CN109437959A - 一种环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法 - Google Patents

一种环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法 Download PDF

Info

Publication number
CN109437959A
CN109437959A CN201811563924.7A CN201811563924A CN109437959A CN 109437959 A CN109437959 A CN 109437959A CN 201811563924 A CN201811563924 A CN 201811563924A CN 109437959 A CN109437959 A CN 109437959A
Authority
CN
China
Prior art keywords
mullite
mullite fiber
fiber base
porous ceramics
base porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811563924.7A
Other languages
English (en)
Other versions
CN109437959B (zh
Inventor
袁磊
刘震丽
刘宗泉
田晨
于景坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongmin Chiyuan Industry Co ltd
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201811563924.7A priority Critical patent/CN109437959B/zh
Publication of CN109437959A publication Critical patent/CN109437959A/zh
Application granted granted Critical
Publication of CN109437959B publication Critical patent/CN109437959B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • C04B35/803
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于多孔陶瓷领域,具体涉及一种环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法。原料及质量百分比为:11~32%的ρ‑Al2O3粉末、13~36%的高岭土或锆英石粉末、33~75%的莫来石纤维。取ρ‑Al2O3、高岭土或锆英石粉末,加入一定量的去离子水,机械搅拌并进行超声波振荡,获得稳定均匀的陶瓷浆料;随后将莫来石纤维均匀加入陶瓷浆料中,继续搅拌、振荡,获得凝胶型陶瓷‑纤维浆料;然后于常温下注模成型、固化,将成型后的素坯于恒温干燥箱中干燥,脱模后置于高温炉中,于空气气氛下烧结,获得莫来石结合或ZrO2‑莫来石结合的莫来石纤维基多孔陶瓷。本发明工艺简单易行,对环境友好,所制备的莫来石纤维基多孔陶瓷气孔率高、热导率低且强度较高。

Description

一种环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法
技术领域
本发明属于多孔陶瓷领域,具体涉及一种环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法。
背景技术
莫来石纤维基多孔陶瓷因其具有良好的热稳定性能、较低的热导率和热膨胀系数、优良的机械强度及优异的化学稳定性,且其成本较低廉,而被广泛应用于高温窑炉的保温耐火材料、化学催化剂载体、高温烟气过滤器及油水分离陶瓷载体等领域。目前莫来石纤维基多孔陶瓷多采用凝胶注模工艺制备,这是由于凝胶注模法所制备的多孔陶瓷具有坯体均匀、孔结构合理、可获得近终形尺寸的复杂元件等优点。
然而,目前所采用的凝胶注模制备多孔陶瓷的工艺,需在陶瓷浆料中加入大量的有机单体和交联剂,同时加入引发剂和催化剂,使料浆中的有机单体发生原位聚合反应并凝固而形成陶瓷坯体。在现有的凝胶注模制备多孔陶瓷的技术中,专利CN103922748A公开一种多孔氮化硅陶瓷的制备方法,其采用丙烯酰胺为有机单体,亚甲基双丙烯酰胺为交联剂,过硫酸铵和四甲基乙二胺分别为引发剂和催化剂;专利CN106554206A提供的一种钇稳定氧化锆多孔陶瓷的凝胶注模成型方法,亦采用丙烯酰胺、亚甲基双丙烯酰胺及叔丁醇分别为有机单体、交联剂和溶剂;而专利CN107500781A公开的一种多孔陶瓷的制备方法,采用的凝胶体系包括聚丙烯酰胺凝胶体系、多胺-环氧树脂凝胶体系及水溶性顺丁烯类聚合物凝胶体系。
在上述已有技术中,凝胶体系所采用的有机单体均有不同程度的毒性,对人类神经系统能产生不可逆转的损害;同时凝胶体系中大量有机物的使用,不仅提高生产成本,且其在脱脂和烧结过程中将释放大量对环境有害的气体。因此,发明一种对环境友好,且不使用任何有机物的环保型凝胶注模工艺制备莫来石纤维基多孔陶瓷,是该多孔陶瓷制备领域亟待解决的问题之一。
发明内容
本发明的目的是克服目前凝胶注模法制备莫来石纤维基多孔陶瓷工艺中存在的劣势和缺点,提供一种工艺简单易行、适合于工业大规模生产且环境友好的环保型凝胶注模工艺制备莫来石纤维基多孔陶瓷。
为了实现上述目的,本发明的技术方案是:
一种环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法,按质量百分比计,原料采用11~32%的ρ-Al2O3粉末、13~36%的高岭土或锆英石粉末、33~75%的莫来石纤维;首先将ρ-Al2O3粉末、高岭土或锆英石粉末混合配料后,加入去离子水,机械搅拌并超声波振荡4~6分钟后,获得稳定均匀的陶瓷浆料;然后均匀加入莫来石纤维并继续搅拌振荡25~35分钟,所获得的凝胶型陶瓷-纤维浆料于常温下注模成型后固化;再将成型素坯在65~75℃下干燥48~96小时后,于1400~1600℃下烧结1~6小时,获得莫来石结合或ZrO2-莫来石结合的莫来石纤维基多孔陶瓷。
所述的环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法,去离子水的添加量为原料总质量的100~200%。
所述的环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法,ρ-Al2O3粉末的粒度为1~10μm,高岭土或锆英石粉末的粒度为20~50μm,莫来石纤维的规格尺寸范围为直径5~10μm、长度50~125μm。
所述的环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法,莫来石结合的莫来石纤维基多孔陶瓷技术参数如下:显气孔率为54.4%~73.6%,体积密度为0.82~1.4g/cm3,耐压强度为4.9~9.6MPa,热导率为0.289~0.641W/(m·K)。
所述的环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法,ZrO2-莫来石结合的莫来石纤维基多孔陶瓷技术参数如下:显气孔率为47.3~55.6%,体积密度为1.40~1.70g/cm3,耐压强度为10.4~14.4MPa,热导率为0.752~0.854W/(m·K)。
本发明的设计思想是:
本发明通过ρ-Al2O3的水化形成凝胶并可逐渐固化的原理,取代现有凝胶注模工艺中的有机物凝胶体系,并通过添加高岭土或锆英石,使其在高温下与ρ-Al2O3的水化产物形成新莫来石相或ZrO2-莫来石相,并以其作为高温结合相结合莫来石纤维,从而制备出莫来石纤维基多孔陶瓷。
本发明的优点及有益效果是:
本发明制备的产品具有气孔率高、高温使用性能优异、导热率低和强度较高的特点。通过本发明,可有效弥补现有凝胶注模工艺需大量使用有毒且对环境不友好的有机物的不足,且其技术方法简单易行,适合大规模工业化生产,具有广阔的应用前景和实际价值。
附图说明
图1为本发明所制备的莫来石结合纤维基多孔陶瓷的扫描电镜照片。
图2为本发明所制备的ZrO2-莫来石结合纤维基多孔陶瓷的扫描电镜照片。
具体实施方式
在具体实施过程中,本发明利用ρ-Al2O3在常温下可与水发生反应形成拜耳石和勃姆石凝胶并逐渐固化的特点,通过在凝胶中加入莫来石纤维、高岭土或锆英石,注模成型后,高温烧成制备莫来石结合或ZrO2-莫来石结合的纤维基多孔陶瓷。
下面,通过实施例和附图对本发明进一步详细阐述。
实施例1
本实施例中,原料采用ρ-Al2O3粉末、高岭土粉末和莫来石纤维,ρ-Al2O3粉末的粒度为5μm,高岭土粉末的粒度为25μm,莫来石纤维的规格尺寸范围为直径5~10μm、长度50~125μm。首先以质量百分比分别为23.5%的ρ-Al2O3粉末、26.5%的高岭土粉末进行混合配料,加入原料总质量150%的去离子水,置于机械搅拌器中搅拌并进行超声波振荡5分钟,获得稳定均匀的陶瓷浆料,随后将质量百分比为50%的莫来石纤维均匀加入陶瓷浆料中,继续搅拌、振荡30分钟,获得凝胶型陶瓷-纤维浆料,然后于常温下注模成型、固化,将成型后的素坯于70℃的恒温干燥箱中干燥96小时,脱模后置于高温炉中于空气气氛下在1600℃的温度下烧结4小时,获得莫来石结合的莫来石纤维基多孔陶瓷。
用本实施例方法制备的产品,其显气孔率为58.7%,体积密度为1.26g/cm3,耐压强度为8.16MPa,热导率为0.641W/(m·K)。
实施例2
本实施例中,原料采用ρ-Al2O3粉末、高岭土粉末和莫来石纤维,ρ-Al2O3粉末的粒度为3μm,高岭土粉末的粒度为45μm,莫来石纤维的规格尺寸范围为直径5~10μm、长度50~125μm。首先以质量百分比分别为15.7%的ρ-Al2O3粉末、17.7%的高岭土粉末进行混合配料,加入原料总质量170%的去离子水,置于机械搅拌器中搅拌并进行超声波振荡5分钟,获得稳定均匀的陶瓷浆料,随后将质量百分比为66.6%的莫来石纤维均匀加入陶瓷浆料中,继续搅拌、振荡30分钟,获得凝胶型陶瓷-纤维浆料,然后于常温下注模成型、固化,将成型后的素坯于70℃的恒温干燥箱中干燥72小时,脱模后置于高温炉中于空气气氛下在1600℃的温度下烧结4小时,获得莫来石结合的莫来石纤维基多孔陶瓷。
用本实施例方法制备的产品,其显气孔率为71.2%,体积密度为0.89g/cm3,耐压强度为6.02MPa,热导率为0.306W/(m·K)。图1来自本实施例,图1说明所制备的莫来石结合纤维基多孔陶瓷具有大量的气孔且其纤维间结合较好。
实施例3
本实施例中,原料采用ρ-Al2O3粉末、锆英石粉末和莫来石纤维,ρ-Al2O3粉末的粒度为10μm,锆英石粉末的粒度为45μm,莫来石纤维的规格尺寸范围为直径5~10μm、长度50~125μm。首先以质量百分比分别为11.9%的ρ-Al2O3粉末、13.1%的锆英石粉末进行混合配料,加入原料总质量160%的去离子水,置于机械搅拌器中搅拌并进行超声波振荡5分钟,获得稳定均匀的陶瓷浆料,随后将质量百分比为75%的莫来石纤维均匀加入陶瓷浆料中,继续搅拌、振荡30分钟,获得凝胶型陶瓷-纤维浆料,然后于常温下注模成型、固化,将成型后的素坯于70℃的恒温干燥箱中干燥48小时,脱模后置于高温炉中于空气气氛下在1600℃的温度下烧结6小时,获得ZrO2-莫来石结合的莫来石纤维基多孔陶瓷。
用本实施例方法制备的产品,其显气孔率为55.6%,体积密度为1.4g/cm3,耐压强度为10.4MPa,热导率为0.752W/(m·K)。图2来自本实施例,图2说明所制备的ZrO2-莫来石结合纤维基多孔陶瓷具有大量的气孔且其纤维间搭建结合较好。
实施例结果表明,本发明方法工艺简单易行,对环境友好,所制备的莫来石纤维基多孔陶瓷气孔率高、热导率低且强度较高。

Claims (5)

1.一种环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法,其特征在于,按质量百分比计,原料采用11~32%的ρ-Al2O3粉末、13~36%的高岭土或锆英石粉末、33~75%的莫来石纤维;首先将ρ-Al2O3粉末、高岭土或锆英石粉末混合配料后,加入去离子水,机械搅拌并超声波振荡4~6分钟后,获得稳定均匀的陶瓷浆料;然后均匀加入莫来石纤维并继续搅拌振荡25~35分钟,所获得的凝胶型陶瓷-纤维浆料于常温下注模成型后固化;再将成型素坯在65~75℃下干燥48~96小时后,于1400~1600℃下烧结1~6小时,获得莫来石结合或ZrO2-莫来石结合的莫来石纤维基多孔陶瓷。
2.根据权利要求1所述的环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法,其特征在于,去离子水的添加量为原料总质量的100~200%。
3.根据权利要求1所述的环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法,其特征在于,ρ-Al2O3粉末的粒度为1~10μm,高岭土或锆英石粉末的粒度为20~50μm,莫来石纤维的规格尺寸范围为直径5~10μm、长度50~125μm。
4.根据权利要求1所述的环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法,其特征在于,莫来石结合的莫来石纤维基多孔陶瓷技术参数如下:显气孔率为54.4%~73.6%,体积密度为0.82~1.4g/cm3,耐压强度为4.9~9.6MPa,热导率为0.289~0.641W/(m·K)。
5.根据权利要求1所述的环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法,其特征在于,ZrO2-莫来石结合的莫来石纤维基多孔陶瓷技术参数如下:显气孔率为47.3~55.6%,体积密度为1.40~1.70g/cm3,耐压强度为10.4~14.4MPa,热导率为0.752~0.854W/(m·K)。
CN201811563924.7A 2018-12-20 2018-12-20 一种环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法 Active CN109437959B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811563924.7A CN109437959B (zh) 2018-12-20 2018-12-20 一种环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811563924.7A CN109437959B (zh) 2018-12-20 2018-12-20 一种环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法

Publications (2)

Publication Number Publication Date
CN109437959A true CN109437959A (zh) 2019-03-08
CN109437959B CN109437959B (zh) 2021-06-11

Family

ID=65558929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811563924.7A Active CN109437959B (zh) 2018-12-20 2018-12-20 一种环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法

Country Status (1)

Country Link
CN (1) CN109437959B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110937882A (zh) * 2019-12-17 2020-03-31 中国铝业股份有限公司 一种氧化铝轻质隔热材料及其制备方法
CN111362693A (zh) * 2020-03-20 2020-07-03 南京理工宇龙新材料科技股份有限公司 一种二氧化锆多孔陶瓷材料的制备方法和应用
CN111871468A (zh) * 2020-08-05 2020-11-03 辽宁科技大学 一种3d打印莫来石质汽车尾气净化催化剂载体的制备方法
CN113698226A (zh) * 2021-09-23 2021-11-26 景德镇陶瓷大学 一种高强度多孔陶瓷的制备方法及其制得的产品
CN115974523A (zh) * 2022-12-09 2023-04-18 湖北飞龙摩擦密封材料股份有限公司 摩擦材料用多孔莫来石及其制备方法和应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497942A (ja) * 1990-08-17 1992-03-30 Chichibu Cement Co Ltd ムライト・ジルコニア複合セラミックスの製造方法
JP2003040685A (ja) * 2001-07-31 2003-02-13 Ngk Insulators Ltd 酸化物繊維系複合材料、及びその製造方法
CN1962547A (zh) * 2006-12-06 2007-05-16 中国科学院上海硅酸盐研究所 溶胶凝胶-冷冻干燥工艺制备氧化铝多孔陶瓷的方法
CN101012767A (zh) * 2007-01-12 2007-08-08 华南理工大学 陶瓷载体负载催化剂的汽车尾气净化装置及其制备方法
CN101560098A (zh) * 2009-05-27 2009-10-21 东北大学 氧化锆-莫来石复合材料的制备方法
US7700184B2 (en) * 2006-08-14 2010-04-20 University Of Houston System Pd nanopore and palladium encapsulated membranes
CN101698607A (zh) * 2009-11-20 2010-04-28 苏州创元投资发展(集团)有限公司 一种环保型凝胶注膜成型制备氧化铝基陶瓷材料的方法
CN103524140A (zh) * 2013-09-23 2014-01-22 天津大学 氧化物陶瓷纤维板
CN104131363A (zh) * 2014-07-21 2014-11-05 陈海锋 一种多孔莫来石纤维制品
CN106146000A (zh) * 2016-07-05 2016-11-23 天津大学 莫来石纤维多孔隔热材料的制备方法
CN106588026A (zh) * 2016-12-16 2017-04-26 哈尔滨理工大学 基于琼脂糖凝胶注模成型致密或多孔AlN陶瓷的方法
US20170368797A1 (en) * 2016-08-15 2017-12-28 Ali Akbar Babalou Palladium composite membrane

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497942A (ja) * 1990-08-17 1992-03-30 Chichibu Cement Co Ltd ムライト・ジルコニア複合セラミックスの製造方法
JP2003040685A (ja) * 2001-07-31 2003-02-13 Ngk Insulators Ltd 酸化物繊維系複合材料、及びその製造方法
US7700184B2 (en) * 2006-08-14 2010-04-20 University Of Houston System Pd nanopore and palladium encapsulated membranes
CN1962547A (zh) * 2006-12-06 2007-05-16 中国科学院上海硅酸盐研究所 溶胶凝胶-冷冻干燥工艺制备氧化铝多孔陶瓷的方法
CN101012767A (zh) * 2007-01-12 2007-08-08 华南理工大学 陶瓷载体负载催化剂的汽车尾气净化装置及其制备方法
CN101560098A (zh) * 2009-05-27 2009-10-21 东北大学 氧化锆-莫来石复合材料的制备方法
CN101698607A (zh) * 2009-11-20 2010-04-28 苏州创元投资发展(集团)有限公司 一种环保型凝胶注膜成型制备氧化铝基陶瓷材料的方法
CN103524140A (zh) * 2013-09-23 2014-01-22 天津大学 氧化物陶瓷纤维板
CN104131363A (zh) * 2014-07-21 2014-11-05 陈海锋 一种多孔莫来石纤维制品
CN106146000A (zh) * 2016-07-05 2016-11-23 天津大学 莫来石纤维多孔隔热材料的制备方法
US20170368797A1 (en) * 2016-08-15 2017-12-28 Ali Akbar Babalou Palladium composite membrane
CN106588026A (zh) * 2016-12-16 2017-04-26 哈尔滨理工大学 基于琼脂糖凝胶注模成型致密或多孔AlN陶瓷的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEI YUAN等: "Fabrication and characterization of porous MgAl2O4 ceramics via a novel aqueous gel-casting process", 《MATERIALS》 *
XINGHUI HOU等: "Porous fibrous ZrO2-mullite ceramics prepared via tert-butyl alcohol-based gel-casting", 《CERAMICS INTERNATIONAL》 *
朱庆霞等: "莫来石纤维多孔陶瓷的制备与性能", 《中国陶瓷》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110937882A (zh) * 2019-12-17 2020-03-31 中国铝业股份有限公司 一种氧化铝轻质隔热材料及其制备方法
CN111362693A (zh) * 2020-03-20 2020-07-03 南京理工宇龙新材料科技股份有限公司 一种二氧化锆多孔陶瓷材料的制备方法和应用
CN111362693B (zh) * 2020-03-20 2020-12-29 南京理工宇龙新材料科技股份有限公司 一种二氧化锆多孔陶瓷材料的制备方法和应用
CN111871468A (zh) * 2020-08-05 2020-11-03 辽宁科技大学 一种3d打印莫来石质汽车尾气净化催化剂载体的制备方法
CN113698226A (zh) * 2021-09-23 2021-11-26 景德镇陶瓷大学 一种高强度多孔陶瓷的制备方法及其制得的产品
CN115974523A (zh) * 2022-12-09 2023-04-18 湖北飞龙摩擦密封材料股份有限公司 摩擦材料用多孔莫来石及其制备方法和应用
CN115974523B (zh) * 2022-12-09 2024-02-20 湖北飞龙摩擦密封材料股份有限公司 摩擦材料用多孔莫来石及其制备方法和应用

Also Published As

Publication number Publication date
CN109437959B (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
CN109437959A (zh) 一种环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法
Yuan et al. Preparation and properties of mullite-bonded porous fibrous mullite ceramics by an epoxy resin gel-casting process
CN101525248B (zh) 陶瓷气凝胶及通过凝胶注模成型制备陶瓷气凝胶的方法
CN103922748B (zh) 一种多孔氮化硅陶瓷的制备方法
Deng et al. Preparation and characterization of porous mullite ceramics via foam-gelcasting
CN106478107B (zh) 一种氮化硅晶须结合碳化硅多孔陶瓷及其制备方法
CN108610050A (zh) 一种多孔碳化硅陶瓷及其制备方法
CN100482614C (zh) 利用胶态成型工艺制备轻质、高强度陶瓷材料的方法
CN101054311B (zh) 一种“冷冻-凝胶成型”制备多孔陶瓷材料的工艺
CN105645967B (zh) 一种高度定向通孔多孔氮化硅陶瓷材料的制备方法
CN101503298A (zh) 一种利用凝胶注模法制备氮化硅多孔陶瓷的方法
CN111056834B (zh) 一种尖晶石-莫来石陶瓷匣钵的制备方法
CN105272189A (zh) 一种微孔莫来石陶瓷分离膜支撑体及其制备方法
CN105294160A (zh) 一种凝胶注模、微波烧结制备多孔氮化硅陶瓷的方法
CN105084878A (zh) 一种超高孔隙率针状莫来石多孔陶瓷块体材料的制备方法
CN104446625A (zh) 一种高孔隙率多孔陶瓷及其制备方法
CN109503197B (zh) 一种六铝酸钙多孔陶瓷的制备方法
CN109627011A (zh) 一种具有同心孔的多孔陶瓷的制备方法及多孔陶瓷
CN108276006A (zh) 一种氮化硅多孔陶瓷及其制备方法
CN108911779A (zh) 一种挤出成型低温制备多孔碳化硅陶瓷管的方法
CN107914333A (zh) 利用凝胶注模成型工艺制作氧化锆陶瓷手机后盖的方法
CN108085785A (zh) 一种氮化硅纤维材料的制备方法
CN103342544A (zh) 制备多孔氧化铝陶瓷的方法
CN109437946A (zh) 一种水基凝胶注模制备ysz纤维基多孔陶瓷的方法
CN102942374A (zh) 一种凝胶浇注成型坯体的脱水固化处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240807

Address after: 115103 Chenjia Village, Baishai Office, Dashiqiao, Yingkou City, Liaoning Province

Patentee after: ZHONGMIN CHIYUAN INDUSTRY Co.,Ltd.

Country or region after: China

Address before: No. 195, Chuangxin Road, Hunnan District, Shenyang City, Liaoning Province

Patentee before: Northeastern University

Country or region before: China