CN106347138A - 一种纯电动汽车的能量回收控制方法、装置及纯电动汽车 - Google Patents

一种纯电动汽车的能量回收控制方法、装置及纯电动汽车 Download PDF

Info

Publication number
CN106347138A
CN106347138A CN201610968637.9A CN201610968637A CN106347138A CN 106347138 A CN106347138 A CN 106347138A CN 201610968637 A CN201610968637 A CN 201610968637A CN 106347138 A CN106347138 A CN 106347138A
Authority
CN
China
Prior art keywords
aperture
interval
speed
curved portion
accelerator pedal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610968637.9A
Other languages
English (en)
Other versions
CN106347138B (zh
Inventor
王立群
周建鹏
张海涛
马博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Electric Vehicle Co Ltd
Original Assignee
Beijing Electric Vehicle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Electric Vehicle Co Ltd filed Critical Beijing Electric Vehicle Co Ltd
Priority to CN201610968637.9A priority Critical patent/CN106347138B/zh
Publication of CN106347138A publication Critical patent/CN106347138A/zh
Application granted granted Critical
Publication of CN106347138B publication Critical patent/CN106347138B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/24Coasting mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明提供了一种纯电动汽车的能量回收控制方法、装置及纯电动汽车,该方法包括:判断纯电动汽车是否进入滑行工况;当判断结果为是时,获取所述纯电动汽车的行驶速度和加速踏板的第一开度,并确定所述行驶速度所属的第一速度区间;根据预先设置的速度区间与电机扭矩曲线的对应关系,确定与所述第一速度区间对应的第一电机扭矩曲线,并根据所述加速踏板的第一开度,从所述第一电机扭矩曲线中获取与所述第一开度相对应的扭矩值;根据所述扭矩值,控制所述纯电动汽车的电机输出状态,进行能量回收。本发明可在滑行工况下基于加速踏板开度进行能量回收,克服了现有技术中不能利用加速踏板对滑行能量回收进行控制的缺点,提高了驾驶员的驾驶感受。

Description

一种纯电动汽车的能量回收控制方法、装置及纯电动汽车
技术领域
本发明涉及纯电动汽车技术领域,尤其涉及一种纯电动汽车的能量回收控制方法、装置及纯电动汽车。
背景技术
目前纯电动汽车在滑行工况下的能量回收有2种模式,一种模式是只在判定加速踏板完全松开并踩下制动踏板时进行能量回收(发明专利:CN201220265436.X一种并联式制动能量回收系统);第二种模式是判定加速踏板完全松开后,在设定的能量回收车速范围内进行固定强度的能量回收。
然而,第一种模式在纯电动汽车处于高速且加速踏板开度较小的滑行工况时,不进行能量回收,将纯电动汽车的能量消耗在克服滑行阻力上,造成在该种工况下的能量无法充分利用回收。第二种模式虽然回收部分能量,但驾驶员无法控制回收强度、能量回收切入以及撤出时间,驾驶人员无法根据自身的主观感受自由调整能量回收,从而因能量回收动作切入而带来车辆行驶不平顺,驾乘舒适性差。
发明内容
为克服现有技术中存在的上述问题,本发明的实施例提供了一种纯电动汽车的能量回收控制方法、装置及纯电动汽车,实现了在滑行工况下基于加速踏板开度进行能量回收,提高了驾驶员的驾驶感受。
为了解决上述技术问题,本发明实施例采用如下技术方案:
依据本发明实施例的一个方面,提供了一种纯电动汽车的能量回收控制方法,包括:
判断纯电动汽车是否进入滑行工况;
当判断结果为是时,获取所述纯电动汽车的行驶速度和加速踏板的第一开度,并确定所述行驶速度所属的第一速度区间,其中,预先将行驶速度划分为多个连续且互不重叠的速度区间;
根据预先设置的速度区间与电机扭矩曲线的对应关系,确定与所述第一速度区间对应的第一电机扭矩曲线,并根据所述加速踏板的第一开度,从所述第一电机扭矩曲线中获取与所述第一开度相对应的扭矩值,其中,当所述速度区间均为行驶速度大于0的第一类速度区间时,所述第一类速度区间所对应的第一类电机扭矩曲线中包括:对应于加速踏板开度处于第一开度区间的第一曲线部分,对应于加速踏板开度处于第二开度区间的第二曲线部分,以及对应于加速踏板开度处于第三开度区间的第三曲线部分,且第一曲线部分对应的扭矩值小于0,第二曲线部分对应的扭矩值等于0,第三曲线部分对应的扭矩值大于0,所述第一开度区间、第二开度区间和第三开度区间是将加速踏板开度从0%到100%划分得到的3个连续且互不重叠的开度区间;
根据所述扭矩值,控制所述纯电动汽车的电机输出状态,进行能量回收。
可选地,当所述速度区间为行驶速度从0递增的第二类速度区间时,所述第二类速度区间所对应的第二类电机扭矩曲线中包括:对应于加速踏板开度处于第四开度区间的第四曲线部分,对应于加速踏板开度处于第五开度区间的第五曲线部分,且第四曲线部分对应的扭矩值等于0,第五曲线部分对应的扭矩值大于0,所述第四开度区间、第五开度区间是将加速踏板的开度从0%到100%划分得到的2个连续且互不重叠的开度区间。
可选地,所述判断纯电动汽车是否进入滑行工况的步骤具体包括:
获取所述纯电动汽车的档位信号、制动踏板开度、和行驶速度;
当所述档位信号为前进档位,且所述制动踏板开度为0,且所述行驶速度大于时,则判定所述纯电动汽车进入滑行工况。
可选地,所述根据所述扭矩值,控制所述纯电动汽车的电机输出状态,进行能量回收的步骤包括:
判断所述扭矩值是否小于0;
判断结果为是时,则控制所述纯电动汽车的电机输出负扭矩反拖,进行能量回收。
可选地,所述加速踏板开度的第一开度区间的范围为0%~m%,其中,具有较高速度的速度区间所对应的电机扭矩曲线中的所述第一开度区间的m%,大于具有较低速度的速度区间所对应的电机扭矩曲线中的第一开度区间的m%。
可选地,所述第一曲线部分、第三曲线部分、第五曲线部分的扭矩值,均是以加速踏板开度为自变量的线性函数。
可选地,所述第三曲线部分、第五曲线部分的扭矩值,均是以加速踏板开度为自变量的幂函数,且所述幂函数的指数大于1。
依据本发明实施例的另一个方面,还提供了一种纯电动汽车的能量回收控制装置,包括:
判断模块,用于判断纯电动汽车是否进入滑行工况;
第一获取模块,用于在判断模块的判断结果为是时,获取所述纯电动汽车的行驶速度和加速踏板的第一开度,并确定所述行驶速度所属的第一速度区间,其中,预先将行驶速度划分为多个连续且互不重叠的速度区间;
第二获取模块,用于根据预先设置的速度区间与电机扭矩曲线的对应关系,确定与所述第一速度区间对应的第一电机扭矩曲线,并根据所述加速踏板的第一开度,从所述第一电机扭矩曲线中获取与所述第一开度相对应的扭矩值,其中,当所述速度区间均为行驶速度大于0的第一类速度区间时,所述第一类速度区间所对应的第一类电机扭矩曲线中包括:对应于加速踏板开度处于第一开度区间的第一曲线部分,对应于加速踏板开度处于第二开度区间的第二曲线部分,以及对应于加速踏板开度处于第三开度区间的第三曲线部分,且第一曲线部分对应的扭矩值小于0,第二曲线部分对应的扭矩值等于0,第三曲线部分对应的扭矩值大于0,所述第一开度区间、第二开度区间和第三开度区间是将加速踏板开度从0%到100%划分得到的3个连续且互不重叠的开度区间;
控制模块,用于根据所述扭矩值,控制所述纯电动汽车的电机输出状态,进行能量回收。
可选地,当所述速度区间为行驶速度从0递增的第二类速度区间时,所述第二类速度区间所对应的第二类电机扭矩曲线中包括:对应于加速踏板开度处于第四开度区间的第四曲线部分,对应于加速踏板开度处于第五开度区间的第五曲线部分,且第四曲线部分对应的扭矩值等于0,第五曲线部分对应的扭矩值大于0,所述第四开度区间、第五开度区间是将加速踏板的开度从0%到100%划分得到的2个连续且互不重叠的开度区间。
可选地,所述判断模块具体包括:
获取单元,用于获取所述纯电动汽车的档位信号、制动踏板开度、和行驶速度;
判定单元,用于当所述档位信号为前进档位,且所述制动踏板开度为0,且所述行驶速度大于0时,则判定所述纯电动汽车进入滑行工况。
可选地,所述控制模块具体包括:
判断单元,用于判断所述扭矩值是否小于0;
控制单元,用于当所述判断单元的判断结果为是时,则控制所述纯电动汽车的电机输出负扭矩反拖,进行能量回收。
可选地,所述加速踏板开度的第一开度区间的范围为0%~m%,其中,具有较高速度的速度区间所对应的电机扭矩曲线中的所述第一开度区间的m%,大于具有较低速度的速度区间所对应的电机扭矩曲线中的第一开度区间的m%。
可选地,所述第一曲线部分、第三曲线部分、第五曲线部分的扭矩值,均是以加速踏板开度为自变量的线性函数。
可选地,所述第三曲线部分、第五曲线部分的扭矩值,均是以加速踏板开度为自变量的幂函数,且所述幂函数的指数大于1。
依据本发明实施例的另一个方面,还提供了一种纯电动汽车,包括整车控制器、动力电源、电机、电机控制器、制动踏板、加速踏板,尤其还包括如上所述的纯电动汽车的能量回收控制装置。
本发明实施例的有益效果是:
本发明实施例提供的纯电动汽车的能量回收控制方法,首先通过获取纯电动汽车的加速踏板开度和行驶速度,确定该行驶速度所述的速度区间,然后获取与该速度区间对应的电机扭矩曲线,最后从该电机扭矩曲线中获取与该加速踏板开度相对应的扭矩值,控制电机的输出状态,最终实现在滑行工况下进行能量回收。与现有技术相比,本发明实施例提供的能量回收控制方法可在滑行工况下基于加速踏板开度进行能量回收,克服了现有技术中不能利用加速踏板对滑行能量回收进行控制的缺点,且驾驶人员可依据实际情况以及自身的主观感受控制能量回收的强度,提供给乘客较好的驾驶感受。
附图说明
图1表示本发明实施例一中纯电动汽车的能量回收控制方法的流程图;
图2表示本发明实施例一中第一类电机扭矩曲线的示意图;
图3表示本发明实施例一中第二类电机扭矩曲线的示意图;
图4表示本发明实施例一中纯电动汽车的能量回收控制方法的控制流程图;
图5表示本发明实施例二中纯电动汽车的能量回收控制装置的结构框图之一;
图6表示本发明实施例二中纯电动汽车的能量回收控制装置的结构框图之二。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
实施例一
依据本发明实施例的一个方面,提供了一种纯电动汽车的能量回收控制方法,如图1所示,该方法包括:
步骤S101:判断纯电动汽车是否进入滑行工况;
其中,步骤S101具体包括:获取所述纯电动汽车的档位信号、制动踏板开度、和行驶速度;当所述档位信号为前进档位,且所述制动踏板开度为0,且行驶速度大于0时,则判定所述纯电动汽车进入滑行工况。
步骤S102:当判断结果为是时,获取所述纯电动汽车的行驶速度和加速踏板的第一开度,并确定所述行驶速度所属的第一速度区间,其中,预先将行驶速度划分为多个连续且互不重叠的速度区间;
步骤S103:根据预先设置的速度区间与电机扭矩曲线的对应关系,确定与所述第一速度区间对应的第一电机扭矩曲线,并根据所述加速踏板的第一开度,从所述第一电机扭矩曲线中获取与所述第一开度相对应的扭矩值;
其中,在本发明实施例中,当所述速度区间均为行驶速度大于0的第一类速度区间时,所述第一类速度区间所对应的第一类电机扭矩曲线中包括:对应于加速踏板开度处于第一开度区间的第一曲线部分,对应于加速踏板开度处于第二开度区间的第二曲线部分,以及对应于加速踏板开度处于第三开度区间的第三曲线部分,且第一曲线部分对应的扭矩值小于0,第二曲线部分对应的扭矩值等于0,第三曲线部分对应的扭矩值大于0,所述第一开度区间、第二开度区间和第三开度区间是将加速踏板开度从0%到100%划分得到的3个连续且互不重叠的开度区间;
具体地,第一类车速区间是将纯电动汽车的行驶速度划分为若干区间,其中在每一车速区间内,纯电动汽车的行驶速度均大于0,针对每一个车速区间,第一类电机扭矩曲线是将加速踏板开度由0%~100%进行划分,其中,加速踏板开度与对应的电机扭矩值拟合形成3段曲线。如图2所示,第一类电机扭矩曲线中,加速踏板开度在0%~100%内标定了4个关键开度,0%、m%、n%和100%,在n%~100%开度区间内,电机输出正向扭矩,在m%~n%开度区间内,电机输出0扭矩,在0%~m%开度区间内,电机输出负向扭矩。当电机输出正向扭矩时,驱动车辆加速前进,此时不进行能量回收;当电机输出0扭矩时,车辆自动滑行,此时电机不转动,不进行能量回收;当电机输出负向扭矩时,电机反向转动,进行能量回收。
具体地,每一车速区间、对应的加速踏板开度以及电机扭矩值均根据纯电动汽车可接受的充电功率、电机外特性曲线及驾驶平顺性等实车标定获得,保证3段曲线中的电机目标扭矩处于电机特性要求允许范围内,加速踏板开度值根据曲线与电机扭矩一一对应,实现加速踏板对车速的控制。
其中,在本发明实施例中,当所述速度区间为行驶速度从0递增的第二类速度区间时,所述第二类速度区间所对应的第二类电机扭矩曲线中包括:对应于加速踏板开度处于第四开度区间的第四曲线部分,对应于加速踏板开度处于第五开度区间的第五曲线部分,且第四曲线部分对应的扭矩值等于0,第五曲线部分对应的扭矩值大于0,所述第四开度区间、第五开度区间是将加速踏板的开度从0%到100%划分得到的2个连续且互不重叠的开度区间。
具体地,对应第二类速度区间,加速踏板开度与对应的电机扭矩值拟合形成2段曲线。如图3所示,第二类电机扭矩曲线中,加速踏板开度在0%~100%内标定了3个关键开度,0%、n%和100%,在n%~100%开度区间内,电机输出正向扭矩,在0%~n%开度区间内,电机输出0扭矩。此时,不再设计反拖扭矩,不进行能量回收。
优选地,在本发明实施例中,所述加速踏板开度的第一开度区间的范围为0%~m%,其中,具有较高速度的速度区间所对应的电机扭矩曲线中的所述第一开度区间的m%,大于具有较低速度的速度区间所对应的电机扭矩曲线中的第一开度区间的m%。采用该种设计方法,在车速较高时,将0%~m%区间设计较大,可在纯电动汽车处于滑行工况时充分回收能量。
具体地,如图2、图3所示,在本发明实施例中,所述第一曲线部分、第三曲线部分、第五曲线部分的扭矩值,均是以加速踏板开度为自变量的线性函数。其中,为了提到纯电动汽车的加速性能,还可将第三曲线部分、第五曲线部分设计为三次方曲线,以用来提升初始加速时的加速度。具体地,所述第三曲线部分、第五曲线部分的扭矩值,均是以加速踏板开度为自变量的幂函数,且所述幂函数的指数大于1。
步骤S104:根据所述扭矩值,控制所述纯电动汽车的电机输出状态,进行能量回收。
其中,由上述可知,当行驶速度大于0时,加速踏板开度在0%~n%范围内,纯电动汽车均处于滑行状态。因此,在步骤S104中控制所述纯电动汽车的电机输出状态,进行能量回收时具体包括:判断所述扭矩值是否小于0;判断结果为是时,则控制所述纯电动汽车的电机输出负扭矩反拖,进行能量回收。
具体地,在本发明实施例中,纯电动汽车的能量回收控制方法的控制流程图如图4所示,包括:
步骤S401:判断纯电动汽车是否处于滑行工况,判断结果为是,则进入步骤S402,判断结果为否,则结束该流程;
其中,在判断纯电动汽车是否处于滑行工况时,主要对纯电动汽车的档位信号、制动踏板开度、和行驶速度进行判断,当档位信号为前进档位,且制动踏板开度为0,且行驶速度大于0时,则判定纯电动汽车进入滑行工况。
步骤S402:启动滑行工况加速踏板和电机扭矩控制程序;
步骤S403:获取纯电动汽车的车速信号和加速踏板开度信号;
步骤S404:查询标定的控制曲线,获取电机扭矩值;
步骤S405:整车控制器(VCU)发动扭矩指令给电机控制器(MCU);
步骤S406:MCU控制电机输出扭矩;
步骤S407:实现加速踏板全开度下扭矩控制,加速踏板小开度下的能量回收。
综上所述,本发明的实施例,首先通过设计在加速踏板小开度下能够输出反拖制动扭矩的方法,实现了在纯电动汽车处于高速且加速踏板开度较小的滑行工况时,进行能量回收。其中驾驶员可自由控制能量回收强度,不受限于生产厂家初始标定的回收强度。其次通过设计加速踏板开度与电机扭矩对应的3段式电机扭矩曲线,实现了当电机输出正向扭矩时,驱动车辆加速前进;当电机输出0扭矩时,车辆自动滑行;当电机输出负向扭矩时,电机反向转动,进行能量回收。在满足驾驶员对纯电动汽车自由滑行需求的同时,还避免了电机正负扭矩的瞬时切换带来的车辆行驶不平顺状态。
实施例二
依据本发明实施例的另一个方面,还提供了一种纯电动汽车的的能量回收控制装置500,如图5所示,包括:
判断模块501,用于判断纯电动汽车是否进入滑行工况;
第一获取模块502,用于在判断模块501的判断结果为是时,获取所述纯电动汽车的行驶速度和加速踏板的第一开度,并确定所述行驶速度所属的第一速度区间,其中,预先将行驶速度划分为多个连续且互不重叠的速度区间;
第二获取模块503,用于根据预先设置的速度区间与电机扭矩曲线的对应关系,确定与所述第一速度区间对应的第一电机扭矩曲线,并根据所述加速踏板的第一开度,从所述第一电机扭矩曲线中获取与所述第一开度相对应的扭矩值,其中,当所述速度区间均为行驶速度大于0的第一类速度区间时,所述第一类速度区间所对应的第一类电机扭矩曲线中包括:对应于加速踏板开度处于第一开度区间的第一曲线部分,对应于加速踏板开度处于第二开度区间的第二曲线部分,以及对应于加速踏板开度处于第三开度区间的第三曲线部分,且第一曲线部分对应的扭矩值小于0,第二曲线部分对应的扭矩值等于0,第三曲线部分对应的扭矩值大于0,所述第一开度区间、第二开度区间和第三开度区间是将加速踏板开度从0%到100%划分得到的3个连续且互不重叠的开度区间;
控制模块504,用于根据所述扭矩值,控制所述纯电动汽车的电机输出状态,进行能量回收。
其中,在本发明实施例中,当所述速度区间为行驶速度从0递增的第二类速度区间时,所述第二类速度区间对应的第二类电机扭矩曲线中包括:对应于加速踏板开度处于第四开度区间的第四曲线部分,对应于加速踏板开度处于第五开度区间的第五曲线部分,且第四曲线部分对应的扭矩值等于0,第五曲线部分对应的扭矩值大于0,所述第四开度区间、第五开度区间是将加速踏板的开度从0%到100%划分得到的2个连续且互不重叠的开度区间。
优选地,在本发明实施例中,所述加速踏板开度的第一开度区间的范围为0%~m%,其中,具有较高速度的速度区间所对应的电机扭矩曲线中的所述第一开度区间的m%,大于具有较低速度的速度区间所对应的电机扭矩曲线中的第一开度区间的m%。采用该种设计方法,在车速较高时,将0%~m%区间设计较大,可在纯电动汽车处于滑行工况时充分回收能量。
具体地,如图2、图3所示,在本发明实施例中,所述第一曲线部分、第三曲线部分、第五曲线部分的扭矩值,均是以加速踏板开度为自变量的线性函数。其中,为了提到纯电动汽车的加速性能,还可将第三曲线部分、第五曲线部分设计为三次方曲线,以用来提升初始加速时的加速度。具体地,所述第三曲线部分、第五曲线部分的扭矩值,均是以加速踏板开度为自变量的幂函数,且所述幂函数的指数大于1。
具体地,如图6所示,在本发明实施例中,所述判断模块501具体包括:
获取单元5011,用于获取所述纯电动汽车的档位信号、制动踏板开度、和行驶速度;
判定单元5012,用于当所述档位信号为前进档位,且所述制动踏板开度为0,且所述行驶速度大于0时,则判定所述纯电动汽车进入滑行工况。
具体地,如图6所示,在本发明实施例中,所述控制模块504具体包括:
判断单元5041,用于判断所述扭矩值是否小于0;
控制单元5042,用于当所述判断单元5041的判断结果为是时,则控制所述纯电动汽车的电机输出负扭矩反拖,进行能量回收。
本发明实施例提供的纯电动汽车的能量回收控制装置,通过判断模块501判断纯电动汽车是否进入滑行工况,当判断模块501的判断结果为是时,触发第一获取模块502获取所述纯电动汽车的行驶速度和加速踏板的第一开度,并确定所述行驶速度所属的第一速度区间,进而触发第二获取模块503根据预先设置的速度区间与电机扭矩曲线的对应关系,确定与所述第一速度区间对应的第一电机扭矩曲线,并根据所述加速踏板的第一开度,从所述第一电机扭矩曲线中获取与所述第一开度相对应的扭矩值,最终触发控制模块504根据所述扭矩值,控制所述纯电动汽车的电机输出状态,进行能量回收。
由上述可知,在本发明实施例中,通过设计在加速踏板小开度下能够输出反拖制动扭矩的方法,以及加速踏板开度与电机扭矩对应的3段式电机扭矩曲线,最终实现了在滑行工况下基于加速踏板开度进行能量回收,克服了现有技术中不能利用加速踏板对滑行能量回收进行控制的缺点,且驾驶人员可依据实际情况以及自身的主观感受控制能量回收的强度,提供给乘客较好的驾驶感受。
实施例三
依据本发明实施例的另一个方面,还提供了一种纯电动汽车,包括整车控制器、动力电源、电机、电机控制器、制动踏板、加速踏板,尤其还包括如上所述的纯电动汽车的能量回收控制装置。
本发明实施例中的纯电动汽车,能够在滑行工况时,根据加速踏板开度与电机扭矩对应的3段式电机扭矩曲线,获取电机扭矩值,在实现纯电动汽车处于高速且加速踏板开度较小的滑行工况时,进行能量回收的同时,还满足了驾驶员对纯电动汽车自由滑行需求,避免了电机正负扭矩的瞬时切换带来的车辆行驶不平顺状态。
以上所述的是本发明的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本发明所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本发明的保护范围内。

Claims (15)

1.一种纯电动汽车的能量回收控制方法,其特征在于,包括:
判断纯电动汽车是否进入滑行工况;
当判断结果为是时,获取所述纯电动汽车的行驶速度和加速踏板的第一开度,并确定所述行驶速度所属的第一速度区间,其中,预先将行驶速度划分为多个连续且互不重叠的速度区间;
根据预先设置的速度区间与电机扭矩曲线的对应关系,确定与所述第一速度区间对应的第一电机扭矩曲线,并根据所述加速踏板的第一开度,从所述第一电机扭矩曲线中获取与所述第一开度相对应的扭矩值,其中,当所述速度区间均为行驶速度大于0的第一类速度区间时,所述第一类速度区间所对应的第一类电机扭矩曲线中包括:对应于加速踏板开度处于第一开度区间的第一曲线部分,对应于加速踏板开度处于第二开度区间的第二曲线部分,以及对应于加速踏板开度处于第三开度区间的第三曲线部分,且第一曲线部分对应的扭矩值小于0,第二曲线部分对应的扭矩值等于0,第三曲线部分对应的扭矩值大于0,所述第一开度区间、第二开度区间和第三开度区间是将加速踏板开度从0%到100%划分得到的3个连续且互不重叠的开度区间;
根据所述扭矩值,控制所述纯电动汽车的电机输出状态,进行能量回收。
2.如权利要求1所述的方法,其特征在于,当所述速度区间为行驶速度从0递增的第二类速度区间时,所述第二类速度区间所对应的第二类电机扭矩曲线中包括:对应于加速踏板开度处于第四开度区间的第四曲线部分,对应于加速踏板开度处于第五开度区间的第五曲线部分,且第四曲线部分对应的扭矩值等于0,第五曲线部分对应的扭矩值大于0,所述第四开度区间、第五开度区间是将加速踏板的开度从0%到100%划分得到的2个连续且互不重叠的开度区间。
3.如权利要求1所述的方法,其特征在于,所述判断纯电动汽车是否进入滑行工况的步骤具体包括:
获取所述纯电动汽车的档位信号、制动踏板开度、和行驶速度;
当所述档位信号为前进档位,且所述制动踏板开度为0,且所述行驶速度大于0时,则判定所述纯电动汽车进入滑行工况。
4.如权利要求1所述的方法,其特征在于,所述根据所述扭矩值,控制所述纯电动汽车的电机输出状态,进行能量回收的步骤包括:
判断所述扭矩值是否小于0;
判断结果为是时,则控制所述纯电动汽车的电机输出负扭矩反拖,进行能量回收。
5.如权利要求1所述的方法,其特征在于,
所述加速踏板开度的第一开度区间的范围为0%~m%,其中,具有较高速度的速度区间所对应的电机扭矩曲线中的所述第一开度区间的m%,大于具有较低速度的速度区间所对应的电机扭矩曲线中的第一开度区间的m%。
6.如权利要求2所述的方法,其特征在于,
所述第一曲线部分、第三曲线部分、第五曲线部分的扭矩值,均是以加速踏板开度为自变量的线性函数。
7.如权利要求2所述的方法,其特征在于,
所述第三曲线部分、第五曲线部分的扭矩值,均是以加速踏板开度为自变量的幂函数,且所述幂函数的指数大于1。
8.一种纯电动汽车的能量回收控制装置,其特征在于,包括:
判断模块,用于判断纯电动汽车是否进入滑行工况;
第一获取模块,用于在判断模块的判断结果为是时,获取所述纯电动汽车的行驶速度和加速踏板的第一开度,并确定所述行驶速度所属的第一速度区间,其中,预先将行驶速度划分为多个连续且互不重叠的速度区间;
第二获取模块,用于根据预先设置的速度区间与电机扭矩曲线的对应关系,确定与所述第一速度区间对应的第一电机扭矩曲线,并根据所述加速踏板的第一开度,从所述第一电机扭矩曲线中获取与所述第一开度相对应的扭矩值,其中,当所述速度区间均为行驶速度大于0的第一类速度区间时,所述第一类速度区间所对应的第一类电机扭矩曲线中包括:对应于加速踏板开度处于第一开度区间的第一曲线部分,对应于加速踏板开度处于第二开度区间的第二曲线部分,以及对应于加速踏板开度处于第三开度区间的第三曲线部分,且第一曲线部分对应的扭矩值小于0,第二曲线部分对应的扭矩值等于0,第三曲线部分对应的扭矩值大于0,所述第一开度区间、第二开度区间和第三开度区间是将加速踏板开度从0%到100%划分得到的3个连续且互不重叠的开度区间;
控制模块,用于根据所述扭矩值,控制所述纯电动汽车的电机输出状态,进行能量回收。
9.如权利要求8所述的装置,其特征在于,当所述速度区间为行驶速度从0递增的第二类速度区间时,所述第二类速度区间所对应的第二类电机扭矩曲线中包括:对应于加速踏板开度处于第四开度区间的第四曲线部分,对应于加速踏板开度处于第五开度区间的第五曲线部分,且第四曲线部分对应的扭矩值等于0,第五曲线部分对应的扭矩值大于0,所述第四开度区间、第五开度区间是将加速踏板的开度从0%到100%划分得到的2个连续且互不重叠的开度区间。
10.如权利要求8所述的装置,其特征在于,所述判断模块具体包括:
获取单元,用于获取所述纯电动汽车的档位信号、制动踏板开度、和行驶速度;
判定单元,用于当所述档位信号为前进档位,且所述制动踏板开度为0,且所述行驶速度大于0时,则判定所述纯电动汽车进入滑行工况。
11.如权利要求8所述的装置,其特征在于,所述控制模块具体包括:
判断单元,用于判断所述扭矩值是否小于0;
控制单元,用于当所述判断单元的判断结果为是时,则控制所述纯电动汽车的电机输出负扭矩反拖,进行能量回收。
12.如权利要求8所述的装置,其特征在于,
所述加速踏板开度的第一开度区间的范围为0%~m%,其中,具有较高速度的速度区间所对应的电机扭矩曲线中的所述第一开度区间的m%,大于具有较低速度的速度区间所对应的电机扭矩曲线中的第一开度区间的m%。
13.如权利要求9所述的装置,其特征在于,
所述第一曲线部分、第三曲线部分、第五曲线部分的扭矩值,均是以加速踏板开度为自变量的线性函数。
14.如权利要求9所述的装置,其特征在于,
所述第三曲线部分、第五曲线部分的扭矩值,均是以加速踏板开度为自变量的幂函数,且所述幂函数的指数大于1。
15.一种纯电动汽车,包括整车控制器、动力电源、电机、电机控制器、制动踏板、加速踏板,其特征在于,还包括如权利要求8~14任一项所述纯电动汽车的能量回收控制装置。
CN201610968637.9A 2016-10-27 2016-10-27 一种纯电动汽车的能量回收控制方法、装置及纯电动汽车 Active CN106347138B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610968637.9A CN106347138B (zh) 2016-10-27 2016-10-27 一种纯电动汽车的能量回收控制方法、装置及纯电动汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610968637.9A CN106347138B (zh) 2016-10-27 2016-10-27 一种纯电动汽车的能量回收控制方法、装置及纯电动汽车

Publications (2)

Publication Number Publication Date
CN106347138A true CN106347138A (zh) 2017-01-25
CN106347138B CN106347138B (zh) 2018-09-14

Family

ID=57864487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610968637.9A Active CN106347138B (zh) 2016-10-27 2016-10-27 一种纯电动汽车的能量回收控制方法、装置及纯电动汽车

Country Status (1)

Country Link
CN (1) CN106347138B (zh)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106926710A (zh) * 2017-04-21 2017-07-07 阿尔特汽车技术股份有限公司 电动汽车的再生制动能量回收系统和控制方法
CN107199893A (zh) * 2017-05-27 2017-09-26 北京新能源汽车股份有限公司 能量回收方法及装置
CN107323272A (zh) * 2017-06-27 2017-11-07 奇瑞汽车股份有限公司 电动汽车能量回收方法及装置
CN107458267A (zh) * 2017-07-25 2017-12-12 北京新能源汽车股份有限公司 一种扭矩标定方法、装置及设备
CN107962981A (zh) * 2017-11-29 2018-04-27 安徽江淮汽车集团股份有限公司 一种电动汽车打滑工况主动降扭策略
CN108045267A (zh) * 2017-11-26 2018-05-18 安徽星凯龙客车有限公司 一种纯电动汽车加速控制方法和系统
CN108045268A (zh) * 2017-12-12 2018-05-18 安徽江淮汽车集团股份有限公司 纯电动汽车能量回收方法及系统
WO2018176728A1 (zh) * 2017-04-01 2018-10-04 苏州汇川联合动力系统有限公司 一种同步电机能量回馈保护方法以及系统
CN108725213A (zh) * 2018-07-23 2018-11-02 北京车和家信息技术有限公司 能量回馈的控制方法及装置
CN108790839A (zh) * 2018-06-20 2018-11-13 海马新能源汽车有限公司 能量回收控制方法和能量回收控制装置
CN109591605A (zh) * 2018-12-27 2019-04-09 浙江合众新能源汽车有限公司 一种纯电动汽车并联式制动能量回收控制方法及系统
CN109849933A (zh) * 2017-11-30 2019-06-07 长城汽车股份有限公司 确定驾驶员需求扭矩的方法、装置、车辆及可读存储介质
CN109849679A (zh) * 2019-03-28 2019-06-07 潍柴动力股份有限公司 一种制动能量回收方法及装置
CN109895637A (zh) * 2019-03-26 2019-06-18 奇瑞新能源汽车技术有限公司 一种提升电动汽车续航能力的控制方法
CN110126628A (zh) * 2019-04-30 2019-08-16 奇瑞汽车股份有限公司 电动汽车电机的控制方法及控制装置
CN110303894A (zh) * 2019-07-25 2019-10-08 爱驰汽车有限公司 空挡滑行能量回收方法、系统、设备及介质
CN110395117A (zh) * 2019-08-09 2019-11-01 厦门金龙联合汽车工业有限公司 抑制电动客车驱动系统振动的制动能量回收控制方法
CN110422050A (zh) * 2019-04-30 2019-11-08 武汉理工大学 一种电动汽车滑行制动能量回收方法
CN110481331A (zh) * 2019-09-19 2019-11-22 江西精骏电控技术有限公司 一种电动汽车滑行能量回收方法
CN110667398A (zh) * 2018-12-29 2020-01-10 长城汽车股份有限公司 电动车辆的驱动控制方法及系统
CN110758116A (zh) * 2019-11-04 2020-02-07 姚福来 电动车辆节能寻优切换点确定方法和运行方法
CN110877529A (zh) * 2019-10-23 2020-03-13 河南速达电动汽车科技有限公司 一种纯电动汽车及其能量回收控制方法、控制系统
CN111038270A (zh) * 2019-12-30 2020-04-21 华人运通(江苏)技术有限公司 一种车辆的能量回馈控制方法、装置、汽车及存储介质
CN111546903A (zh) * 2020-04-26 2020-08-18 中国第一汽车股份有限公司 滑行扭矩的确定方法、装置、设备及存储介质
CN111661056A (zh) * 2019-12-11 2020-09-15 摩登汽车有限公司 滑行回收能量扭矩的计算方法和系统
CN111959285A (zh) * 2020-08-10 2020-11-20 安徽江淮汽车集团股份有限公司 电动汽车能量回收方法、设备、存储介质及装置
CN112208356A (zh) * 2020-10-16 2021-01-12 安徽江淮汽车集团股份有限公司 扭矩控制方法、设备、存储介质及装置
CN112896408A (zh) * 2021-02-03 2021-06-04 五羊—本田摩托(广州)有限公司 电动摩托车骑行方法、系统、电子设备及存储介质
CN112959894A (zh) * 2021-03-10 2021-06-15 浙江吉利控股集团有限公司 一种车辆节能控制方法、装置、存储介质及计算机设备
CN113291161A (zh) * 2021-05-21 2021-08-24 上海智蕙林医疗科技有限公司 一种agv小车及自动阻止滑行的方法
CN113547926A (zh) * 2020-04-24 2021-10-26 北京新能源汽车股份有限公司 一种车辆控制方法、装置、车辆及设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104228591A (zh) * 2014-10-10 2014-12-24 北京现代汽车有限公司 一种再生制动能量回收控制方法及装置
CN104417557A (zh) * 2013-09-09 2015-03-18 比亚迪股份有限公司 一种车辆的滑行回馈控制系统及其控制方法
CN104494599A (zh) * 2014-01-30 2015-04-08 比亚迪股份有限公司 车辆及其的滑行回馈控制方法
CN104691341A (zh) * 2015-01-12 2015-06-10 阳光电源股份有限公司 一种电动汽车滑行时能量回收的方法、设备及电动汽车
CN105437962A (zh) * 2014-09-26 2016-03-30 比亚迪股份有限公司 混合动力汽车及其能量回馈控制方法和动力传动系统
CN205149552U (zh) * 2015-12-10 2016-04-13 山东安驰新能源科技有限公司 一种电动汽车能量回收控制系统
JP2016141216A (ja) * 2015-01-30 2016-08-08 ダイハツ工業株式会社 車両用制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104417557A (zh) * 2013-09-09 2015-03-18 比亚迪股份有限公司 一种车辆的滑行回馈控制系统及其控制方法
CN104494599A (zh) * 2014-01-30 2015-04-08 比亚迪股份有限公司 车辆及其的滑行回馈控制方法
CN105437962A (zh) * 2014-09-26 2016-03-30 比亚迪股份有限公司 混合动力汽车及其能量回馈控制方法和动力传动系统
CN104228591A (zh) * 2014-10-10 2014-12-24 北京现代汽车有限公司 一种再生制动能量回收控制方法及装置
CN104691341A (zh) * 2015-01-12 2015-06-10 阳光电源股份有限公司 一种电动汽车滑行时能量回收的方法、设备及电动汽车
JP2016141216A (ja) * 2015-01-30 2016-08-08 ダイハツ工業株式会社 車両用制御装置
CN205149552U (zh) * 2015-12-10 2016-04-13 山东安驰新能源科技有限公司 一种电动汽车能量回收控制系统

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018176728A1 (zh) * 2017-04-01 2018-10-04 苏州汇川联合动力系统有限公司 一种同步电机能量回馈保护方法以及系统
CN106926710A (zh) * 2017-04-21 2017-07-07 阿尔特汽车技术股份有限公司 电动汽车的再生制动能量回收系统和控制方法
CN107199893A (zh) * 2017-05-27 2017-09-26 北京新能源汽车股份有限公司 能量回收方法及装置
CN107199893B (zh) * 2017-05-27 2019-09-03 北京新能源汽车股份有限公司 能量回收方法及装置
CN107323272A (zh) * 2017-06-27 2017-11-07 奇瑞汽车股份有限公司 电动汽车能量回收方法及装置
CN107323272B (zh) * 2017-06-27 2020-02-21 奇瑞新能源汽车技术有限公司 电动汽车能量回收方法及装置
CN107458267A (zh) * 2017-07-25 2017-12-12 北京新能源汽车股份有限公司 一种扭矩标定方法、装置及设备
CN107458267B (zh) * 2017-07-25 2019-07-09 北京新能源汽车股份有限公司 一种扭矩标定方法、装置及设备
CN108045267A (zh) * 2017-11-26 2018-05-18 安徽星凯龙客车有限公司 一种纯电动汽车加速控制方法和系统
CN107962981A (zh) * 2017-11-29 2018-04-27 安徽江淮汽车集团股份有限公司 一种电动汽车打滑工况主动降扭策略
CN109849933B (zh) * 2017-11-30 2020-08-21 长城汽车股份有限公司 确定驾驶员需求扭矩的方法、装置、车辆及可读存储介质
CN109849933A (zh) * 2017-11-30 2019-06-07 长城汽车股份有限公司 确定驾驶员需求扭矩的方法、装置、车辆及可读存储介质
CN108045268A (zh) * 2017-12-12 2018-05-18 安徽江淮汽车集团股份有限公司 纯电动汽车能量回收方法及系统
CN108790839A (zh) * 2018-06-20 2018-11-13 海马新能源汽车有限公司 能量回收控制方法和能量回收控制装置
CN108725213A (zh) * 2018-07-23 2018-11-02 北京车和家信息技术有限公司 能量回馈的控制方法及装置
CN109591605A (zh) * 2018-12-27 2019-04-09 浙江合众新能源汽车有限公司 一种纯电动汽车并联式制动能量回收控制方法及系统
EP3904145A4 (en) * 2018-12-29 2022-03-09 Great Wall Motor Company Limited METHOD AND SYSTEM FOR CONTROLLING AN ELECTRIC VEHICLE
CN110667398A (zh) * 2018-12-29 2020-01-10 长城汽车股份有限公司 电动车辆的驱动控制方法及系统
CN109895637A (zh) * 2019-03-26 2019-06-18 奇瑞新能源汽车技术有限公司 一种提升电动汽车续航能力的控制方法
CN109849679A (zh) * 2019-03-28 2019-06-07 潍柴动力股份有限公司 一种制动能量回收方法及装置
CN109849679B (zh) * 2019-03-28 2020-09-29 潍柴动力股份有限公司 一种制动能量回收方法及装置
CN110422050A (zh) * 2019-04-30 2019-11-08 武汉理工大学 一种电动汽车滑行制动能量回收方法
CN110126628A (zh) * 2019-04-30 2019-08-16 奇瑞汽车股份有限公司 电动汽车电机的控制方法及控制装置
CN110126628B (zh) * 2019-04-30 2021-11-02 奇瑞汽车股份有限公司 电动汽车电机的控制方法及控制装置
CN110303894A (zh) * 2019-07-25 2019-10-08 爱驰汽车有限公司 空挡滑行能量回收方法、系统、设备及介质
CN110395117A (zh) * 2019-08-09 2019-11-01 厦门金龙联合汽车工业有限公司 抑制电动客车驱动系统振动的制动能量回收控制方法
CN110395117B (zh) * 2019-08-09 2020-12-11 厦门金龙联合汽车工业有限公司 抑制电动客车驱动系统振动的制动能量回收控制方法
CN110481331A (zh) * 2019-09-19 2019-11-22 江西精骏电控技术有限公司 一种电动汽车滑行能量回收方法
CN110877529A (zh) * 2019-10-23 2020-03-13 河南速达电动汽车科技有限公司 一种纯电动汽车及其能量回收控制方法、控制系统
CN110758116A (zh) * 2019-11-04 2020-02-07 姚福来 电动车辆节能寻优切换点确定方法和运行方法
CN111661056A (zh) * 2019-12-11 2020-09-15 摩登汽车有限公司 滑行回收能量扭矩的计算方法和系统
CN111038270A (zh) * 2019-12-30 2020-04-21 华人运通(江苏)技术有限公司 一种车辆的能量回馈控制方法、装置、汽车及存储介质
CN113547926A (zh) * 2020-04-24 2021-10-26 北京新能源汽车股份有限公司 一种车辆控制方法、装置、车辆及设备
CN113547926B (zh) * 2020-04-24 2024-04-30 北京新能源汽车股份有限公司 一种车辆控制方法、装置、车辆及设备
CN111546903A (zh) * 2020-04-26 2020-08-18 中国第一汽车股份有限公司 滑行扭矩的确定方法、装置、设备及存储介质
CN111959285A (zh) * 2020-08-10 2020-11-20 安徽江淮汽车集团股份有限公司 电动汽车能量回收方法、设备、存储介质及装置
CN112208356A (zh) * 2020-10-16 2021-01-12 安徽江淮汽车集团股份有限公司 扭矩控制方法、设备、存储介质及装置
CN112896408A (zh) * 2021-02-03 2021-06-04 五羊—本田摩托(广州)有限公司 电动摩托车骑行方法、系统、电子设备及存储介质
CN112959894A (zh) * 2021-03-10 2021-06-15 浙江吉利控股集团有限公司 一种车辆节能控制方法、装置、存储介质及计算机设备
CN112959894B (zh) * 2021-03-10 2022-07-15 浙江吉利控股集团有限公司 一种车辆节能控制方法、装置、存储介质及计算机设备
CN113291161A (zh) * 2021-05-21 2021-08-24 上海智蕙林医疗科技有限公司 一种agv小车及自动阻止滑行的方法
CN113291161B (zh) * 2021-05-21 2024-01-26 上海智蕙林医疗科技有限公司 一种agv小车及自动阻止滑行的方法

Also Published As

Publication number Publication date
CN106347138B (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
CN106347138A (zh) 一种纯电动汽车的能量回收控制方法、装置及纯电动汽车
CN105644560B (zh) 一种四轮轮毂电机电动车自适应巡航控制系统及方法
CN106364369A (zh) 纯电动汽车工作模式的切换控制方法及装置
CN104627180B (zh) 一种半主动巡航控制系统及其方法
CN101559772B (zh) 一种混合动力汽车的下坡辅助控制方法
CN102490722B (zh) 一种汽车滑行能量回收方法及系统
CN103171557B (zh) 一种混合动力汽车发动机辅助制动接入控制方法
US20090051304A1 (en) Vehicle, control method thereof and braking device
CN104553886A (zh) 一种电动汽车自动驻车控制方法及装置
CN108340787A (zh) 一种单加速踏板制动控制方法和车辆
CN104176058A (zh) 一种基于多信息融合的纯电动汽车驱动工况识别方法
CN108045268A (zh) 纯电动汽车能量回收方法及系统
CN104175891B (zh) 纯电动汽车能量回收再生制动控制方法
CN106904078A (zh) 车辆的控制方法、控制系统及车辆
EP2750941A1 (de) Verfahren zur steuerung einer verzögerungsanordnung eines kraftfahrzeugs
CN206749792U (zh) 一种纯电动汽车行驶工况判别装置
CN109532513A (zh) 一种双轴驱动电动汽车最优驱动转矩分配策略生成方法
CN101522493A (zh) 制动/驱动力控制装置
CN106926710A (zh) 电动汽车的再生制动能量回收系统和控制方法
CN106240336A (zh) 一种插电式双电机四驱混合动力系统及控制方法
CN111038280B (zh) 电动汽车换挡扭矩控制方法
CN106394548A (zh) 一种插电式四驱混合动力汽车分层协调能效控制方法
CN110348063A (zh) 一种混合动力汽车控制策略的联合仿真方法
CN107097789A (zh) 一种纯电动汽车行驶工况判别系统
CN105946856B (zh) 一种纯电驱动汽车自适应滑行控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant