN106698511A (zh) 2017-05-24
CN106698511B true CN106698511B (zh) 2018-06-05

Family

ID=58909728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710055984.7A Active CN106698511B (zh) 2017-01-25 2017-01-25 一种掺钇二氧化锆介观晶体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106698511B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2665038C1 (ru) * 2018-02-28 2018-08-27 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Способ получения дисперсных мезопористых порошков на основе оксида алюминия для носителей катализаторов
CN114806515B (zh) * 2022-03-31 2023-04-07 浙江大学 铜基复合金属氧化物储热材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103599780A (zh) * 2013-11-13 2014-02-26 福州大学 一种Al助剂改性的CuO-ZrO2水煤气变换催化剂及其制备方法
CN104353455A (zh) * 2014-11-05 2015-02-18 上海纳米技术及应用国家工程研究中心有限公司 金负载不同晶相二氧化锆催化剂及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114008A (ja) * 2007-11-02 2009-05-28 Sakai Chem Ind Co Ltd 酸化ジルコニウム微粉末とその製造方法とそれを含む樹脂組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103599780A (zh) * 2013-11-13 2014-02-26 福州大学 一种Al助剂改性的CuO-ZrO2水煤气变换催化剂及其制备方法
CN104353455A (zh) * 2014-11-05 2015-02-18 上海纳米技术及应用国家工程研究中心有限公司 金负载不同晶相二氧化锆催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CuO/ZrO2水煤气变换催化剂:制备及构效关系研究;张燕杰;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20161215(第12期);正文第115页第2-5段,第118页第2段、第119页第1段 *

Also Published As

Publication number Publication date
CN106698511A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2019109831A1 (zh) 一种钴酸铜镍纳米线的制备方法及其在催化氨硼烷水解产氢上的应用
CN104556248B (zh) 连续生产大颗粒球形碳酸钴的方法
CN109761288B (zh) 一种类球形镍钴锰前驱体材料的制备方法
CN108101116B (zh) 一种羟基氧化铁的制备方法及其应用
CN104307530B (zh) 一种氧化石墨烯基稀土复合物催化材料及其制备方法
CN100558640C (zh) 单晶类钙钛矿型氧化物La2CuO4纳微米棒的制备方法
CN112221530A (zh) 一种非贵金属单原子双功能电催化剂的制备方法与应用
CN110745784B (zh) 一种金属氧化物纳米颗粒及其制备方法和应用
Yuan et al. Engineering well-defined rare earth oxide-based nanostructures for catalyzing C1 chemical reactions
CN106622199B (zh) 一种大比表面多孔ZrO2介观晶体
CN109665525B (zh) 一种“哑铃型”铁氮双掺杂多孔碳的制备方法
Tepech-Carrillo et al. Preparation of nanosized LaCoO 3 through calcination of a hydrothermally synthesized precursor
CN109499577A (zh) 用于逆水煤气反应的Cu-Ni基催化剂的制备及应用方法
CN111389411A (zh) 一种钙钛矿电催化剂及其制备方法和应用
CN113385185A (zh) 一种高活性、可选择性的钙钛矿型光热催化剂及其制备方法和应用
CN106698511B (zh) 一种掺钇二氧化锆介观晶体及其制备方法和应用
CN104860351B (zh) 一种微/介孔四价金属氧化物及其制备方法
CN101623637A (zh) 用于一氧化碳优先氧化催化剂Au/MnOx-CeO2及其制备方法
CN103599778A (zh) 一种Cu-Zr二元氧化物低温水煤气变换催化剂及其制备方法
CN106622200B (zh) 一种大比表面多孔二氧化锆介观晶体及其制备方法与应用
CN108940287A (zh) 一种Ni基双金属纳米胶囊催化剂及其制备和应用
CN107029752A (zh) 一种铂/石墨烯‑钙钛矿‑泡沫镍催化剂的制备方法
CN111847404A (zh) 一种介晶氧化物和介晶氮化物的制备方法、氨分解催化剂及制备方法
CN113332992B (zh) 一种钙钛矿催化剂及其制备方法
CN106542576B (zh) 一种二氧化锆介观晶体及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant