CN106477562A - 一种自组装三维石墨烯宏观体粉末吸收剂的制备及应用 - Google Patents

一种自组装三维石墨烯宏观体粉末吸收剂的制备及应用 Download PDF

Info

Publication number
CN106477562A
CN106477562A CN201610857649.4A CN201610857649A CN106477562A CN 106477562 A CN106477562 A CN 106477562A CN 201610857649 A CN201610857649 A CN 201610857649A CN 106477562 A CN106477562 A CN 106477562A
Authority
CN
China
Prior art keywords
preparation
dimensional
self assembled
graphene
powdery absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610857649.4A
Other languages
English (en)
Inventor
康飞宇
方帅
吕瑞涛
顾家琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201610857649.4A priority Critical patent/CN106477562A/zh
Publication of CN106477562A publication Critical patent/CN106477562A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于电磁波吸收技术领域,为一种自组装三维石墨烯宏观体粉末吸收剂的制备及应用,制备工艺主要包括水热法和氢气高温还原过程及颗粒尺寸分级处理,本发明制备工艺简单方便,采取氢气作为还原剂,不引入其它杂质,且制得的三维还原氧化石墨烯粉末作为吸收剂的吸波材料表现出优异的低频段(2‑6GHz)电磁波吸收性能,粉末吸收剂易于和其它材料制备成复合吸收材料;利用本方法制备的三维还原氧化石墨烯粉末吸收剂在电磁波吸收领域将有很好的应用前景。

Description

一种自组装三维石墨烯宏观体粉末吸收剂的制备及应用
技术领域
本发明属于电磁波屏蔽和吸波材料技术领域,特别涉及一种自组装三维石墨烯宏观体粉末吸收剂的制备及应用。
背景技术
随着电子设备应用的迅速增加,对人体健康有影响的电磁波的总量也在不断增加,同时,在军事对抗中,高效电磁波吸收剂对于隐身材料的性能有着重要的影响,传统的吸波材料,例如铁氧体,金属粉末等,由于其具有密度大,吸收频带窄等缺陷,限制了其应用范围。因此迫切需要同时满足“薄”“轻”“强”“宽”四个特点的新型吸波材料,其中吸收剂作为吸波材料主要的组成部分,其性能的提高能够有效的提升吸波材料的电磁波吸收能力。在这种大背景下,开发新型高效的电磁波吸收剂正日益受到人们的重视。
石墨烯是具有单层碳原子结构的薄膜,从2004年被发现开始,由于其具有优异的电导率、热导率、质量轻等特点,使得其在各个领域的应用都得到了广泛的探索,在吸波材料方面,对于石墨烯也进行了比较多的研究,主要是对于石墨烯作为吸收剂进行相关的改性工作,通过调节吸收剂的电磁参数以此来进一步调节吸波材料整体的吸波能力。通过制备负载磁性粒子的石墨烯的以及石墨烯自身的表面修饰是石墨烯在吸波材料上应用的两个主要方向,其中负载磁性粒子的研究较多,通过和传统的铁氧体或者磁性金属粒子的复合,探索改变负载颗粒的分布,粒径,取向等方法可以很好的调节吸收剂的吸波能力,目前来说,通过石墨烯磁性粒子的方法使得在中高频段(6-18GHz)范围内都有着较好的吸收效果,但是其在低频段(2-6GHz)范围内对于电磁波基本没有吸收能力;从2008年开始,对于石墨烯本征的吸收能力的探索逐渐引起了关注,结果表明,通过优化的Hummers法制备的氧化石墨烯(GO)在还原后得到的还原氧化石墨烯(rGO)具有明显的吸波能力,进一步的研究结果表明,通过表面的修饰,改变其表面的缺陷等可以调节其电磁参数,提高吸波能力。尤其是在高温条件下用氢气等还原性气体还原,能够明显增强吸波能力。在此之后,三维的石墨烯(即石墨烯泡沫)吸收材料开始被人们关注。其中模板法制备石墨烯宏观体制备工艺复杂,成本较高,不利于大规模生产;自组装方式是更为广泛使用的制备方式,通过将氧化石墨烯和还原剂混合后进行水热处理,可以直接得到石墨烯宏观体,制备方式简单,成本低。对于石墨烯泡沫的研究,结果表明石墨烯泡沫基本上在除了低频段(2-6GHz)以外都具有优异的吸波能力,但是这样的石墨烯泡沫却不具备机械强度,极大的限制了其应用范围。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种自组装三维石墨烯宏观体粉末吸收剂的制备及应用,通过探索合适的工艺并优化工艺参数,制备出石墨烯宏观体(3D-rGO)粉末电磁波吸收剂样品,该方法结合了水热法(Hydrothermal)和高温还原及粉末制备,工艺过程简单,制备过程中不使用残留还原剂,避免了引入其它杂质,且制得的样品能够和其他材料复合形成具有机械强度的吸波材料,在吸波材料领域具有很好的应用前景。
为了实现上述目的,本发明采用的技术方案是:
一种自组装三维石墨烯宏观体粉末吸收剂的制备,包括如下步骤:
(1)将2~4mg/mL的氧化石墨烯溶液,放置在细胞破碎仪中在一定功率下进行破碎,破碎过程置于冰水混合物中进行;
(2)破碎后的溶液,在150~190℃保温6~8小时后自然冷却,得到氧化石墨烯水凝胶;
(3)将氧化石墨烯水凝胶冷冻干燥至其重量不再发生变化,确保冰完全除去;
(4)将冷冻干燥的样品移入氧化铝坩埚中,加盖,固定后移入石英管反应器;
(5)通入保护气体将石英管内的空气排出,保持通入保护气体,从室温开始经55~60min以10℃/min升温至600~900℃进行保温;
(6)在保温温度通入还原气体,保温结束后停止加热,保持通入保护气体,待样品在炉膛中自然冷却得到三维还原氧化石墨烯宏观体样品;
(7)将制得的三维还原氧化石墨烯宏观体研磨确保其粉末粒径90%在300±150μm范围内,得到自组装三维石墨烯宏观体粉末吸收剂。
所述步骤(1)中,将氧化石墨烯(GO)超声分散于去离子水中形成一定浓度的氧化石墨溶液。
所述步骤(2)中,破碎后的氧化石墨烯溶液置于水热釜中水热保温,且不超过水热釜的80%。
所述步骤(3)中,冷冻干燥至重量变化不超过0.1mg。
所述步骤(5)中,保护气体为氮气或氩气,通入速率为100~3000mL/mi。
所述步骤(6)中,还原气体为氢气,通入氢气的量占步骤(5)中通入保护气体量的15-20%。
本发明还提供了一种具有低频段电磁波吸收性能的复合材料,包含有质量分数2~7%的所述自组装三维石墨烯宏观体粉末吸收剂。
复合材料是将吸收剂作为填料填充到液态基体中,充分搅拌后作为涂料使用,基体一般为有机物,例如沥青和树脂。
本发明所述自组装三维石墨烯宏观体粉末吸收剂可用于低频段时吸收电磁波,低频段指2-6GHz。
与现有技术相比,本发明的有益效果是:制备工艺简单,无污染,原料利用率高,相比于现有的吸收剂在低频段(2-6GHz)基本没有吸收,反射损耗率在-5dB以上,不具备实际应用前景,该吸收剂在低频段能够基本覆盖到-5dB以下,具备实际应用前景。
附图说明
图1为氧化石墨烯水凝胶的升温曲线示意图。
图2为氧化石墨烯宏观体还原的装置示意图。
图3为还原氧化石墨宏观体的升温曲线示意图。
图4为制得的3D-rGO样品的扫描电子显微镜(SEM)照片。
图5为已制得的3D-rGO粉末样品为吸收剂不同填充量的吸波材料在5mm厚度时反射率曲线。
具体实施方式
本发明提供一种水热法和高温还原法及粉末制备的工艺来制备三维还原氧化石墨烯粉末微波吸收剂的方法。下面将结合附图及具体实施例对本发明予以进一步说明。
实施例1
氧化石墨烯溶液的制备:将200mg氧化石墨烯粉末分散到100mL去离子水中,搅拌,形成2mg/mL的氧化石墨烯溶液;之后将溶液置于冰水混合物中,移入细胞破碎仪,功率设置为30%,单次破碎时间设置为30min,之后待溶液恢复常温,更换冰水混合物,重复进行破碎,总破碎时间为1.5h。
三维氧化石墨烯的制备:将破碎好的氧化石墨烯倒入水热釜中,每个水热釜中的溶液为70mL,置于恒温烘箱中以10℃/min升温到180℃后保温6h,之后自然冷却到常温,取出制备好的氧化石墨烯水凝胶。接下来将氧化石墨烯水凝胶完全冷冻,最后放入冷冻干燥器中,直至重量不再发生变化。
高温还原过程:三维氧化石墨烯移入坩埚中,加盖,保留有一定缝隙,固定后移入石英管反应器。实验采用的是管式电阻炉加热保温,装置如图2所示。从炉子左侧通入气体(氩气,氢气),密封石英管后,通入氮气(300mL/min,20min)将管内的空气排出。保持通入氮气速率为300mL/min,从室温开始经55~60min以10℃/min升温至900℃。
此时将通入氮气速率变为2000mL/min,同时打开氢气阀门,开始通入氢气保持通入氢气速率为300mL/min,保温1h,保温结束后关闭氢气。
自然冷却到室温,得到完整的三维还原氧化石墨烯宏观体。
三维还原氧化石墨烯宏观体粉末吸收剂的制备:将得到的样品进行研磨,确保颗粒粒径90%在300±150μm范围内。得到的混合颗粒就是三维还原氧化石墨烯宏观体粉末吸收剂。
实施例2
氧化石墨烯溶液的制备:将400mg氧化石墨烯粉末分散到100mL去离子水中,搅拌,形成4mg/mL的氧化石墨烯溶液;之后将溶液置于冰水混合物中,移入细胞破碎仪,功率设置为40%,单次破碎时间设置为30min,之后待溶液恢复常温,更换冰水混合物,重复进行破碎,总破碎时间为2h。
三维氧化石墨烯的制备:将破碎好的氧化石墨烯倒入水热釜中,每个水热釜中的溶液为70mL,置于恒温烘箱中以10℃/min升温到200℃后保温6h,之后自然冷却到常温,取出制备好的氧化石墨烯水凝胶。接下来将氧化石墨烯水凝胶完全冷冻,最后放入冷冻干燥器中,直至重量不再发生变化。
高温还原过程:三维氧化石墨烯移入坩埚中,加盖,保留有一定缝隙,固定后移入石英管反应器。实验采用的是管式电阻炉加热保温,装置如图2所示。从炉子左侧通入气体(氩气,氢气),密封石英管后,通入氮气(300mL/min,20min)将管内的空气排出。保持通入氮气速率为300mL/min,从室温开始经55~60min以10℃/min升温至600℃。
此时将通入氮气速率变为2000mL/min,同时打开氢气阀门,开始通入氢气保持通入氢气速率为300mL/min,保温1h,保温结束后关闭氢气。
自然冷却到室温,得到完整的三维还原氧化石墨烯宏观体。
三维还原氧化石墨烯宏观体粉末吸收剂的制备:将得到的样品进行研磨,颗粒粒径90%在300±150μm范围内,得到的混合颗粒就是三维还原氧化石墨烯宏观体粉末吸收剂。
图1和图3显示的制备工艺简单,原料利用率高,基本没有原料的损耗,同时,制备出的宏观体经过研磨区分粉末尺寸以后仍旧能够保持如图4所示的三维结构状态,制备出的结果性能测试图5表明,在低频段2-6GHz范围内的吸收能力,显著优于现有的吸收剂。

Claims (10)

1.一种自组装三维石墨烯宏观体粉末吸收剂的制备,其特征在于,包括如下步骤:
(1)将2~4mg/mL的氧化石墨烯溶液,放置在细胞破碎仪中在一定功率下进行破碎,破碎过程置于冰水混合物中进行;
(2)破碎后的溶液,在150~190℃保温6~8小时后自然冷却,得到氧化石墨烯水凝胶;
(3)将氧化石墨烯水凝胶冷冻干燥至其重量不再发生变化,确保冰完全除去;
(4)将冷冻干燥的样品移入氧化铝坩埚中,加盖,固定后移入石英管反应器;
(5)通入保护气体将石英管内的空气排出,保持通入保护气体,从室温开始经55~60min以10℃/min升温至600~900℃进行保温;
(6)在保温温度通入还原气体,保温结束后停止加热,保持通入保护气体,待样品在炉膛中自然冷却得到三维还原氧化石墨烯宏观体样品;
(7)将制得的三维还原氧化石墨烯宏观体研磨确保其粉末粒径90%在300±150μm范围内,得到自组装三维石墨烯宏观体粉末吸收剂。
2.根据权利要求1所述自组装三维石墨烯宏观体粉末吸收剂的制备,其特征在于,所述步骤(1)中,将氧化石墨烯(GO)超声分散于去离子水中形成一定浓度的氧化石墨溶液。
3.根据权利要求1所述自组装三维石墨烯宏观体粉末吸收剂的制备,其特征在于,所述步骤(2)中,破碎后的氧化石墨烯溶液置于水热釜中水热保温。
4.根据权利要求1所述自组装三维石墨烯宏观体粉末吸收剂的制备,其特征在于,所述步骤(3)中,冷冻干燥至重量变化不超过0.1mg。
5.根据权利要求1所述自组装三维石墨烯宏观体粉末吸收剂的制备,其特征在于,所述步骤(5)中,保护气体为氮气或氩气,通入速率为100~3000mL/min。
6.根据权利要求1所述自组装三维石墨烯宏观体粉末吸收剂的制备,其特征在于,所述步骤(6)中,还原气体为氢气,通入氢气的量占步骤(5)中通入保护气体量的15-40%。
7.一种具有低频段电磁波吸收性能的复合材料,其特征在于,包含有质量分数2~7%的所述自组装三维石墨烯宏观体粉末吸收剂。
8.根据权利要求7所述具有低频段电磁波吸收性能的复合材料,其特征在于,所述复合材料以沥青、树脂或聚苯胺为基体。
9.权利要求1所述自组装三维石墨烯宏观体粉末吸收剂在低频段时吸收电磁波的应用。
10.根据权利要求9所述应用,其特征在于,所述低频段指2-6GHz。
CN201610857649.4A 2016-09-27 2016-09-27 一种自组装三维石墨烯宏观体粉末吸收剂的制备及应用 Pending CN106477562A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610857649.4A CN106477562A (zh) 2016-09-27 2016-09-27 一种自组装三维石墨烯宏观体粉末吸收剂的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610857649.4A CN106477562A (zh) 2016-09-27 2016-09-27 一种自组装三维石墨烯宏观体粉末吸收剂的制备及应用

Publications (1)

Publication Number Publication Date
CN106477562A true CN106477562A (zh) 2017-03-08

Family

ID=58267678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610857649.4A Pending CN106477562A (zh) 2016-09-27 2016-09-27 一种自组装三维石墨烯宏观体粉末吸收剂的制备及应用

Country Status (1)

Country Link
CN (1) CN106477562A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626361A (zh) * 2018-11-09 2019-04-16 清华大学深圳研究生院 稳定组分修饰的高比表面积碳负极材料及其制备方法及应用其的钠离子电池
CN110031923A (zh) * 2019-04-19 2019-07-19 电子科技大学 可拉伸式双面超宽带太赫兹吸波材料及其制备方法
CN110947950A (zh) * 2019-11-05 2020-04-03 中国船舶重工集团公司第七二五研究所 一种石墨烯改性FeCo吸收剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794204A (zh) * 2014-02-17 2014-05-14 东南大学 一种石墨烯宏观材料的应用方法
CN104495820A (zh) * 2014-12-17 2015-04-08 北京化工大学 一种多孔石墨烯气凝胶及其制备方法
CN104563316A (zh) * 2013-10-17 2015-04-29 北新集团建材股份有限公司 一种防电磁辐射的矿棉吸声板及其制备方法
CN105858648A (zh) * 2016-05-23 2016-08-17 北京光科博冶科技有限责任公司 一种环保节能的石墨烯制备方法及所得产物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104563316A (zh) * 2013-10-17 2015-04-29 北新集团建材股份有限公司 一种防电磁辐射的矿棉吸声板及其制备方法
CN103794204A (zh) * 2014-02-17 2014-05-14 东南大学 一种石墨烯宏观材料的应用方法
CN104495820A (zh) * 2014-12-17 2015-04-08 北京化工大学 一种多孔石墨烯气凝胶及其制备方法
CN105858648A (zh) * 2016-05-23 2016-08-17 北京光科博冶科技有限责任公司 一种环保节能的石墨烯制备方法及所得产物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626361A (zh) * 2018-11-09 2019-04-16 清华大学深圳研究生院 稳定组分修饰的高比表面积碳负极材料及其制备方法及应用其的钠离子电池
CN110031923A (zh) * 2019-04-19 2019-07-19 电子科技大学 可拉伸式双面超宽带太赫兹吸波材料及其制备方法
CN110947950A (zh) * 2019-11-05 2020-04-03 中国船舶重工集团公司第七二五研究所 一种石墨烯改性FeCo吸收剂的制备方法
CN110947950B (zh) * 2019-11-05 2021-08-24 中国船舶重工集团公司第七二五研究所 一种石墨烯改性FeCo吸收剂的制备方法

Similar Documents

Publication Publication Date Title
CN106477562A (zh) 一种自组装三维石墨烯宏观体粉末吸收剂的制备及应用
CN112030135B (zh) 一种高效复合吸波材料ZIF-67@CNTs制备方法
CN109294519A (zh) 一种多层结构浓度梯度设计的宽频石墨烯吸波材料的制备方法
CN104831173A (zh) 一种掺杂铬的铁基合金吸波材料的制备方法
CN107338372B (zh) 一种放电等离子烧结的铝基复合制氢材料的制备及其应用
CN108439376A (zh) 一种负载磁性纳米粒子的石墨烯气凝胶复合材料的制备方法
CN103183861A (zh) 一种具有中子和伽玛综合屏蔽效果的复合屏蔽材料
CN102343301A (zh) 一种钛铁矿微波助磨的方法
CN111205067A (zh) 一种中子及γ射线协同防护的玻璃-陶瓷材料及其制备方法
CN113046590A (zh) 一种高熵合金/铝复合的泡沫型吸波材料及制备方法
CN104630524A (zh) 放电等离子烧结法制备铍钛合金的方法
CN106887593A (zh) 一种高容量锂离子电池负极材料的制备方法
CN108736064A (zh) 一种复合硼氢化锂固态电解质及其制备方法和设备
CN105950111A (zh) 一种石墨烯和沸石的复合吸波材料的制备方法与应用
CN107629666A (zh) 石墨烯玻璃透明隔热涂料的制备方法及其产品和应用
CN108359919B (zh) 一种制备梯度组织纯镁及镁合金的强制性氧化方法
CN105088109B (zh) 一种微波频段电磁波吸收剂及其制备方法
CN103014417B (zh) 一种(FeCo)B微波吸收材料
CN110292895B (zh) 一种超混杂气凝胶电磁干扰材料及其制备方法
CN108054352A (zh) 一种高能锂电池正极材料及其制备方法
CN106521312A (zh) 一种FeSiAl系合金微粉电磁吸收剂的制备方法
CN110423318A (zh) 一种碳素吸波材料的制备方法
CN113336460B (zh) 一种防辐射混凝土用功能集料及其制备方法
CN109411103A (zh) 一种重金属-稀土纳米复合屏蔽材料及其制备方法和应用
CN109550932A (zh) 一种基于煤制油残渣的复合吸波材料制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170308