CN103542564A - 一种太阳能的纳米陶瓷选择性吸收涂层 - Google Patents

一种太阳能的纳米陶瓷选择性吸收涂层 Download PDF

Info

Publication number
CN103542564A
CN103542564A CN201310452386.5A CN201310452386A CN103542564A CN 103542564 A CN103542564 A CN 103542564A CN 201310452386 A CN201310452386 A CN 201310452386A CN 103542564 A CN103542564 A CN 103542564A
Authority
CN
China
Prior art keywords
layer
solar energy
nanoscale
nano
nano ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310452386.5A
Other languages
English (en)
Inventor
黄长乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Huayin Mechanical and Electrical Co Ltd
Original Assignee
Anhui Huayin Mechanical and Electrical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Huayin Mechanical and Electrical Co Ltd filed Critical Anhui Huayin Mechanical and Electrical Co Ltd
Priority to CN201310452386.5A priority Critical patent/CN103542564A/zh
Publication of CN103542564A publication Critical patent/CN103542564A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

本发明公开了一种太阳能的纳米陶瓷选择性吸收涂层,吸收涂层自内向外具有三层结构,第一层为基材,第二层为纳米陶瓷吸收层,第三层为减反层,所述基材为不锈钢基片,所述纳米陶瓷吸收层材料的组分中包括成膜物、发色体和溶剂,所述减反层为TiO2薄膜。本发明的纳米陶瓷吸收层材料釆用纳米级颜料,该涂层材料具有光谱选择性和可见光吸收率高及发射率低的良好性能。本发明在吸收层外添加了TiO2减反层薄膜,不仅提高了吸收率,同时也提高了太阳能选择性吸收涂层的整体抗腐蚀性能。

Description

一种太阳能的纳米陶瓷选择性吸收涂层
技术领域
本发明属于太阳能技术领域,涉及一种太阳能的纳米陶瓷选择性吸收涂层。
背景技术
太阳能的热利用是太阳能利用的一种重要形式。随着国家对节能减排的投入,以及能源短缺的问题逐渐浮出水面,对太阳能的热利用研究越来越广泛。故太阳能及太阳能热利用将会有更加广阔的发展前景。
选择性吸收层是光吸收体系中用于吸收光能的核心功能部分,通常用于太阳能集热元件或太阳能选择性吸收涂层体系中。制备一种优良的选择性吸收涂层关键在于选择具有较佳的太阳光谱选择性的材料和制备工艺。
纳米陶瓷粉体是介于固体与分子之间的具有纳米数量级(0.1~100nm)尺寸的亚稳态中间物质。随着粉体的超细化,其表面电子结构和晶体结构发生变化,产生了块状材料所不具有的特殊的效应。纳米粉体材料具有以下的优良性能:极小的粒径、大的比表面积和高的化学性能,可以显著降低材料的烧结温度、节能能源;使陶瓷材料的组成结构致密化、均匀化,改善陶瓷材料的性能,提高其使用可靠性;可以从纳米材料的结构层次(l~100nm)上控制材料的成分和结构,有利于充分发挥陶瓷材料的潜在性能。另外,由于陶瓷粉料的颗粒大小决定了陶瓷材料的微观结构和宏观性能。如果粉料的颗粒堆积均匀,烧成收缩一致且晶粒均匀长大,那么颗粒越小产生的缺陷越小,所制备的材料的强度就相应越高,这就可能出现一些大颗粒材料所不具备的独特性能。
发明内容
本发明的目的是提供一种具有光谱选择性、可见光吸收率高且发射率低的具有陶瓷涂层的太阳能的纳米陶瓷选择性吸收涂层。
本发明的上述目的是通过如下方案实现的:
一种太阳能的纳米陶瓷选择性吸收涂层,所述吸收涂层自内向外具有三层结构,第一层为基材,第二层为纳米陶瓷吸收层,第三层为减反层,所述基材为不锈钢基片,所述纳米陶瓷吸收层材料的组分中包括成膜物、发色体和溶剂,所述减反层为TiO2薄膜。
作为本发明的改进,上述成膜物为丙烯酸树脂材料,所述发色体为纳米级颜料,所述溶剂是由二甲苯和乙二醇苯醚组成的混合溶剂,所述成膜物与发色体和溶剂的重量比为4~5:6~8:12~13。
作为本发明的改进,上述成膜物与发色体和溶剂的重量比为4:6:12。
作为本发明进一步的改进,上述纳米级颜料由纳米级钛、纳米级镍、纳米级氧化铜和纳米级氧化锰粉体组成,所述纳米级钛与纳米级镍、纳米级氧化铜和纳米级氧化锰的重量比为1~1.2:1~1.2:2~2.6:2~2.6。
更进一步地,上述纳米级钛与纳米级镍、纳米级氧化铜和纳米级氧化锰的重量比为1:1:2:2。
上述减反层采用溶胶-凝胶法制备。
纳米陶瓷吸收层的制备方法如下:
按上述纳米陶瓷吸收层材料称取各组分,倒入分散研磨机中研磨20~30小时形成均匀的分散体系后,喷涂于不锈钢基片即可,所述涂层厚度控制在3~5微米。
减反层采用溶胶-凝胶法制备,制备方法如下:
(1)纳米陶瓷吸收层表面清理:将上述制备好的纳米陶瓷吸收层以蒸馏水清洗后,于室温下干燥后备用;
(2)溶胶制备:以钛酸四丁酯为Ti源,无水乙醇为溶剂,二乙醇胺为缓蚀剂配置溶胶,三种成分物质的量的比为(10~30ml):(60~80ml):(2~8ml);
(3)减反层薄膜制备:在纳米陶瓷吸收层清洁表面上提拉镀膜,控制提拉速度和提拉次数获得厚度100~300nm的薄膜,将薄膜置于300~400℃下退火60~90min,由此在复合氧化物吸收层上制备出TiO2减反射薄膜。
与现有技术相比,本发明具有的有益效果为:
1、本发明的纳米陶瓷吸收层材料釆用纳米级颜料,该涂层材料具有光谱选择性和可见光吸收率高及发射率低的良好性能。
2、本发明的纳米陶瓷吸收层的制备工艺简单,研磨形成分散体系后直接喷涂于太阳能吸热板芯向阳面即可,无需特别设备,制备成本低廉,涂层表面硬度高、耐高温,保证了较高的热电转换效率及高的使用强度。
3、本发明在吸收层外添加了TiO2减反层薄膜,该TiO2减反层表面的晶粒细小,排列紧密,不仅提高了吸收率,同时也可以对吸收层起到封孔作用,提高了太阳能选择性吸收涂层的整体抗腐蚀性能。
具体实施方式
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅用于帮助理解本发明,不应视为对本发明的具体限制。
如无具体说明,本发明的各种原料均可以通过市售得到;或根据本领域的常规方法制备得到。除非另有定义或说明,本文中所使用的所有专业与科学用语与本领域技术熟练入员所熟悉的意义相同。此外任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。
实施例1
一种太阳能的纳米陶瓷选择性吸收涂层,所述吸收涂层自内向外具有三层结构,第一层为基材,第二层为纳米陶瓷吸收层,第三层为减反层,所述基材为不锈钢基片,所述纳米陶瓷吸收层材料的组分中包括成膜物、发色体和溶剂,所述减反层为TiO2薄膜。
纳米陶瓷吸收层材料的各组分重量比为:丙烯酸树脂:纳米级钛:纳米级镍:纳米级氧化铜:纳米级氧化锰:溶剂=4:1:1:2:2:12。
制备纳米陶瓷吸收层时,按上述的配比称取各组分,倒入分散研磨机中研磨20小时形成均匀的分散体系后,喷涂于不锈钢基片即可,所述纳米陶瓷吸收层厚度控制在3~4微米。
减反层采用溶胶-凝胶法制备,具体如下:
(1)纳米陶瓷吸收层表面清理:将上述制备好的纳米陶瓷吸收层以蒸馏水清洗后,于室温下干燥后备用;
(2)溶胶制备:以钛酸四丁酯为Ti源,无水乙醇为溶剂,二乙醇胺为缓蚀剂配置溶胶,三种成分物质的量的比为(10~30ml):(60~80ml):(2~8ml);
(3)减反层薄膜制备:在纳米陶瓷吸收层清洁表面上提拉镀膜,控制提拉速度和提拉次数获得厚度100~300nm的薄膜,将薄膜置于300~400℃下退火60~90min,由此在复合氧化物吸收层上制备出TiO2减反射薄膜。
所制得的一种太阳能的纳米陶瓷选择性吸收涂层的检测结果如下:
太阳吸收比为0.981;发射比≤0.040(常温)。
实施例2
一种太阳能的纳米陶瓷选择性吸收涂层,所述吸收涂层自内向外具有三层结构,第一层为基材,第二层为纳米陶瓷吸收层,第三层为减反层,所述基材为不锈钢基片,所述纳米陶瓷吸收层材料的组分中包括成膜物、发色体和溶剂,所述减反层为TiO2薄膜。
纳米陶瓷吸收层材料的各组分重量比为:丙烯酸树脂:纳米级钛:纳米级镍:纳米级氧化铜:纳米级氧化锰:溶剂=5:1:1:2:2:13。
制备纳米陶瓷吸收层时,按上述的配比称取各组分,倒入分散研磨机中研磨20小时形成均匀的分散体系后,喷涂于不锈钢基片即可,所述纳米陶瓷吸收层厚度控制在3~4微米。
减反层采用溶胶-凝胶法制备,具体如下:
(1)纳米陶瓷吸收层表面清理:将上述制备好的纳米陶瓷吸收层以蒸馏水清洗后,于室温下干燥后备用;
(2)溶胶制备:以钛酸四丁酯为Ti源,无水乙醇为溶剂,二乙醇胺为缓蚀剂配置溶胶,三种成分物质的量的比为(10~30ml):(60~80ml):(2~8ml);
(3)减反层薄膜制备:在纳米陶瓷吸收层清洁表面上提拉镀膜,控制提拉速度和提拉次数获得厚度100~300nm的薄膜,将薄膜置于300~400℃下退火60~90min,由此在复合氧化物吸收层上制备出TiO2减反射薄膜。
所制得的一种太阳能的纳米陶瓷选择性吸收涂层的检测结果如下:
太阳吸收比为0.971;发射比≤0.039(常温)。
实施例3
一种太阳能的纳米陶瓷选择性吸收涂层,所述吸收涂层自内向外具有三层结构,第一层为基材,第二层为纳米陶瓷吸收层,第三层为减反层,所述基材为不锈钢基片,所述纳米陶瓷吸收层材料的组分中包括成膜物、发色体和溶剂,所述减反层为TiO2薄膜。
纳米陶瓷吸收层材料的各组分重量比为:丙烯酸树脂:纳米级钛:纳米级镍:纳米级氧化铜:纳米级氧化锰:溶剂=4:1.2:1.2:2.6:2.6:12。
制备纳米陶瓷吸收层时,按上述的配比称取各组分,倒入分散研磨机中研磨20小时形成均匀的分散体系后,喷涂于不锈钢基片即可,所述纳米陶瓷吸收层厚度控制在3~4微米。
减反层采用溶胶-凝胶法制备,具体如下:
(1)纳米陶瓷吸收层表面清理:将上述制备好的纳米陶瓷吸收层以蒸馏水清洗后,于室温下干燥后备用;
(2)溶胶制备:以钛酸四丁酯为Ti源,无水乙醇为溶剂,二乙醇胺为缓蚀剂配置溶胶,三种成分物质的量的比为(10~30ml):(60~80ml):(2~8ml);
(3)减反层薄膜制备:在纳米陶瓷吸收层清洁表面上提拉镀膜,控制提拉速度和提拉次数获得厚度100~300nm的薄膜,将薄膜置于300~400℃下退火60~90min,由此在复合氧化物吸收层上制备出TiO2减反射薄膜。
所制得的一种太阳能的纳米陶瓷选择性吸收涂层的检测结果如下:
太阳吸收比为0.960;发射比≤0.040(常温)。
实施例4
一种太阳能的纳米陶瓷选择性吸收涂层,所述吸收涂层自内向外具有三层结构,第一层为基材,第二层为纳米陶瓷吸收层,第三层为减反层,所述基材为不锈钢基片,所述纳米陶瓷吸收层材料的组分中包括成膜物、发色体和溶剂,所述减反层为TiO2薄膜。
纳米陶瓷吸收层材料的各组分重量比为:丙烯酸树脂:纳米级钛:纳米级镍:纳米级氧化铜:纳米级氧化锰:溶剂=5:1.2:1.2:2.6:2.6:12。
制备纳米陶瓷吸收层时,按上述的配比称取各组分,倒入分散研磨机中研磨20小时形成均匀的分散体系后,喷涂于不锈钢基片即可,所述纳米陶瓷吸收层厚度控制在3~4微米。
减反层采用溶胶-凝胶法制备,具体如下:
(1)纳米陶瓷吸收层表面清理:将上述制备好的纳米陶瓷吸收层以蒸馏水清洗后,于室温下干燥后备用;
(2)溶胶制备:以钛酸四丁酯为Ti源,无水乙醇为溶剂,二乙醇胺为缓蚀剂配置溶胶,三种成分物质的量的比为(10~30ml):(60~80ml):(2~8ml);
(3)减反层薄膜制备:在纳米陶瓷吸收层清洁表面上提拉镀膜,控制提拉速度和提拉次数获得厚度100~300nm的薄膜,将薄膜置于300~400℃下退火60~90min,由此在复合氧化物吸收层上制备出TiO2减反射薄膜。
所制得的一种太阳能的纳米陶瓷选择性吸收涂层的检测结果如下:
太阳吸收比为0.950;发射比≤0.042(常温)。
上述实施方式只是本发明的几个实例,不是用来限制发明的实施与权利范围,凡依据本发明申请专利保护范围所述的内容做出的等效变化和修饰,均应包括在本发明申请专利范围内。

Claims (6)

1.一种太阳能的纳米陶瓷选择性吸收涂层,所述吸收涂层自内向外具有三层结构,第一层为基材,第二层为纳米陶瓷吸收层,第三层为减反层,其特征在于:所述基材为不锈钢基片,所述纳米陶瓷吸收层材料的组分中包括成膜物、发色体和溶剂,所述减反层为TiO2薄膜。
2.如权利要求1所述的一种太阳能的纳米陶瓷选择性吸收涂层,其特征在于:所述成膜物为丙烯酸树脂材料,所述发色体为纳米级颜料,所述溶剂是由二甲苯和乙二醇苯醚组成的混合溶剂,所述成膜物与发色体和溶剂的重量比为4~5:6~8:12~13。
3.如权利要求1所述的一种太阳能的纳米陶瓷选择性吸收涂层,其特征在于:所述成膜物与发色体和溶剂的重量比为4:6:12。
4.如权利要求1所述的一种太阳能的纳米陶瓷选择性吸收涂层,其特征在于:所述纳米级颜料由纳米级钛、纳米级镍、纳米级氧化铜和纳米级氧化锰粉体组成,所述纳米级钛与纳米级镍、纳米级氧化铜和纳米级氧化锰的重量比为1~1.2:1~1.2:2~2.6:2~2.6。
5.如权利要求1所述的一种太阳能的纳米陶瓷选择性吸收涂层,其特征在于:所述纳米级钛与纳米级镍、纳米级氧化铜和纳米级氧化锰的重量比为1:1:2:2。
6.如权利要求1所述的一种太阳能的纳米陶瓷选择性吸收涂层,其特征在于:所述减反层采用溶胶-凝胶法制备。
CN201310452386.5A 2013-09-27 2013-09-27 一种太阳能的纳米陶瓷选择性吸收涂层 Pending CN103542564A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310452386.5A CN103542564A (zh) 2013-09-27 2013-09-27 一种太阳能的纳米陶瓷选择性吸收涂层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310452386.5A CN103542564A (zh) 2013-09-27 2013-09-27 一种太阳能的纳米陶瓷选择性吸收涂层

Publications (1)

Publication Number Publication Date
CN103542564A true CN103542564A (zh) 2014-01-29

Family

ID=49966275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310452386.5A Pending CN103542564A (zh) 2013-09-27 2013-09-27 一种太阳能的纳米陶瓷选择性吸收涂层

Country Status (1)

Country Link
CN (1) CN103542564A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105238091A (zh) * 2015-11-13 2016-01-13 日出东方太阳能股份有限公司 一种太阳能吸收膜及其制备方法
CN107012449A (zh) * 2017-03-23 2017-08-04 同济大学 一种基于多个单层膜堆叠的新型镀膜方法
WO2017215234A1 (zh) * 2016-06-14 2017-12-21 淄博环能海臣环保技术服务有限公司 一种复合耐高温选择性吸收功能膜及其制造方法
CN108036532A (zh) * 2017-11-18 2018-05-15 山东龙光天旭太阳能有限公司 一种太阳能集热管耐低温光谱选择性吸收涂层的制备方法
CN108793070A (zh) * 2018-07-11 2018-11-13 浙江大学 基于透光型光热化学循环材料的太阳能分级分质利用系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624493A (zh) * 2009-08-05 2010-01-13 赵庆利 一种用于在金属表面的热固性丙烯酸涂料
CN102514280A (zh) * 2011-12-12 2012-06-27 武汉理工大学 一种太阳能选择性吸收涂层及其制备方法
CN102749666A (zh) * 2011-04-20 2012-10-24 国家纳米科学中心 一种减反射涂层的制备方法
US20130059148A1 (en) * 2010-03-02 2013-03-07 Nepes Rigmah., Ltd. Solar-heat-blocking coating solution and solar-heat-blocking coated glass using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624493A (zh) * 2009-08-05 2010-01-13 赵庆利 一种用于在金属表面的热固性丙烯酸涂料
US20130059148A1 (en) * 2010-03-02 2013-03-07 Nepes Rigmah., Ltd. Solar-heat-blocking coating solution and solar-heat-blocking coated glass using the same
CN102749666A (zh) * 2011-04-20 2012-10-24 国家纳米科学中心 一种减反射涂层的制备方法
CN102514280A (zh) * 2011-12-12 2012-06-27 武汉理工大学 一种太阳能选择性吸收涂层及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105238091A (zh) * 2015-11-13 2016-01-13 日出东方太阳能股份有限公司 一种太阳能吸收膜及其制备方法
CN105238091B (zh) * 2015-11-13 2018-04-24 日出东方太阳能股份有限公司 一种太阳能吸收膜及其制备方法
WO2017215234A1 (zh) * 2016-06-14 2017-12-21 淄博环能海臣环保技术服务有限公司 一种复合耐高温选择性吸收功能膜及其制造方法
CN107504701A (zh) * 2016-06-14 2017-12-22 淄博环能海臣环保技术服务有限公司 一种复合耐高温选择性吸收功能膜及其制造方法
CN107012449A (zh) * 2017-03-23 2017-08-04 同济大学 一种基于多个单层膜堆叠的新型镀膜方法
CN108036532A (zh) * 2017-11-18 2018-05-15 山东龙光天旭太阳能有限公司 一种太阳能集热管耐低温光谱选择性吸收涂层的制备方法
CN108793070A (zh) * 2018-07-11 2018-11-13 浙江大学 基于透光型光热化学循环材料的太阳能分级分质利用系统

Similar Documents

Publication Publication Date Title
CN102286243B (zh) 以尖晶石型颜料为吸光剂制备太阳能选择性吸热涂料的方法
CN103542564A (zh) 一种太阳能的纳米陶瓷选择性吸收涂层
CN105860717B (zh) 彩色反射隔热涂料及其制备、施工方法
CN102190448B (zh) 一种复合宽带减反增透薄膜及其制备方法
CN103589275A (zh) 太阳能吸热涂料及其制作方法
Gu et al. Wearable Janus MnO2 hybrid membranes for thermal comfort management applications
CN103170323B (zh) 钛酸盐光催化剂A2TiO4及其制备方法
CN107903715A (zh) 一种基于聚吡咯和二氧化硅复合的高饱和度结构色颜料的制备方法
Ke et al. Solar selective coatings with multilayered structure based on thermal spraying WC-Co solar absorption layer
CN104772149B (zh) 一种Bi2O3/BiFeO3/TiO2纳米花光催化材料及其制备方法
Li et al. Synthesis and characterization of yellow pigments (Li0. 4RE0. 6Al0. 6) 1/2MoO4–BiVO4 with high NIR reflectance
Gao et al. Optical property and thermal performance of hollow glass microsphere/BiOBr1-xIx composites as a novel colored near infrared reflective pigment
CN110066113A (zh) 一种黑色光子釉的制备方法
CN103694877B (zh) 纳米纤维太阳能能量高效吸收复合膜及其制备和喷涂方法
CN104927791B (zh) 氧化石墨烯与ntc半导体粉体杂化太阳能吸热材料及制备方法
CN103555106A (zh) 一种金属陶瓷纳米基体太阳能吸热涂层材料及其该涂层的制备方法
CN102964886B (zh) 一种高选择性太阳能吸热纳米膜层的配方及该膜层的制备方法
CN103897577A (zh) 玻璃涂料及其制备方法
CN103191714A (zh) 层状复合氧化物光催化剂Sr2KM3O10及其制备方法
CN106521546A (zh) 一种光解水制氢用多层BiVO4/CuWO4复合膜及其制备方法
CN106810975A (zh) 用于平板真空玻璃太阳能热水器的吸光涂料及制备方法
CN103360858B (zh) 隔热浆料、使用该隔热浆料的新型水性碳纳米管复合隔热保温涂料及其制备方法
CN103553147B (zh) 一种高稳定性尖晶石型黑色色剂的制备方法
CN105948528A (zh) 一种高反射镀膜玻璃及其制备方法
CN103214020A (zh) 纳米硫化铜钆粉体和含纳米硫化铜钆的薄膜及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140129