CN106316377A - 一种均质熔融石英陶瓷的制备方法 - Google Patents
一种均质熔融石英陶瓷的制备方法 Download PDFInfo
- Publication number
- CN106316377A CN106316377A CN201610726840.5A CN201610726840A CN106316377A CN 106316377 A CN106316377 A CN 106316377A CN 201610726840 A CN201610726840 A CN 201610726840A CN 106316377 A CN106316377 A CN 106316377A
- Authority
- CN
- China
- Prior art keywords
- powder
- preparation
- slip
- vitreous silica
- fused quartz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/14—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63416—Polyvinylalcohols [PVA]; Polyvinylacetates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3873—Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/48—Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6023—Gel casting
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种均质熔融石英陶瓷的制备方法,包括步骤A、将高纯熔融石英粉料进行混合;将石英粉料加入去离子水以及聚乙烯醇、乳酸、碳酸氢三钠制成料浆;B、将40wt%丙烯酰胺水溶液与N,N‑亚甲基双丙烯酰胺进行混合制得预混液;C、将步骤A中的料浆、烧结助剂、步骤B中的预混液进行混合,分散后加入引发剂得到成型料浆;D、将步骤C中制得的成型料浆注入动态注凝成型装置的模具中,振动后进行固化,冷却后打开模具即得所需陶瓷生坯;E、将步骤D中的生坯在高温炉中烧制成型,即制成所需熔融石英陶瓷。
Description
技术领域
本发明属于陶瓷材料领域,具体涉及一种均质熔融石英陶瓷的制备方法。
背景技术
石英陶瓷是指以石英玻璃或者熔融石英为原料,仅破碎、成型、烧成等一系列陶瓷制作工艺制得的制品,又称为熔融石英陶瓷、石英玻璃陶瓷。熔融石英陶瓷由于拥有优异的热震稳定性、低的热导率和低的热膨胀系数等一系列优良性能,在冶金、玻璃、化工、航天等多个领域得到越来越广泛的应用。熔融石英陶瓷主要具有以下优点:
1)热膨胀系数小。纯的熔融石英陶瓷热膨胀系数(室温条件下)仅为0.54×10-6/℃,与石英玻璃的热膨胀系数相同,具有良好的体积稳定性。因此熔融石英陶瓷具有良好的热震稳定性,可多次用于冷热交换的环境中。
2)熔融石英陶瓷具有良好的化学稳定性,除了氢氟酸以及300℃以上的热浓磷酸对其有侵蚀外,其他的酸碱液对石英陶瓷几乎没有作用。
3)熔融石英陶瓷具有稳定的热导率,随着温度的变化其热导率几乎不变。
4)熔融石英陶瓷的弯曲强度随着温度的升高而增加。
5)熔融石英陶瓷坯体在干燥烧成时收缩率非常小。
除上述优点以外,熔融石英陶瓷还具有良好的的电性能、核性能以及相转变性能等优点。熔融石英陶瓷虽然具有上述优良的特性,但是与其他结构陶瓷相比,其强度和致密性明显偏低,尤其是在加工制备工程中容易产生料浆不均匀和析晶的问题,从而导致陶瓷制品为非均质陶瓷,降低陶瓷制品的品质。
发明内容
传统石英陶瓷的生产过程中,普遍采用的成型工艺是注浆成型法,其次还有离心浇注成型、浇灌成型、蜡注成型、半干法成型、等静压成型等方法。上述这些方法中普遍存在显微结构不均匀、材料可靠性差、制品致密度低、强度低的缺点,而且效率低下、难以适应大批量工业化生产的需要。
本发明中考虑到传统成型工艺远不能满足各领域对熔融石英陶瓷的要求,采用注凝成型技术,将陶瓷粉末颗粒分散于含有有机聚合物和交联剂的熔液中,形成低粘度、高固相体积含量的浓悬浮体(即料浆),然后加入引发剂,将这种料浆注入模型中,在一定的温度条件下,有机聚合物交联形成三维网络状聚合物凝胶,并将陶瓷颗粒原位粘结固化形成坯体。该方法大大提高了陶瓷之间显微结构的均匀性,增加了陶瓷材料的可靠性。
本发明所要解决的技术问题通过以下步骤予以实现:
本发明中提供的一种均质熔融石英陶瓷的制备方法,包括如下步骤:
A、将高纯熔融石英粉料进行混合,其中熔融石英粉料的粒度分布及所占质量分数为:8-15μm,2-5wt%;15-45μm,6-8wt%;45-58μm,10-20wt%;58-114μm,35-39wt%;114-160μm,18-25 wt %;160-175μm,8-15 wt %;将上述高纯熔融石英粉料加入去离子水以及占粉料质量为0.25-0.4%的聚乙烯醇、0.55-0.62%的乳酸、0.1-0.2%碳酸氢三钠制成固含量为75-80vol%的料浆;
B、将40wt%丙烯酰胺水溶液与N,N-亚甲基双丙烯酰胺以质量比28-36:1进行混合,搅拌溶解制得预混液;
C、将步骤A中的料浆、烧结助剂、步骤B中的预混液以质量比为40-50:1:5-8进行混合,以700-900r/min转速下分散30-60min,然后加入占预混液质量2-4%的过硫酸铵,搅拌均匀后得到成型料浆;
D、将步骤C中制得的成型料浆注入动态注凝成型装置的模具中,振动30-40min,将坯体与模具一起放置于烘箱中进行固化,固化温度为80-85℃,固化时间为3-4h,冷却后打开模具即得所需陶瓷生坯;
E、将步骤D中的生坯在高温炉中以1175-1200℃温度烧制成型,保温时间为2-3h,即制成所需熔融石英陶瓷。
进一步优选原料,步骤A中的熔融石英粉料的纯度大于99.99wt%。
熔融石英粉料的选择直接关系着料浆的质量,料浆的性能则取决于液相和固相的性能以及液固两相的相互作用。熔融石英粉料的粒径分布很大一部分程度上决定了料浆中固相颗粒的状态,粉料颗粒的分散性则很大程度上取决于颗粒表面化学组成及吸附状态。制备料浆的主要目的是制备出组分均匀分布、稳定性好且流动性好的能够满足成形及坯体性能要求的料浆。
当熔融石英粉体颗粒的粒径小于20μm时,粉体颗粒会与水作用形成溶胶,适量溶胶的存在能够增加料浆的塑性,而过量的溶胶存在则会使料浆的粘度变大,触变性变强,加大浇注步骤中的难度;而当熔融石英粉体颗粒的粒径大于45μm时,粉体颗粒容易与水结合形成带有结合水的SiO2颗粒,降低料浆中自由水的比重。故本发明中,将熔融石英粉料粒度分为6个不同的范围,控制每个范围所占的质量百分数,即控制了料浆中形成的溶胶的量和料浆固体颗粒之间的作用及分布。聚乙烯醇和乳酸的加入可以使SiO2粉体颗粒的表面张力降低,润湿性提高,从而改善料浆的流动性。酒石酸可吸附于SiO2粉体颗粒表面,减弱体系内离子之间的吸引力,提升排斥力位能,使高固相料浆中含有足够的自由水,从而保持料浆具有良好的流动性。聚乙烯醇、乳酸、碳酸氢三钠作为分散剂和pH调节剂配合使用,控制其添加量能够有效改善SiO2粉体颗粒表面的润湿性,提升料浆的稳定性。
再进一步地,步骤A中的熔融石英粉料中还可添加占其质量百分比为0.45-0.85%的Si3N4粉体,所述加入的Si3N4粉体粒径为45-85μm。熔融石英粉体中加入Si3N4粉体可提升整体石英陶瓷的强度,在实际应用过程中发现,采用添加占SiO2粉体颗粒质量百分比为0.45-0.85%的45-85μm的Si3N4粉体最佳。
再进一步地,步骤A中的熔融石英粉料中还可添加占其质量百分比为0.40-0.70%的二氧化硅气凝胶粉体。所述二氧化硅气凝胶比表面积为420-480m2/g,密度为68kg/m3。二氧化硅气凝胶具有大的比表面积和高的孔隙率,在料浆中具有良好的分散性和悬浮性,能够有效调节料浆的黏度和触变性能,适量添加可促进料浆均匀分散和增强其流动性。
本发明中采用的注凝成型技术中选择使用丙烯酰胺及N,N-亚甲基双丙烯酰胺的预混液作为液体介质,采用过硫酸铵作为引发剂,在成型的过程中利用丙烯酰胺的聚合反应完成料浆的固化。丙烯酰胺的聚合反应过程为:首先引发剂分解,形成初级自由基,初级自由基与单体加成,生成单体自由基,单体自由基不断与单体分子结合,形成链自由基,上述反应不断进行,生成聚丙烯酰胺长链聚合物,最终完成单体的聚合反应。料浆通过丙烯酰胺的聚合反应完成固化成型,成型的坯体以聚丙烯酰胺的网络结构为骨架,石英粉料颗粒与聚合物凝胶通过吸附作用形成具有一定强度和韧性的坯体。
进一步优选,步骤B中40wt%丙烯酰胺水溶液与N,N-亚甲基双丙烯酰胺的质量比为30:1。
进一步地,步骤C中的烧结助剂为氧化铝粉体、氧化锆粉体、碳化锆粉体、氮化硼粉体中的一种。所述烧结助剂粉体粒度为20-30μm。
进一步地,步骤E中烧制成型步骤具体为:以3-5℃/min由室温升至900℃,保温10min后,再以6-8℃/min升至1175-1200℃,保温后随炉冷却。
熔融石英陶瓷受到方石英析晶的影响,烧制成型的温度不宜超过1300℃,本发明中的熔融石英陶瓷烧结在900℃时开始,然后通过快速升温至所需烧结温度,可在最大程度上控制烧制成型的收缩率。添加适量的烧结助剂有助于进一步提高注凝成型制品的烧结程度和致密程度。
本发明具有如下有益效果:
1、本发明中采用注凝成型技术,将熔融石英陶瓷粉末颗粒均匀分散于含有有机聚合物和交联剂的溶液中,形成低粘度、高固相体积含量的料浆,然后加入引发剂,在模型中设定合适的温度,有机聚合物交联形成三维网络状聚合物凝胶,并将陶瓷颗粒原位粘结固化形成坯体。该方法大大提高了陶瓷之间显微结构的均匀性,增加了陶瓷材料的可靠性。
2、本发明中提供的制备方法制备出的熔融石英陶瓷制品表面状态外观效果好、强度好,能够作为工业陶瓷使用。
3、本发明中提供的熔融石英陶瓷的制备方法工艺简单易行,无需额外的加工设备,可进行大规模工业化生产。
具体实施方式
下面通过实施例对本发明的内容进行进一步的描述。
实施例1
1、熔融石英成型料浆的制备
实施例中原料采用纯度大于99.99wt%的熔融石英粉料。
将高纯熔融石英粉料按照以下粒度分布及所占质量百分数进行混合:8-15μm,4wt%;15-45μm,8wt%;45-58μm,16wt%;58-114μm,35wt%;114-160μm,22 wt %;160-175μm,15wt %;将上述高纯熔融石英粉料加入去离子水以及占粉料质量为0.35%的聚乙烯醇、0.58%的乳酸、0.18%碳酸氢三钠制成固含量为80vol%的料浆。
将40wt%丙烯酰胺水溶液与N,N-亚甲基双丙烯酰胺以质量比30:1进行混合,搅拌溶解制得预混液。
将上述制得的料浆、氧化铝粉、预混液以质量比48:1:8进行混合,在900r/min转速下分散60min,然后加入占预混液质量4%的过硫酸铵,搅拌均匀后得到成型料浆。其中氧化铝粉粉体粒度为22μm。
2、生坯及烧成
将成型料浆注入动态注凝成型装置的模具中,振动40min,将坯体与模具一起放置于烘箱中进行固化,固化温度为85℃,固化时间为4h,冷却后打开模具即得所需陶瓷生坯。
将生坯在高温炉中以1180℃条件下烧制成型,保温3h,随炉冷却后得到所需熔融石英陶瓷。烧制成型步骤具体为:以3℃/min由室温升至900℃,保温10min后,再以8℃/min升至1180℃,保温后随炉冷却。
实施例2
本实施例中工艺条件及原料与实施例1保持一致,不同点在于:在熔融石英粉料中添加占其质量百分为为0.80%的Si3N4粉体,且Si3N4粉体粒径为50μm。
实施例3
本实施例中工艺条件及原料与实施例1保持一致,不同点在于:在熔融石英粉料中添加占其质量百分为为0.65%的二氧化硅气凝胶微粉,二氧化硅气凝胶比表面积为480m2/g,密度为68kg/m3。
实施例4
本实施例中工艺条件及原料与实施例1保持一致,不同点在于:烧结助剂采用粒度为20μm的氧化锆粉体。
实施例5
本实施例中工艺条件及原料与实施例1保持一致,不同点在于:烧结助剂采用粒度为25μm的碳化锆粉体。
实施例6
本实施例中工艺条件及原料与实施例1保持一致,不同点在于:烧结助剂采用粒度为25μm的氮化硼粉体。
实施例1-6中所制得的熔融石英陶瓷制品表面光滑平整无任何表面凸起(一般为由析晶引起的缺陷)、微观相均匀、致密度高。实施例2中的熔融石英陶瓷制品强度最佳,实施例3中的熔融石英陶瓷制品均匀度和致密度最佳,实施例4-6中的熔融石英陶瓷制品与实施例1中制得的熔融石英陶瓷制品无显著区别。
最后需要说明的是,以上实施例仅用以说明本发明实施例的技术方案而非对其进行限制,尽管参照较佳实施例对本发明实施例进行了详细的说明,本领域的普通技术人员应当理解依然可以对本发明实施例的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明实施例技术方案的范围。
Claims (10)
1.一种均质熔融石英陶瓷的制备方法,其特征在于包括如下步骤:
A、将高纯熔融石英粉料进行混合,其中熔融石英粉料的粒度分布及所占质量分数为:8-15μm,2-5wt%;15-45μm,6-8wt%;45-58μm,10-20wt%;58-114μm,35-39wt%;114-160μm,18-25 wt %;160-175μm,8-15 wt %;将上述高纯熔融石英粉料加入去离子水以及占粉料质量为0.25-0.4%的聚乙烯醇、0.55-0.62%的乳酸、0.1-0.2%碳酸氢三钠制成固含量为75-80vol%的料浆;
B、将40wt%丙烯酰胺水溶液与N,N-亚甲基双丙烯酰胺以质量比28-36:1进行混合,搅拌溶解制得预混液;
C、将步骤A中的料浆、烧结助剂、步骤B中的预混液以质量比为40-50:1:5-8进行混合,以700-900r/min转速下分散30-60min,然后加入占预混液质量2-4%的过硫酸铵,搅拌均匀后得到成型料浆;
D、将步骤C中制得的成型料浆注入动态注凝成型装置的模具中,振动30-40min,将坯体与模具一起放置于烘箱中进行固化,固化温度为80-85℃,固化时间为3-4h,冷却后打开模具即得所需陶瓷生坯;
E、将步骤D中的生坯在高温炉中以1175-1200℃温度烧制成型,保温时间为2-3h,即制成所需熔融石英陶瓷。
2.如权利要求1所述的制备方法,其特征在于:步骤A中的熔融石英粉料的纯度大于99.99wt%。
3.如权利要求1所述的制备方法,其特征在于:步骤A中的熔融石英粉料中还可添加占其质量百分比为0.45-0.85%的Si3N4粉体。
4.如权利要求1所述的制备方法,其特征在于:所述加入的Si3N4粉体粒径为45-85μm。
5.如权利要求1所述的制备方法,其特征在于:步骤A中的熔融石英粉料中还可添加占其质量百分比为0.45-0.70%的二氧化硅气凝胶粉体。
6.如权利要求5所述的制备方法,其特征在于:所述二氧化硅气凝胶比表面积为420-480m2/g,密度为68kg/m3。
7.如权利要求1所述的制备方法,其特征在于:步骤B中40wt%丙烯酰胺水溶液与N,N-亚甲基双丙烯酰胺的质量比为30:1。
8.如权利要求1所述的制备方法,其特征在于:步骤C中的烧结助剂为氧化铝粉体、氧化锆粉体、碳化锆粉体、氮化硼粉体中的一种。
9.如权利要求8所述的制备方法,其特征在于:所述烧结助剂粉体粒度为20-30μm。
10.如权利要求1所述的制备方法,其特征在于:步骤E中烧制成型步骤具体为:以3-5℃/min由室温升至900℃,保温10min后,再以6-8℃/min升至1175-1200℃,保温后随炉冷却。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610726840.5A CN106316377A (zh) | 2016-08-26 | 2016-08-26 | 一种均质熔融石英陶瓷的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610726840.5A CN106316377A (zh) | 2016-08-26 | 2016-08-26 | 一种均质熔融石英陶瓷的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106316377A true CN106316377A (zh) | 2017-01-11 |
Family
ID=57790958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610726840.5A Pending CN106316377A (zh) | 2016-08-26 | 2016-08-26 | 一种均质熔融石英陶瓷的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106316377A (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106927800A (zh) * | 2015-12-31 | 2017-07-07 | 湖南工业大学 | 一种制备注凝成型熔融石英陶瓷的工艺方法 |
CN109020523A (zh) * | 2018-07-27 | 2018-12-18 | 东海县太阳光新能源有限公司 | 一种低铁超白熔融石英陶瓷坩埚制备方法 |
CN110483025A (zh) * | 2019-09-11 | 2019-11-22 | 江苏凯达石英股份有限公司 | 防水用熔融石英砂陶瓷的制备方法 |
CN112897885A (zh) * | 2021-03-26 | 2021-06-04 | 江苏神汇新型陶瓷材料科技有限公司 | 一种高纯二氧化硅玻璃陶瓷材料及其制备方法 |
CN113149627A (zh) * | 2021-05-13 | 2021-07-23 | 武汉理工大学 | 一种熔融石英陶瓷及其制备方法 |
CN113896516A (zh) * | 2021-11-08 | 2022-01-07 | 连云港太阳光石英陶瓷有限公司 | 一种石英陶瓷辊的制备方法 |
CN114292101A (zh) * | 2021-12-31 | 2022-04-08 | 山东工业陶瓷研究设计院有限公司 | 一种石英陶瓷回转体的制备方法 |
CN114988856A (zh) * | 2022-07-01 | 2022-09-02 | 徐州协鑫太阳能材料有限公司 | 一种直拉单晶用复合石英陶瓷加料锥及其制作方法 |
CN116161954A (zh) * | 2023-02-28 | 2023-05-26 | 东莞科伏精密制造有限公司 | 一种高强度熔融石英陶瓷的制备方法 |
NL2036079A (en) * | 2022-10-27 | 2024-05-15 | Sk Enpulse Co Ltd | Sintered body and method of manufacturing sintered body |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102826841A (zh) * | 2012-09-29 | 2012-12-19 | 江苏中硅工程材料有限公司 | 一种高强度石英陶瓷及其生产工艺 |
-
2016
- 2016-08-26 CN CN201610726840.5A patent/CN106316377A/zh active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102826841A (zh) * | 2012-09-29 | 2012-12-19 | 江苏中硅工程材料有限公司 | 一种高强度石英陶瓷及其生产工艺 |
Non-Patent Citations (4)
Title |
---|
张浩益: "动态注凝成型法制备高强高致密熔融石英陶瓷的研究", 《中国优秀硕士学位论文全文数据库工程科技I辑》 * |
林宗寿: "《无机非金属材料工学 第4版》", 31 December 2013, 武汉:武汉理工大学出版社 * |
陈照峰: "《无机非金属材料学 第2版》", 29 February 2016, 西安:西北工业大学出版社 * |
顾立德: "《特种耐火材料》", 31 August 1982, 北京:冶金工业出版社 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106927800B (zh) * | 2015-12-31 | 2020-05-05 | 湖南工业大学 | 一种制备注凝成型熔融石英陶瓷的工艺方法 |
CN106927800A (zh) * | 2015-12-31 | 2017-07-07 | 湖南工业大学 | 一种制备注凝成型熔融石英陶瓷的工艺方法 |
CN109020523B (zh) * | 2018-07-27 | 2022-01-21 | 东海县太阳光新能源有限公司 | 一种低铁超白熔融石英陶瓷坩埚制备方法 |
CN109020523A (zh) * | 2018-07-27 | 2018-12-18 | 东海县太阳光新能源有限公司 | 一种低铁超白熔融石英陶瓷坩埚制备方法 |
CN110483025A (zh) * | 2019-09-11 | 2019-11-22 | 江苏凯达石英股份有限公司 | 防水用熔融石英砂陶瓷的制备方法 |
CN112897885B (zh) * | 2021-03-26 | 2022-05-10 | 连云港神汇硅材料科技有限公司 | 一种高纯二氧化硅玻璃陶瓷材料及其制备方法 |
CN112897885A (zh) * | 2021-03-26 | 2021-06-04 | 江苏神汇新型陶瓷材料科技有限公司 | 一种高纯二氧化硅玻璃陶瓷材料及其制备方法 |
CN113149627A (zh) * | 2021-05-13 | 2021-07-23 | 武汉理工大学 | 一种熔融石英陶瓷及其制备方法 |
CN113896516A (zh) * | 2021-11-08 | 2022-01-07 | 连云港太阳光石英陶瓷有限公司 | 一种石英陶瓷辊的制备方法 |
CN113896516B (zh) * | 2021-11-08 | 2022-07-29 | 连云港太阳光石英陶瓷有限公司 | 一种石英陶瓷辊的制备方法 |
CN114292101A (zh) * | 2021-12-31 | 2022-04-08 | 山东工业陶瓷研究设计院有限公司 | 一种石英陶瓷回转体的制备方法 |
CN114988856A (zh) * | 2022-07-01 | 2022-09-02 | 徐州协鑫太阳能材料有限公司 | 一种直拉单晶用复合石英陶瓷加料锥及其制作方法 |
NL2036079A (en) * | 2022-10-27 | 2024-05-15 | Sk Enpulse Co Ltd | Sintered body and method of manufacturing sintered body |
CN116161954A (zh) * | 2023-02-28 | 2023-05-26 | 东莞科伏精密制造有限公司 | 一种高强度熔融石英陶瓷的制备方法 |
CN116161954B (zh) * | 2023-02-28 | 2023-12-12 | 东莞科伏精密制造有限公司 | 一种高强度熔融石英陶瓷的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106316377A (zh) | 一种均质熔融石英陶瓷的制备方法 | |
US3758317A (en) | Monolithic inorganic structures | |
CN106278210A (zh) | 一种高致密度熔融石英陶瓷的制备方法 | |
CN106747541B (zh) | 一种原位合成莫来石晶须自增韧的莫来石陶瓷的方法 | |
CN102603275B (zh) | 硅基陶瓷型芯的制备方法 | |
CN103406973B (zh) | 一种醇水基料浆凝胶注模制备多孔或致密材料的成型工艺 | |
CN102825649B (zh) | 一种凝胶注模成型制备MgAlON透明陶瓷素坯的方法 | |
CN106589821B (zh) | 一种多孔莫来石陶瓷/环氧树脂复合材料的制备方法 | |
CN103159454B (zh) | 一种纳米多孔气凝胶/纤维复合超级绝热材料及其制备方法 | |
CN105834351B (zh) | 一种耐高温的铸型材料 | |
CN103030413B (zh) | 一种刚玉莫来石坩埚的制备方法 | |
CN105645967A (zh) | 一种高度定向通孔多孔氮化硅陶瓷材料的制备方法 | |
CN105732007B (zh) | 一种用于复杂零件制造的氧化钙基陶瓷铸型快速制备方法 | |
CN105016751B (zh) | 一种利用颗粒级配结合凝胶注模工艺制备锆英石耐火材料的方法 | |
CN109437959A (zh) | 一种环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法 | |
CN101302110A (zh) | 制备大尺寸陶瓷磨球的方法和成型用模具 | |
CN113292346A (zh) | 一种用于制备硅砖的促烧结剂、复合硅砖及其制备方法 | |
CN104073673A (zh) | 一种陶瓷增强金属基复合材料的制备方法 | |
CN107244905A (zh) | 一种表面涂层耐高温坩埚的制备方法 | |
CN106478081A (zh) | 真空碳热还原强化熔融石英高温性能的方法 | |
CN101857443B (zh) | 制备大尺寸陶瓷磨球的方法 | |
CN102718510B (zh) | 不烧钢包底吹氩透气砖及其制备工艺 | |
CN101786843B (zh) | 超大尺寸免烧莫来石铺底砖 | |
CN102875151B (zh) | 一种制备低体积分数多孔碳化硅陶瓷坯体的方法 | |
CN113149671B (zh) | 轻质莫来石-氧化铝空心球-钛酸铝匣钵浇注成型工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170111 |