CN106521546A - 一种光解水制氢用多层BiVO4/CuWO4复合膜及其制备方法 - Google Patents

一种光解水制氢用多层BiVO4/CuWO4复合膜及其制备方法 Download PDF

Info

Publication number
CN106521546A
CN106521546A CN201610887297.7A CN201610887297A CN106521546A CN 106521546 A CN106521546 A CN 106521546A CN 201610887297 A CN201610887297 A CN 201610887297A CN 106521546 A CN106521546 A CN 106521546A
Authority
CN
China
Prior art keywords
film
cuwo
layer
temperature
bivo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610887297.7A
Other languages
English (en)
Inventor
王爱民
梁嘉伟
谢致薇
陈紫鹏
黄健宁
胡冠华
江学样
杨元政
陈先朝
何玉定
许佳雄
蔡伟通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201610887297.7A priority Critical patent/CN106521546A/zh
Publication of CN106521546A publication Critical patent/CN106521546A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种用于光解水制氢的多层复合膜电极材料及其制备方法。本发明根据BiVO4和CuWO4的紫外‑可见光谱特性及界面效应,设置多层复合结构,采用溶胶‑凝胶法、提拉工艺制备出了多层薄膜,所制备的多层复合膜对可见光的响应范围明显扩宽,且可调。本发明所述制备方法操作简单,易于实施。

Description

一种光解水制氢用多层BiVO4/CuWO4复合膜及其制备方法
技术领域
本发明属于无机功能薄膜材料制备领域,特别涉及一种用于光解水制氢的、基于复合氧化物半导体的多层复合薄膜及其制备方法。
背景技术
新能源之一的氢能在使用过程中不产生污染,为人类应对环境污染和能源短缺的挑战带来了无限的希望。但目前氢能主要来源于化石燃料的提炼(约96%),其生产过程造成环境污染,还不能说是百分之百的清洁能源。1972年A.Fujishims等报道了发生在TiO2单晶电极表面的光致分解水生成H2和O2的现象,说明可以利用太阳能这种用之不竭的绿色能源获取氢能,有望使其成为真正意义上的清洁能源,因此引起了世人的关注和重视。
光解水制氢过程是一光催化作用下的氧化还原过程,半导体光电极吸收光子能量,使价带电子跃迁至导带,产生光生电子-空穴,电子与空穴分离并分别迁移到催化剂表面,与吸附于表面的H+发生还原反应形成H2,与OH-发生氧化反应形成O2。因此,实现光解水制氢的前提条件是光电极能吸收光能。最早报道的简单氧化物TiO2能隙为3.1~3.2eV,可以实现紫外光响应分解水制氢,但只能吸收太阳能中5~6%的紫外光,能量利用效率很低。光电极材料的能隙既要大于1.23eV,但不能过宽,一般小于3.0eV时,才能吸收415nm以上的光线,具有可见光催化特性。
通式为ABO3、ABO4、A2B2O7、AB2O4等类型的复合氧化物具有可见光响应的特点。例如,BiVO4能隙为2.4eV,理论上应具有吸收可见光的能力,但实际上的光吸收能力受材料的表面质量、内部缺陷等诸多因素的影响,吸收效率不高,往往达不到这种理论效果。
发明内容
本发明的目的在于提供一种用于光解水制氢的多层复合氧化物薄膜电极材料及其制备方法。
为提高光电极对光的整体吸收效果,薄膜材料的尺寸不宜过小;为确保光生电子、空穴能顺利分离并迁移到催化剂表面,减小在迁移过程中的复合,尺寸不宜大,这是相互矛盾的。本发明的基本思路是:设置由一种或两种的复合氧化物组成的多层膜结构,利用光子在界面的反复折射提高对光的吸收率,以克服上述的矛盾。通过溶胶-凝胶法,提拉工艺制备多层复合薄膜,通过优化工艺确保实现上述目的。
本发明所提供的多层复合氧化物薄膜具有如下特点。一是由BiVO4和CuWO4两种材料中的一种或两种组成,复合薄膜至少为五层结构。二是可以通过改变组合方式,得到不同吸收光谱的光催化电极材料。例如,相对于单层CuWO4而言,由至少五层CuWO4组成时,可见光响应范围明显拓宽;由至少五层BiVO4组成时,可见光响应范围进一步拓宽;当由不同层数的BiVO4膜和CuWO4膜组合而成,总层数不少于五层,两种材料可以交替组合,但不仅限于这种组合方式时,除可见光响应范围拓宽外,吸收系数明显提高。
本发明提供一种用于光解水制氢的多层复合氧化物薄膜的制备方法,其制备步骤如下:
1)采用溶胶-凝胶法制备CuWO4和BiVO4湿溶胶;
2)在清洗干净的FTO基体上,采用提拉法制备BiVO4、CuWO4凝胶薄膜;
3)将步骤2)的凝胶薄膜置于40~80℃温度下干燥1~3小时;
4)用无水乙醇和去离子水依次清洗步骤3)的干凝胶薄膜,并放置至自然干燥;
5)对步骤4)所得薄膜进行退火,退火温度为500~600℃,保温时间为80~280min,可以直接从室温升至退火温度,也可分两段升温,中间保温温度为80~200℃,保温时间为50~180min;
6)退火工序完成后,用无水乙醇和去离子水依次清洗薄膜,待自然干燥后,再重复步骤2~5,制备出所需结构的多层复合薄膜。
本发明所提供的多层膜及其制备方法具有如下显著效果:一是可见光响应范围显著拓宽,二是制备方法简单、易于实施。
附图说明
图1为实施例1的多层复合薄膜及其对比样的紫外-可见光谱。
图2为实施例2的多层复合薄膜及其对比样的紫外-可见光谱。
图3为实施例3的多层复合薄膜及其对比样的紫外-可见光谱。
图4为对比例的双层复合薄膜及其对比样的紫外-可见光谱。
具体实施方式
下面通过实施例,进一步阐明本发明的特点和进步,仅在于说明本发明而不限于本发明。
实施例1
1)采用溶胶-凝胶法制备CuWO4湿溶胶;
2)在清洗干净的FTO基体上,采用提拉法制备CuWO4凝胶薄膜;
3)将步骤2)的凝胶薄膜置于60℃温度下干燥2小时;
4)用无水乙醇和去离子水依次清洗步骤3)的干凝胶薄膜,并放置至自然干燥;
5)对步骤4)所得薄膜进行退火,退火温度为550℃,保温时间为180min,分两段升温,中间保温温度为100℃,保温时间为100min;
6)退火工序完成后,用无水乙醇和去离子水依次清洗薄膜,待自然干燥后,再重复步骤2~5,制备出5层结构的CuWO4薄膜。
图1说明5层结构的CuWO4薄膜的吸收边红移,吸收率有所提高。
实施例2
1)采用溶胶-凝胶法制备BiVO4湿溶胶;
2)在清洗干净的FTO基体上,采用提拉法制备BiVO4凝胶薄膜;
3)将步骤2)的凝胶薄膜置于65℃温度下干燥2.1小时;
4)用无水乙醇和去离子水依次清洗步骤3)的干凝胶薄膜,并放置至自然干燥;
5)对步骤4)所得薄膜进行退火,退火温度为570℃,保温时间为160min,分两段升温,中间保温温度为100℃,保温时间为100min;
6)退火工序完成后,用无水乙醇和去离子水依次清洗薄膜,待自然干燥后,再重复步骤2~5,制备出5层结构的BiVO4薄膜。
图2说明5层结构的BiVO4薄膜的吸收边大幅度红移,在430nm以下的吸收率大幅度提高。
实施例3
1)分别采用溶胶-凝胶法制备CuWO4和BiVO4湿溶胶;
2)在清洗干净的FTO基体上,采用提拉法制备CuWO4凝胶薄膜;
3)将步骤2)的凝胶薄膜置于60℃温度下干燥2小时;
4)用无水乙醇和去离子水依次清洗步骤3)的干凝胶薄膜,并放置至自然干燥;
5)对步骤4)所得薄膜进行退火,退火温度为550℃,保温时间为180min,分两段升温,中间保温温度为100℃,保温时间为100min;
6)退火工序完成后,用无水乙醇和去离子水依次清洗薄膜,自然干燥。
7)在步骤6)所得薄膜上,采用提拉法制备BiVO4凝胶薄膜;
8)将步骤7)的凝胶薄膜置于65℃温度下干燥2.1小时;
9)用无水乙醇和去离子水依次清洗步骤8)的干凝胶薄膜,并放置至自然干燥;
10)对步骤9)所得薄膜进行退火,退火温度为570℃,保温时间为160min,分两段升温,中间保温温度为100℃,保温时间为100min;
6)退火工序完成后,用无水乙醇和去离子水依次清洗薄膜,待自然干燥后,再重复步骤7~10,制备出结构为四层BiVO4+一层CuWO4的多层复合薄膜。
图3说明四层BiVO4+一层CuWO4的多层复合薄膜的吸收边红移,在可见光范围内的吸收率有所提高。
对比例
1)分别采用溶胶-凝胶法制备CuWO4和BiVO4湿溶胶;
2)在清洗干净的FTO基体上,采用提拉法制备CuWO4凝胶薄膜;
3)将步骤2)的凝胶薄膜置于60℃温度下干燥2小时;
4)用无水乙醇和去离子水依次清洗步骤3)的干凝胶薄膜,并放置至自然干燥;
5)对步骤4)所得薄膜进行退火,退火温度为550℃,保温时间为180min,分两段升温,中间保温温度为100℃,保温时间为100min;
6)退火工序完成后,用无水乙醇和去离子水依次清洗薄膜,自然干燥。
7)在步骤6)所得薄膜上,采用提拉法制备BiVO4凝胶薄膜;
8)将步骤7)的凝胶薄膜置于65℃温度下干燥2.1小时;
9)用无水乙醇和去离子水依次清洗步骤8)的干凝胶薄膜,并放置至自然干燥;
10)对步骤9)所得薄膜进行退火,退火温度为570℃,保温时间为160min,分两段升温,中间保温温度为100℃,保温时间为100min;
6)退火工序完成后,用无水乙醇和去离子水依次清洗薄膜,自然干燥后,即可制备出结构为一层BiVO4+一层CuWO4的双层复合薄膜。
图4说明一层BiVO4+一层CuWO4的双层复合薄膜的吸收边红移,但在450nm可见光范围内的吸收率明显下降。
综合而言,五层复合薄膜在可见光范围内的吸收率较高。

Claims (5)

1.一种用于光解水制氢的多层复合薄膜,其特征在于,由BiVO4和CuWO4两种材料中的一种或两种组成,复合薄膜至少为五层结构。
2.根据权利要求1所述的用于光解水制氢的多层复合薄膜,其特征在于,由至少五层CuWO4组成,相对于单层CuWO4而言,可见光响应范围拓宽。
3.根据权利要求1所述的用于光解水制氢的多层复合薄膜,其特征在于,由至少五层BiVO4组成,相对于五层CuWO4而言,可见光响应范围进一步拓宽。
4.根据权利要求1所述的用于光解水制氢的多层复合薄膜,其特征在于,由不同层数的BiVO4膜和CuWO4膜组合而成,总层数不少于五层,两种材料可以交替组合,除可见光响应范围拓宽外,吸收系数明显提高。
5.根据权利要求1所述的用于光解水制氢的多层复合薄膜,其特征在于,其制备步骤如下:
1)采用溶胶-凝胶法制备CuWO4和/或BiVO4湿溶胶;
2)在清洗干净的FTO基体上,采用提拉法制备BiVO4、CuWO4凝胶薄膜;
3)将步骤2)的凝胶薄膜置于40~80℃温度下干燥1~3小时;
4)用无水乙醇和去离子水依次清洗步骤3)的干凝胶薄膜,并放置至自然干燥;
5)对步骤4)所得薄膜进行退火,退火温度为500~600℃,保温时间为80~280min,可以直接从室温升至退火温度,也可分两段升温,中间保温温度为80~200℃,保温时间为50~180min;
6)退火工序完成后,用无水乙醇和去离子水依次清洗薄膜,待自然干燥后,再重复步骤2~5,制备出所需结构的多层复合薄膜。
CN201610887297.7A 2016-10-11 2016-10-11 一种光解水制氢用多层BiVO4/CuWO4复合膜及其制备方法 Pending CN106521546A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610887297.7A CN106521546A (zh) 2016-10-11 2016-10-11 一种光解水制氢用多层BiVO4/CuWO4复合膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610887297.7A CN106521546A (zh) 2016-10-11 2016-10-11 一种光解水制氢用多层BiVO4/CuWO4复合膜及其制备方法

Publications (1)

Publication Number Publication Date
CN106521546A true CN106521546A (zh) 2017-03-22

Family

ID=58331327

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610887297.7A Pending CN106521546A (zh) 2016-10-11 2016-10-11 一种光解水制氢用多层BiVO4/CuWO4复合膜及其制备方法

Country Status (1)

Country Link
CN (1) CN106521546A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107119286A (zh) * 2017-04-12 2017-09-01 山东大学 一种通过补偿掺杂提高光电极光生载流子分离效率的方法
CN109295474A (zh) * 2018-10-09 2019-02-01 天津城建大学 一种Co掺杂的纳米棒状的CuWO4光阳极薄膜的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929279B2 (ja) * 2006-11-21 2012-05-09 タカオカ化成工業株式会社 電解式水素水生成装置
CN103911628A (zh) * 2014-03-30 2014-07-09 复旦大学 纳米Si/TiO2有序阵列复合物光解水制氢阴极材料及其制备方法
CN104009123A (zh) * 2014-05-26 2014-08-27 上海交通大学 可见光响应的自偏压光电催化分解水产氢并发电的体系

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929279B2 (ja) * 2006-11-21 2012-05-09 タカオカ化成工業株式会社 電解式水素水生成装置
CN103911628A (zh) * 2014-03-30 2014-07-09 复旦大学 纳米Si/TiO2有序阵列复合物光解水制氢阴极材料及其制备方法
CN104009123A (zh) * 2014-05-26 2014-08-27 上海交通大学 可见光响应的自偏压光电催化分解水产氢并发电的体系

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈紫鹏: ""BiVO4和CuWO4及其复合膜的制备与组织结构和UV-Vis光谱的研究"", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107119286A (zh) * 2017-04-12 2017-09-01 山东大学 一种通过补偿掺杂提高光电极光生载流子分离效率的方法
CN109295474A (zh) * 2018-10-09 2019-02-01 天津城建大学 一种Co掺杂的纳米棒状的CuWO4光阳极薄膜的制备方法

Similar Documents

Publication Publication Date Title
CN105336862B (zh) 一种整体堆叠双结钙钛矿太阳能电池及其制备方法
CN109482203B (zh) 一种Bi/BiOI纳米片状光催化剂的制备方法
CN105609643B (zh) 一种钙钛矿型太阳能电池及制备方法
CN106558650A (zh) 一种柔性铜铟镓硒/钙钛矿叠层太阳能电池的制备方法
CN106732738A (zh) 一种石墨烯/g‑C3N4三维网络复合薄膜及其制备和应用
CN104959168B (zh) 一种Cu2O/CH3NH3PbI3/TiO2复合光催化剂及其制备方法和应用
CN103881709B (zh) 一种多级孔TiO2/量子点复合材料的制备方法
CN104383950B (zh) 一种Bi2O3-BiOI异质结可见光响应型光催化剂及其制备方法
CN103908969A (zh) 一种BiFeO3纳米颗粒复合TiO2纳米管阵列电极材料的制备方法
CN106140241B (zh) 氧离子表面调控的纳米g-C3N4有机光催化剂及其制备方法和应用
CN106868537B (zh) 一种复合薄膜光阳极及其制备方法
CN109308982B (zh) 一种共修饰铋酸铜纳米棒光电阴极制备方法
CN106521546A (zh) 一种光解水制氢用多层BiVO4/CuWO4复合膜及其制备方法
CN107326394B (zh) 一种制备具有核壳结构氮化碳修饰二氧化钛光阳极的方法
CN107268024A (zh) 四氧化三钴复合α型氧化铁蠕虫状纳米结构阵列光阳极及其制备方法和应用
CN106268813A (zh) 一种用于光电催化的CuFeO2纳米材料的制备方法
CN104941666A (zh) 一种可见光响应的立方闪锌矿结构的CdxZn1-xS固溶体光催化剂的制备方法
CN103816902B (zh) 一种磁载TiO2复合光催化剂材料的制备方法
CN108277501A (zh) 一种Si掺杂二氧化钛纳米管阵列光阳极的制备方法
CN103542564A (zh) 一种太阳能的纳米陶瓷选择性吸收涂层
CN103794377A (zh) 一种染料敏化太阳能电池光阳极及其制备方法和应用
CN113289658A (zh) 一种BN负载TiO2-SrTiO3异质结光催化降解材料及制法
CN108878658B (zh) 一种基于金属离子掺杂二氧化钛间隔层的光稳定钙钛矿太阳电池及其制备方法
CN203687419U (zh) 一种非真空太阳能集热管
CN108470623B (zh) 染料敏化太阳能电池用二氧化硅和氧化锌增透薄膜及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170322

RJ01 Rejection of invention patent application after publication