CN109503197B - 一种六铝酸钙多孔陶瓷的制备方法 - Google Patents

一种六铝酸钙多孔陶瓷的制备方法 Download PDF

Info

Publication number
CN109503197B
CN109503197B CN201811595141.7A CN201811595141A CN109503197B CN 109503197 B CN109503197 B CN 109503197B CN 201811595141 A CN201811595141 A CN 201811595141A CN 109503197 B CN109503197 B CN 109503197B
Authority
CN
China
Prior art keywords
porous ceramic
temperature
mixture
calcium hexaluminate
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811595141.7A
Other languages
English (en)
Other versions
CN109503197A (zh
Inventor
袁磊
李超越
刘震丽
田晨
万利成
于景坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201811595141.7A priority Critical patent/CN109503197B/zh
Publication of CN109503197A publication Critical patent/CN109503197A/zh
Application granted granted Critical
Publication of CN109503197B publication Critical patent/CN109503197B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种六铝酸钙多孔陶瓷的制备方法,该方法是将ρ‑Al2O3粉末和碳酸钙粉末配料后,加入去离子水,机械搅拌并超声波振荡后,将其注模成型、固化,随后放入恒温干燥箱中干燥,脱模后置于高温炉中在空气气氛下烧结,获得六铝酸钙多孔陶瓷。本发明方法工艺简单易行,操作过程对环境没有污染,所制备的产品具有纯度高、气孔率高、热导率低且耐压强度高等优点。

Description

一种六铝酸钙多孔陶瓷的制备方法
技术领域
本发明涉及一种六铝酸钙多孔陶瓷的制备方法,属于耐火材料制备技术领域。
背景技术
六铝酸钙(CA6)是Al2O3-CaO二元系中熔点最高的化合物,其熔点高达1875℃。六铝酸钙多孔陶瓷因其具有化学性质稳定、热膨胀系数低、热导率低、且其高温热导率随温度升高变化较小等优点,而被广泛应用于高温窑炉、冶金耐火材料及航空航天保温材料等领域。尤其是在冶金耐火材料领域,六铝酸钙多孔陶瓷在还原性气氛下稳定性好、在含FeO熔渣中溶解度极低、且其对高温熔融金属和熔渣的润湿性差,同时其微观组织的片状晶体结构具有极大的比表面积,因此,六铝酸钙多孔陶瓷已作为新型冶金高温隔热材料而成为研究的热点之一。
目前,多孔六铝酸钙材料的制备工艺主要包括添加造孔剂法和发泡法,添加造孔剂法虽然成本低廉,但所添加的造孔剂多为有机物,在烧失有机物并造孔过程中易污染环境,同时,造孔剂法无法获得高气孔率多孔陶瓷,且其气孔孔径分布极不均匀。发泡法虽然可获得孔径分布均匀的气孔,但其大量使用的有机物,如减水剂、分散剂及发泡剂等,在后续烧失的过程中不仅产生对环境有害的气体,还易残存含K、Na等化合物,导致其高温使用性能显著下降。
因此,发明一种工艺简单易行、不添加任何有机或无机化合物、对环境友好且气孔分布均匀的制备工艺,是六铝酸钙多孔陶瓷制备领域亟待解决的主要问题之一。
发明内容
(一)要解决的技术问题
为了解决现有技术的上述问题,本发明提供一种六铝酸钙多孔陶瓷的制备方法,该制备方法简单易行、不添加任何有机或无机化合物、对环境友好,且获得的陶瓷气孔分布均匀。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
一种六铝酸钙多孔陶瓷的制备方法,该方法是将ρ-Al2O3粉末和碳酸钙粉末配料后,加入去离子水,机械搅拌并超声波振荡后,将其注模成型、固化,随后放入恒温干燥箱中干燥,脱模后置于高温炉中在空气气氛下烧结,获得六铝酸钙多孔陶瓷。
如上所述的方法,优选地,所述ρ-Al2O3与碳酸钙按照质量比为87.2:12.8配料。
如上所述的方法,优选地,所述去离子水的加入量为原料总质量的40~150%。
如上所述的方法,优选地,所述超声波振荡的时间为5~10分钟。
如上所述的方法,优选地,所述恒温干燥的温度为60~80℃,干燥时间为24~72小时。
如上所述的方法,优选地,所述烧结温度为1500~1650℃。
如上所述的方法,优选地,所述烧结时间为1~8小时。
如上所述的方法,优选地,所述ρ-Al2O3原料,其氧化铝含量≥90%。
(三)有益效果
本发明的有益效果是:
本发明基于ρ-Al2O3原料可与所加入的去离子水反应形成大量凝胶的原理,可使加入的碳酸钙粉末均匀分散于凝胶中,并逐渐固化。同时大量凝胶的生成,由于固化后的陶瓷素坯中提供网络状气孔结构,从而保证烧结后的六铝酸钙陶瓷中存在大量的气孔并具有极高的机械强度。另一方面,ρ-Al2O3的水化产物拜耳石和勃姆石及碳酸钙的分解过程中,亦将形成部分微气孔,对多孔陶瓷的气孔率提高具有积极的影响。由于在该工艺中未使用任何有机或无机添加物,因此,可制备出高纯度高强度的六铝酸钙多孔陶瓷。且在制备过程中不会产生对环境有害的气体,也不会残存K、Na等化合物。
本发明方法所制备的产品具有纯度高、气孔率高、热导率低且耐压强度高等优点,通过本发明的制备方法,可有效弥补现有制备工艺对环境不友好、产品纯度及强度不高等不足,且本发明工艺简单易行、适合大规模工业化生产,具有广阔的应用前景和实际应用价值。
附图说明
图1为本发明所制备的六铝酸钙多孔陶瓷的X射线衍射图谱;
图2为本发明所制备的六铝酸钙多孔陶瓷的扫描电镜照片。
具体实施方式
本发明采用ρ-Al2O3提供原料所需全部铝源,利用ρ-Al2O3在常温下可与水直接反应形成大量拜耳石和勃姆石凝胶并逐渐固化的特点,通过与所加入的碳酸钙高温下发生反应,形成六铝酸钙多孔陶瓷。
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。
实施例1
按质量分数为87.2%的ρ-Al2O3粉末和12.8%的碳酸钙粉末进行配料,加入原料总质量40%的去离子水,置于机械搅拌器中搅拌,并超声波振荡5~10分钟,然后将其注模成型、固化,随后放入70℃的恒温干燥箱中干燥24小时,脱模后置于高温炉中于空气气氛下在1650℃的温度下烧结2小时,随炉冷却后获得六铝酸钙多孔陶瓷。
将制备获得的六铝酸钙多孔陶瓷,通过GB/T 2997-2000和GB/T5072-2008对样品的孔隙率、体积密度及耐压强度进行测定。测得其显气孔率为42.4%,体积密度为1.89g/cm3,耐压强度为61.7MPa。
实施例2
以质量分数为87.2%的ρ-Al2O3粉末和12.8%的碳酸钙粉末进行配料,加入原料总质量100%的去离子水,置于机械搅拌器中搅拌并超声波振荡5~10分钟,然后将其注模成型、固化,随后放入70℃的恒温干燥箱中干燥48小时,脱模后置于高温炉中于空气气氛下在1600℃的温度下烧结4小时,随炉冷却后获得六铝酸钙多孔陶瓷。
按实施例1中所述方法测得本实施例方法制备的产品,其显气孔率为57.8%,体积密度为1.42g/cm3,耐压强度为22MPa。
实施例3
以质量分数为87.2%的ρ-Al2O3粉末和12.8%的碳酸钙粉末进行配料,加入原料总质量150%的去离子水,置于机械搅拌器中搅拌并超声波振荡5~10分钟,然后将其注模成型、固化,随后放入70℃的恒温干燥箱中干燥72小时,脱模后置于高温炉中于空气气氛下在1550℃的温度下烧结6小时,随炉冷却后获得六铝酸钙多孔陶瓷。
按实施例1中所述方法测得本实施例方法制备的产品,其显气孔率为68.2%,体积密度为1.09g/cm3,耐压强度为8.0MPa。
将本实施例制备的六铝酸钙多孔陶瓷进行X射线衍射和扫描电镜测定,获得的X射线衍射图谱如图1所示,扫描电镜的照片如图2所示,从图1中可看出,说明所制备的六铝酸钙多孔陶瓷的物相为六铝酸钙。图2说明所制备的六铝酸钙多孔陶瓷的晶体结构为片状,具有均匀的气孔分布。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明做其它形式的限制,任何本领域技术人员可以利用上述公开的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (3)

1.一种六铝酸钙多孔陶瓷的制备方法,其特征在于,其是将ρ-Al2O3粉末和碳酸钙粉末配料后,加入去离子水,机械搅拌并超声波振荡后,将其注模成型、固化,随后放入恒温干燥箱中干燥,脱模后置于高温炉中在空气气氛下烧结,获得六铝酸钙多孔陶瓷;
其中,所述ρ-Al2O3与碳酸钙按照质量比为87.2:12.8配料;
所述恒温干燥的温度为60~80℃,干燥时间为24~72小时;
所述去离子水的加入量为原料总质量的40~150%;
烧结温度为1500~1650℃;烧结时间为1~8小时。
2.如权利要求1所述的制备方法,其特征在于,所述超声波振荡的时间为5~10分钟。
3.如权利要求1所述的制备方法,其特征在于,所述ρ-Al2O3原料,其氧化铝含量≥90%。
CN201811595141.7A 2018-12-25 2018-12-25 一种六铝酸钙多孔陶瓷的制备方法 Active CN109503197B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811595141.7A CN109503197B (zh) 2018-12-25 2018-12-25 一种六铝酸钙多孔陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811595141.7A CN109503197B (zh) 2018-12-25 2018-12-25 一种六铝酸钙多孔陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN109503197A CN109503197A (zh) 2019-03-22
CN109503197B true CN109503197B (zh) 2020-07-28

Family

ID=65755102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811595141.7A Active CN109503197B (zh) 2018-12-25 2018-12-25 一种六铝酸钙多孔陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN109503197B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110436914A (zh) * 2019-07-29 2019-11-12 武汉科技大学 一种高孔隙率六铝酸钙泡沫陶瓷及其制备方法
CN112358291A (zh) * 2020-11-25 2021-02-12 辽宁科技大学 一种凝胶注模合成六铝酸钙材料的方法
CN114133257A (zh) * 2020-12-31 2022-03-04 郑州轻工业大学 一种含六铝酸钙的微纳孔绝隔热耐火材料及其制备方法
CN116217219A (zh) * 2022-11-30 2023-06-06 宜兴摩根热陶瓷有限公司 一种均匀结构多孔六铝酸钙陶瓷的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928135A (zh) * 2010-09-01 2010-12-29 中国地质大学(北京) 一种六铝酸钙轻质耐火砖及其制备方法
CN102557094A (zh) * 2012-03-15 2012-07-11 福州大学 利用牡蛎壳制备的六铝酸钙及其制备方法
CN103496993A (zh) * 2013-09-23 2014-01-08 武汉科技大学 一种高强六铝酸钙轻质隔热材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960737A (en) * 1988-09-06 1990-10-02 Corning Incorporated Calcium dialuminate/hexaluminate ceramic structures
US20150078912A1 (en) * 2013-09-18 2015-03-19 General Electric Company Ceramic core compositions, methods for making cores, methods for casting hollow titanium-containing articles, and hollow titanium-containing articles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928135A (zh) * 2010-09-01 2010-12-29 中国地质大学(北京) 一种六铝酸钙轻质耐火砖及其制备方法
CN102557094A (zh) * 2012-03-15 2012-07-11 福州大学 利用牡蛎壳制备的六铝酸钙及其制备方法
CN103496993A (zh) * 2013-09-23 2014-01-08 武汉科技大学 一种高强六铝酸钙轻质隔热材料及其制备方法

Also Published As

Publication number Publication date
CN109503197A (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
CN109503197B (zh) 一种六铝酸钙多孔陶瓷的制备方法
Deng et al. Foam-gelcasting preparation of high-strength self-reinforced porous mullite ceramics
Zhao et al. Transient liquid phase diffusion process for porous mullite ceramics with excellent mechanical properties
Li et al. Mullite whisker reinforced porous anorthite ceramics with low thermal conductivity and high strength
Zhou et al. Fabrication of mullite-corundum foamed ceramics for thermal insulation and effect of micro-pore-foaming agent on their properties
Wang et al. Fabrication and properties of freeze-cast mullite foams derived from coal-series kaolin
CN101759430B (zh) 一种制备多孔莫来石的方法
Yang et al. Porous mullite composite with controlled pore structure processed using a freeze casting of TBA-based coal fly ash slurries
CN105924225B (zh) 一种莫来石结合碳化硅多孔陶瓷的制备方法
JPH0543666B2 (zh)
CN103030413B (zh) 一种刚玉莫来石坩埚的制备方法
CN105645967A (zh) 一种高度定向通孔多孔氮化硅陶瓷材料的制备方法
CN107010973B (zh) 一种轻质复相多孔隔热耐火材料和莫来石质耐火材料及其制备方法
CN1884193A (zh) 一种多孔莫来石陶瓷材料及其制备方法
Zawrah et al. Synthesis and characterization of calcium aluminate nanoceramics for new applications
Ercenk The effect of clay on foaming and mechanical properties of glass foam insulating material
CN110937920A (zh) 一种超轻高强钙长石多孔陶瓷及其制备方法
Li et al. Novel ZrP2O7 ceramic foams with controllable structures and ultra-low thermal conductivity
CN103482873A (zh) 振动注浆成型方法制备熔融石英陶瓷
CN110294636A (zh) 一种轻质隔热镍冶金废渣泡沫陶瓷及其制备方法
Deng et al. Fabrication and characterization of mullite-whisker-reinforced lightweight porous materials with AlF3· 3H2O
CN103833400A (zh) 一种自增强莫来石多孔陶瓷的制备方法
Khattab et al. Alumina–zircon refractory materials for lining of the basin of glass furnaces: effect of processing technique and TiO2 addition
Luo et al. Novel method of fabricating ultra-light aluminum borate foams with hierarchical pore structure
CN107721448A (zh) 一种富含晶须结构的莫来石多孔陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant