CN106298544A - 沟槽dmos器件的制造方法和结构 - Google Patents

沟槽dmos器件的制造方法和结构 Download PDF

Info

Publication number
CN106298544A
CN106298544A CN201610962608.1A CN201610962608A CN106298544A CN 106298544 A CN106298544 A CN 106298544A CN 201610962608 A CN201610962608 A CN 201610962608A CN 106298544 A CN106298544 A CN 106298544A
Authority
CN
China
Prior art keywords
grid
epitaxial layer
trench
body region
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610962608.1A
Other languages
English (en)
Other versions
CN106298544B (zh
Inventor
朱袁正
周永珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi NCE Power Co Ltd
Original Assignee
Wuxi NCE Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi NCE Power Co Ltd filed Critical Wuxi NCE Power Co Ltd
Priority to CN201610962608.1A priority Critical patent/CN106298544B/zh
Publication of CN106298544A publication Critical patent/CN106298544A/zh
Application granted granted Critical
Publication of CN106298544B publication Critical patent/CN106298544B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供一种沟槽DMOS器件的制造方法和结构,不使用源极光刻板,整套工艺流程只需要3层光罩即可实现(不包含钝化层光刻板),3层光刻板分别实现的功能是沟槽刻蚀(TR)、接触孔引出(CT)、金属电极光刻(Metal);源区形成在接触孔光刻工艺之后;所述发明结构和制造方法包括有源区和终端保护区,器件终端保护结构使用Trench ring(沟槽状的保护环)设计,终端保护区由至少1个以上的Trench ring 组成,终端保护区Trench ring与元胞区(有源区和栅极引出区)栅沟槽刻蚀是同一刻蚀步骤完成。可减少工艺制造光刻层数,大幅度降低了制造成本。

Description

沟槽DMOS器件的制造方法和结构
技术领域
本发明涉及半导体器件极其制造方法,尤其是一种沟槽DMOS器件的制造方法。
背景技术
目前,沟槽DMOS(Trench DMOS)造单项工艺已非常成熟,Trench DMOS器件结构包括有源区和终端保护区,不同的设计决定了制造过程中需要的光刻掩膜版层数。普通Trench DMOS生产制造过程需要有5层、7层、8层甚至更多的光刻层数来完成,光刻版层数越多,生产成本增加就越多,晶圆产出周期也会增长。
发明专利201010169959.X有提出类似的观点,用绝缘介质层作为源区第一导电杂质注入阻挡层,但其有源区沟槽刻蚀和终端保护区刻蚀是分两次光刻完成,增加了光刻掩膜版层数,至少需要4次光刻来完成器件功能。
发明内容
本发明的目的在于克服现有技术中存在的不足,提供一种沟槽DMOS器件的制造方法,其能够保证器件性能的同时,减少工艺制造光刻层数,大幅度降低了制造成本。本发明还提出了上述制造方法所得到的沟槽DMOS的结构;本发明采用的技术方案是:
一种沟槽DMOS器件的制造方法,包括以下步骤:
(a)、提供第一导电类型重掺杂衬底,并在第一导电类型重掺杂衬底上形成第一导电类型轻掺杂外延层;形成半导体基板;
(b)、在第一导电类型轻掺杂外延层上淀积沟槽刻蚀阻挡层;
(c)、在外延层正面通过沟槽光刻、刻蚀形成多个阵列型的沟槽;所述沟槽包括位于半导体基板中央有源区内的栅极沟槽、有源区外侧的栅极引出区内的栅极引出沟槽、有源区和栅极引出区外圈的分压保护区内的分压保护沟槽、分压保护区外圈的截止保护区内的截止保护沟槽;其中,分压保护沟槽和截止保护沟槽为环形结构;
(d)、去除上一步沟槽光刻时的光刻胶,随后湿法腐蚀去除淀积的沟槽刻蚀阻挡层;
(e)、在上述沟槽结构内壁生长绝缘氧化层,绝缘氧化层也分布在整个半导体基板正面;
(f)、在半导体基板正面淀积多晶硅;多晶硅填充外延层内的沟槽,及覆盖外延层表面;
刻蚀半导体基板正面的多晶硅,仅保留在沟槽内的多晶硅,同时保留半导体基板正面的绝缘氧化层厚度在一定范围内;
在栅极沟槽内形成栅电极,在栅极引出沟槽内形成栅引出结构,在分压保护沟槽内形成分压保护环,在截止保护沟槽内形成截止保护环;
(g)、在半导体基板的正面注入第二导电类型杂质离子,通过高温退火形成第二导电类型体区;第二导电类型体区位于第一导电类型外延层上部,第二导电类型体区横贯整个半导体基板;
(h)、在外延层表面淀积绝缘介质层,并回流;
(i)、通过接触孔版光刻、选择性的掩蔽和刻蚀绝缘介质层,刻蚀深度与淀积的绝缘介质层厚度相同,在绝缘介质层表面形成引线孔;
各引线孔分别位于有源区内第二导电类型体区上方、栅极引出区内栅引出结构上方、截止保护区内截止保护环外侧的第二导电类型体区上方;
(j)、去除上一步刻蚀引线孔时的光刻胶;
(k)、通过引线孔注入第一导电类型杂质,并退火;
在有源区内第二导电类型体区上部形成第一导电类型源极;
在截止保护区内截止保护环外侧的第二导电类型体区上部形成第一导电类型子区;
(l)、通过引线孔进行选择性干法刻蚀,刻蚀深度大于第一导电类型源极深度且小于第二导电类型体区的结深;
(m)、在上述绝缘介质层和引线孔内均匀淀积正面金属,选择性的掩蔽和刻蚀正面金属层,得到连接栅引出结构的栅极金属和连接第一导电类型源极的源极金属,以及连接第一导电类型子区的金属板;
(n)进行背面金属工艺,形成器件漏极,完成最终器件结构。
进一步地,步骤(c)中,栅极沟槽与栅极引出沟槽通过半导体基板端头的横向沟槽连通。
进一步地,步骤(f)中,绝缘氧化层厚度控制在15~25nm。
上述制造工艺形成的一种沟槽DMOS器件,包括第一导电类型重掺杂衬底,以及在第一导电类型重掺杂衬底上形成的第一导电类型轻掺杂外延层,衬底和外延层构成形成半导体基板;半导体基板上包括有源区、栅极引出区和终端保护区;
有源区位于半导体基板中央区域,栅极引出区位于有源区外侧,终端保护区位于有源区和栅极引出区外圈;
在有源区内,第一导电类型外延层上部有第二导电类型体区和沟槽状栅电极,栅电极顶部侧面设有第一导电类型源极;栅电极与第一导电类型源极、第二导电类型体区、外延层通过栅氧层电绝缘;
在有源区内,外延层表面覆盖绝缘介质层,第二导电类型体区上方的绝缘介质层中设有引线孔,源极金属淀积在绝缘介质层表面和有源区内引线孔中,与第二导电类型体区和第一导电类型源极连接;栅电极通过其顶部的绝缘介质层与源极金属隔离;
在栅极引出区内,第一导电类型外延层上部有第二导电类型体区和沟槽状栅引出结构,栅引出结构与第二导电类型体区、外延层通过绝缘氧化层电绝缘;外延层表面覆盖绝缘介质层,栅引出结构上方的绝缘介质层中设有引线孔,栅极金属淀积在在绝缘介质层表面和栅极引出区内引线孔中,与栅引出结构连接;
栅电极与栅引出结构通过半导体基板端头的横向沟槽连接。
进一步地,源极金属在引线孔中的深度大于第一导电类型源极深度且小于第二导电类型体区的结深。
进一步地,终端保护区包括位于有源区和栅极引出区外圈的分压保护区,以及位于分压保护区外圈的截止保护区;
在分压保护区内,第一导电类型外延层上部有第二导电类型体区和沟槽状分压保护环;分压保护环与第二导电类型体区、外延层通过绝缘氧化层电绝缘;外延层表面覆盖绝缘介质层;
在截止保护区内,第一导电类型外延层上部有第二导电类型体区和沟槽状截止保护环;截止保护环外侧的第二导电类型体区上部形成第一导电类型子区;外延层表面覆盖绝缘介质层,绝缘介质层上设有金属板,金属板通过绝缘介质层中的引线孔向下延伸并连接第一导电类型子区;截止保护环与第二导电类型体区、外延层和金属板的下延伸部通过绝缘氧化层电绝缘;
金属板下延伸部的深度大于第一导电类型子区深度且小于第二导电类型体区的结深。
更进一步地,第一导电类型子区位于金属板下延伸部外侧。
本发明的优点在于:本发明的技术方案不使用源极光刻板,整套工艺流程只需要3层光罩即可实现(不包含钝化层光刻板),3层光刻板分别实现的功能是沟槽刻蚀(TR)、接触孔引出(CT)、金属电极光刻(Metal);源区形成在接触孔光刻工艺之后;所述发明结构和制造方法包括有源区和终端保护区,器件终端保护结构使用Trench ring(沟槽状的保护环)设计,终端保护区由至少1个以上的Trench ring 组成,终端保护区Trench ring与元胞区(有源区和栅极引出区)栅沟槽刻蚀是同一刻蚀步骤完成。可减少工艺制造光刻层数,大幅度降低了制造成本。
附图说明
图1为本发明的半导体基板示意图。
图2为本发明的形成沟槽后的示意图。
图3为本发明的半导体基板正面淀积多晶硅并刻蚀后,再形成第二导电类型体区示意图。
图4为本发明的淀积绝缘介质层并在绝缘介质层开孔示意图。
图5为本发明的通过引线孔注入第一导电类型杂质示意图。
图6为本发明的通过引线孔进行选择性干法刻蚀示意图。
图7为本发明的正面金属淀积蚀刻形成最终器件示意图。
具体实施方式
下面结合具体附图和实施例对本发明作进一步说明。
实施例一;
本实施例提供的沟槽DMOS器件的制造方法,包括以下步骤:
如图1所示,
(a)、提供N+型衬底1,并在N+型衬底1上形成N-型外延层2;形成半导体基板;
(b)、在N-型外延层2上淀积沟槽刻蚀阻挡层;图1和图2中未画出沟槽刻蚀阻挡层;
如图2所示,
(c)、在N-型外延层2正面通过沟槽光刻(TR光罩)、刻蚀形成多个阵列型的沟槽;所述沟槽包括位于半导体基板中央有源区A内的栅极沟槽301、有源区A外侧的栅极引出区B内的栅极引出沟槽302、有源区A和栅极引出区B外圈的分压保护区C内的分压保护沟槽303、分压保护区C外圈的截止保护区D内的截止保护沟槽304;其中,分压保护沟槽203和截止保护沟槽304为环形结构(Trench ring);
栅极沟槽301与栅极引出沟槽302通过半导体基板端头(远离读者方向或朝向读者方向的端头)的横向沟槽连通;
(d)、各向同性湿法腐蚀去除上一步沟槽光刻时的光刻胶,随后湿法腐蚀去除淀积的沟槽刻蚀阻挡层;
(e)、在上述沟槽结构内壁生长绝缘氧化层4,绝缘氧化层4分布在整个半导体基板正面;栅极沟槽301内壁的绝缘氧化层就是栅氧层;
如图3所示,
(f)、在半导体基板正面淀积多晶硅;多晶硅填充N-型外延层2内的沟槽,及覆盖N-型外延层2表面;
刻蚀半导体基板正面的多晶硅,仅保留在沟槽内的多晶硅,同时保留半导体基板正面的绝缘氧化层4厚度在一定范围内,比如15~25nm,典型地,20nm;
此步骤可在栅极沟槽301内形成栅电极301′,在分压保护沟槽303内形成分压保护环303′,在截止保护沟槽304内形成截止保护环304′;
(g)、在半导体基板的正面注入P-型杂质离子,通过高温退火形成P-型体区5;P-型体区5位于N-型外延层2上部,P-型体区5横贯整个半导体基板;
如图4所示,
(h)、在N-型外延层2表面淀积绝缘介质层6,并回流;
(i)、通过接触孔版光刻(CT光罩)、选择性的掩蔽和刻蚀绝缘介质层6,刻蚀深度与淀积的绝缘介质层6厚度相同,在绝缘介质层6表面形成引线孔7;
各引线孔7分别位于有源区A内P-型体区5上方、栅极引出区B内栅引出结构302′上方、截止保护区D内截止保护环304′外侧的P-型体区5上方;
(j)、各向同性湿法腐蚀去除上一步刻蚀引线孔7时的光刻胶;
如图5所示,
(k)、通过引线孔7注入N+型杂质,并退火;
在有源区A内P-型体区5上部形成N+型源极8;
在截止保护区D内截止保护环304′外侧的P-型体区5上部形成N+型子区9;
如图6所示,
(l)、通过引线孔7进行选择性干法刻蚀,刻蚀深度大于N+型源极8深度且小于P-型体区5的结深;
如图7所示,
(m)、在上述绝缘介质层6和引线孔7内均匀淀积正面金属,选择性的掩蔽和刻蚀正面金属层(通过metal光罩光刻),得到连接栅引出结构302′的栅极金属10和连接第一导电类型源极8的源极金属11,以及连接第一导电类型子区9的金属板12;
(n)进行背面金属工艺,形成器件漏极,完成最终器件结构。器件漏极是形成与衬底背面的漏极金属。
需要说明的是,图1至图6显示了DMOS器件的部分截面,图中右侧是靠近半导体基板中央,左侧是靠近半导体基板外缘;
通过上述制造工艺,获得的一种沟槽DMOS器件,包括N+型衬底1,以及在N+型衬底1上形成的N-型外延层2,N+型衬底1和N-型外延层2构成形成半导体基板;所述半导体基板上包括有源区A、栅极引出区B和终端保护区;
有源区A位于半导体基板中央区域,栅极引出区B位于有源区A外侧,终端保护区位于有源区A和栅极引出区B外圈;
在有源区A内,N-型外延层2上部有P-型体区5和沟槽状栅电极301′,栅电极301′顶部侧面设有N+型源极8;栅电极301′与N+型源极8、P-型体区5、N-型外延层2通过栅氧层电绝缘;
在有源区A内,N-型外延层2表面覆盖绝缘介质层6,绝缘介质层6中设有引线孔7,源极金属11淀积在绝缘介质层6表面和引线孔中,与P-型体区5和N+型源极8接触;栅电极301′通过其顶部的绝缘介质层6与源极金属11隔离;
在栅极引出区B内,N-型外延层2上部有P-型体区5和沟槽状栅引出结构302′,栅引出结构302′与P-型体区5、N-型外延层2通过绝缘氧化层4电绝缘;N-型外延层2表面覆盖绝缘介质层6,栅引出结构302′上方的绝缘介质层6中设有引线孔7,栅极金属10淀积在绝缘介质层6表面和栅极引出区B内引线孔中,与栅引出结构302′连接;
栅电极301′与栅引出结构302′通过半导体基板端头的横向沟槽连接。
终端保护区包括位于有源区A和栅极引出区B外圈的分压保护区C,以及位于分压保护区C外圈的截止保护区D;
在分压保护区C内,N-型外延层2上部有P-型体区5和沟槽状分压保护环303′;分压保护环303′与P-型体区5、N-型外延层2通过绝缘氧化层4电绝缘;N-型外延层2表面覆盖绝缘介质层6;
在截止保护区D内,N-型外延层2上部有P-型体区5和沟槽状截止保护环304′;截止保护环304′外侧的P-型体区5上部形成N+型子区9;外延层2表面覆盖绝缘介质层6,绝缘介质层6上设有金属板12,金属板12通过绝缘介质层6中的引线孔向下延伸并连接N+型子区9;截止保护环304′与P-型体区5、N-型外延层2和金属板12的下延伸部通过绝缘氧化层4电绝缘;
金属板12下延伸部的深度大于N+型子区9深度且小于P-型体区5的结深。
N+型子区9位于金属板12下延伸部外侧。
本发明提供的技术方案,其特点在于,设计中不使用源极光刻板,整套工艺流程只需要3层光罩即可实现(不包含钝化层光刻板),3层光刻板分别实现的功能是沟槽刻蚀(TR)、接触孔引出(CT)、金属电极光刻(Metal);源区形成在接触孔光刻工艺之后;所述发明结构和制造方法包括有源区和终端保护区,器件终端保护结构使用Trench ring(沟槽状的保护环)设计,终端保护区由至少1个以上的Trench ring 组成,终端保护区Trench ring与元胞区(有源区A和栅极引出区B)栅沟槽刻蚀是同一刻蚀步骤完成。
所述“第一导电类型”和“第二导电类型”两者中对于N型MOS场效应管,第一导电类型指N型,第二导电类型为P型;
在其他实施例中,对于P型MOS场效应管,第一导电类型与第二导电类型所指的类型与N型MOS场效应管正好相反。

Claims (7)

1.一种沟槽DMOS器件的制造方法,其特征在于,包括以下步骤:
(a)、提供第一导电类型重掺杂衬底(1),并在第一导电类型重掺杂衬底(1)上形成第一导电类型轻掺杂外延层(2);形成半导体基板;
(b)、在第一导电类型轻掺杂外延层(2)上淀积沟槽刻蚀阻挡层;
(c)、在外延层(2)正面通过沟槽光刻、刻蚀形成多个阵列型的沟槽;所述沟槽包括位于半导体基板中央有源区(A)内的栅极沟槽(301)、有源区(A)外侧的栅极引出区(B)内的栅极引出沟槽(302)、有源区(A)和栅极引出区(B)外圈的分压保护区(C)内的分压保护沟槽(303)、分压保护区(C)外圈的截止保护区(D)内的截止保护沟槽(304);其中,分压保护沟槽(203)和截止保护沟槽(304)为环形结构;
(d)、去除上一步沟槽光刻时的光刻胶,随后湿法腐蚀去除淀积的沟槽刻蚀阻挡层;
(e)、在上述沟槽结构内壁生长绝缘氧化层(4),绝缘氧化层(4)也分布在整个半导体基板正面;
(f)、在半导体基板正面淀积多晶硅;多晶硅填充外延层(2)内的沟槽,及覆盖外延层(2)表面;
刻蚀半导体基板正面的多晶硅,仅保留在沟槽内的多晶硅,同时保留半导体基板正面的绝缘氧化层(4)厚度在一定范围内;
在栅极沟槽(301)内形成栅电极(301′),在栅极引出沟槽(302)内形成栅引出结构(302′),在分压保护沟槽(303)内形成分压保护环(303′),在截止保护沟槽(304)内形成截止保护环(304′);
(g)、在半导体基板的正面注入第二导电类型杂质离子,通过高温退火形成第二导电类型体区(5);第二导电类型体区(5)位于第一导电类型外延层(2)上部,第二导电类型体区(5)横贯整个半导体基板;
(h)、在外延层(2)表面淀积绝缘介质层(6),并回流;
(i)、通过接触孔版光刻、选择性的掩蔽和刻蚀绝缘介质层(6),刻蚀深度与淀积的绝缘介质层(6)厚度相同,在绝缘介质层(6)表面形成引线孔(7);
各引线孔(7)分别位于有源区(A)内第二导电类型体区(5)上方、栅极引出区(B)内栅引出结构(302′)上方、截止保护区(D)内截止保护环(304′)外侧的第二导电类型体区(5)上方;
(j)、去除上一步刻蚀引线孔(7)时的光刻胶;
(k)、通过引线孔(7)注入第一导电类型杂质,并退火;
在有源区(A)内第二导电类型体区(5)上部形成第一导电类型源极(8);
在截止保护区(D)内截止保护环(304′)外侧的第二导电类型体区(5)上部形成第一导电类型子区(9);
(l)、通过引线孔(7)进行选择性干法刻蚀,刻蚀深度大于第一导电类型源极(8)深度且小于第二导电类型体区(5)的结深;
(m)、在上述绝缘介质层(6)和引线孔(7)内均匀淀积正面金属,选择性的掩蔽和刻蚀正面金属层,得到连接栅引出结构(302′)的栅极金属(10)和连接第一导电类型源极(8)的源极金属(11),以及连接第一导电类型子区(9)的金属板(12);
(n)进行背面金属工艺,形成器件漏极,完成最终器件结构。
2.如权利要求1所述的沟槽DMOS器件的制造方法,其特征在于,
步骤(c)中,栅极沟槽(301)与栅极引出沟槽(302)通过半导体基板端头的横向沟槽连通。
3.如权利要求1所述的沟槽DMOS器件的制造方法,其特征在于,
步骤(f)中,绝缘氧化层(4)厚度控制在15~25nm。
4.一种沟槽DMOS器件,包括第一导电类型重掺杂衬底(1),以及在第一导电类型重掺杂衬底(1)上形成的第一导电类型轻掺杂外延层(2),衬底(1)和外延层(2)构成形成半导体基板;其特征在于,半导体基板上包括有源区(A)、栅极引出区(B)和终端保护区;
有源区(A)位于半导体基板中央区域,栅极引出区(B)位于有源区(A)外侧,终端保护区位于有源区(A)和栅极引出区(B)外圈;
在有源区(A)内,第一导电类型外延层(2)上部有第二导电类型体区(5)和沟槽状栅电极(301′),栅电极(301′)顶部侧面设有第一导电类型源极(8);栅电极(301′)与第一导电类型源极(8)、第二导电类型体区(5)、外延层(2)通过栅氧层电绝缘;
在有源区(A)内,外延层(2)表面覆盖绝缘介质层(6),第二导电类型体区(5)上方的绝缘介质层(6)中设有引线孔(7),源极金属(11)淀积在绝缘介质层(6)表面和有源区(A)内引线孔中,与第二导电类型体区(5)和第一导电类型源极(8)连接;栅电极(301′)通过其顶部的绝缘介质层(6)与源极金属(11)隔离;
在栅极引出区(B)内,第一导电类型外延层(2)上部有第二导电类型体区(5)和沟槽状栅引出结构(302′),栅引出结构(302′)与第二导电类型体区(5)、外延层(2)通过绝缘氧化层(4)电绝缘;外延层(2)表面覆盖绝缘介质层(6),栅引出结构(302′)上方的绝缘介质层(6)中设有引线孔(7),栅极金属(10)淀积在在绝缘介质层(6)表面和栅极引出区(B)内引线孔中,与栅引出结构(302′)连接;
栅电极(301′)与栅引出结构(302′)通过半导体基板端头的横向沟槽连接。
5.如权利要求4所述的沟槽DMOS器件,其特征在于,
源极金属(11)在引线孔(7)中的深度大于第一导电类型源极(8)深度且小于第二导电类型体区(5)的结深。
6.如权利要求4所述的沟槽DMOS器件,其特征在于,
终端保护区包括位于有源区(A)和栅极引出区(B)外圈的分压保护区(C),以及位于分压保护区(C)外圈的截止保护区(D);
在分压保护区©内,第一导电类型外延层(2)上部有第二导电类型体区(5)和沟槽状分压保护环(303′);分压保护环(303′)与第二导电类型体区(5)、外延层(2)通过绝缘氧化层(4)电绝缘;外延层(2)表面覆盖绝缘介质层(6);
在截止保护区(D)内,第一导电类型外延层(2)上部有第二导电类型体区(5)和沟槽状截止保护环(304′);截止保护环(304′)外侧的第二导电类型体区(5)上部形成第一导电类型子区(9);外延层(2)表面覆盖绝缘介质层(6),绝缘介质层(6)上设有金属板(12),金属板(12)通过绝缘介质层(6)中的引线孔向下延伸并连接第一导电类型子区(9);截止保护环(304′)与第二导电类型体区(5)、外延层(2)和金属板(12)的下延伸部通过绝缘氧化层(4)电绝缘;
金属板(12)下延伸部的深度大于第一导电类型子区(9)深度且小于第二导电类型体区(5)的结深。
7.如权利要求6所述的沟槽DMOS器件,其特征在于,
第一导电类型子区(9)位于金属板(12)下延伸部外侧。
CN201610962608.1A 2016-11-04 2016-11-04 沟槽dmos器件的制造方法和结构 Active CN106298544B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610962608.1A CN106298544B (zh) 2016-11-04 2016-11-04 沟槽dmos器件的制造方法和结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610962608.1A CN106298544B (zh) 2016-11-04 2016-11-04 沟槽dmos器件的制造方法和结构

Publications (2)

Publication Number Publication Date
CN106298544A true CN106298544A (zh) 2017-01-04
CN106298544B CN106298544B (zh) 2023-06-06

Family

ID=57719786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610962608.1A Active CN106298544B (zh) 2016-11-04 2016-11-04 沟槽dmos器件的制造方法和结构

Country Status (1)

Country Link
CN (1) CN106298544B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876472A (zh) * 2017-04-19 2017-06-20 无锡新洁能股份有限公司 一种电荷耦合功率mosfet器件及其制造方法
CN107665924A (zh) * 2017-09-19 2018-02-06 中航(重庆)微电子有限公司 一种中低压沟槽型mos器件及其制备方法
CN109585537A (zh) * 2017-09-28 2019-04-05 丰田合成株式会社 半导体装置
CN110047757A (zh) * 2019-04-24 2019-07-23 贵州芯长征科技有限公司 低成本的沟槽型功率半导体器件的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752423A (zh) * 2010-01-08 2010-06-23 无锡新洁能功率半导体有限公司 沟槽型大功率mos器件及其制造方法
CN101807574A (zh) * 2010-03-30 2010-08-18 无锡新洁能功率半导体有限公司 一种沟槽型功率mos器件及其制造方法
CN104377245A (zh) * 2014-11-26 2015-02-25 张家港凯思半导体有限公司 一种沟槽型mos器件及其制造方法和终端保护结构
CN206194695U (zh) * 2016-11-04 2017-05-24 无锡新洁能股份有限公司 沟槽dmos器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752423A (zh) * 2010-01-08 2010-06-23 无锡新洁能功率半导体有限公司 沟槽型大功率mos器件及其制造方法
CN101807574A (zh) * 2010-03-30 2010-08-18 无锡新洁能功率半导体有限公司 一种沟槽型功率mos器件及其制造方法
CN104377245A (zh) * 2014-11-26 2015-02-25 张家港凯思半导体有限公司 一种沟槽型mos器件及其制造方法和终端保护结构
CN206194695U (zh) * 2016-11-04 2017-05-24 无锡新洁能股份有限公司 沟槽dmos器件

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876472A (zh) * 2017-04-19 2017-06-20 无锡新洁能股份有限公司 一种电荷耦合功率mosfet器件及其制造方法
CN107665924A (zh) * 2017-09-19 2018-02-06 中航(重庆)微电子有限公司 一种中低压沟槽型mos器件及其制备方法
CN109585537A (zh) * 2017-09-28 2019-04-05 丰田合成株式会社 半导体装置
CN109585537B (zh) * 2017-09-28 2021-09-14 丰田合成株式会社 半导体装置
CN110047757A (zh) * 2019-04-24 2019-07-23 贵州芯长征科技有限公司 低成本的沟槽型功率半导体器件的制备方法

Also Published As

Publication number Publication date
CN106298544B (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
US20150035006A1 (en) Manufacturing method of semiconductor device
CN104733531A (zh) 使用氧化物填充沟槽的双氧化物沟槽栅极功率mosfet
CN106298544A (zh) 沟槽dmos器件的制造方法和结构
CN104282645A (zh) 沟渠式功率半导体器件及其制作方法
TWI421923B (zh) 具有源極溝槽之溝槽式功率半導體元件的製造方法
CN106024630B (zh) 沟槽栅功率器件的制造方法及结构
CN107342326A (zh) 一种降低导通电阻的功率半导体器件及制造方法
WO2016011674A1 (zh) 功率mos晶体管及其制造方法
CN114975602A (zh) 一种高可靠性的igbt芯片及其制作方法
CN109244123A (zh) 耗尽型mosfet器件及其制造方法
CN105655402A (zh) 低压超结mosfet终端结构及其制造方法
CN106298479B (zh) 一种功率器件的结终端扩展结构及其制造方法
CN106158927A (zh) 一种优化开关特性的超结半导体器件及制造方法
CN206194695U (zh) 沟槽dmos器件
CN104617045A (zh) 沟槽栅功率器件的制造方法
CN115376925B (zh) 一种沟槽栅mosfet器件及其制造方法
CN104103693A (zh) 一种u形沟槽的功率器件及其制造方法
CN103151380A (zh) 一种沟槽型半导体功率器件及其制造方法和终端保护结构
KR101369973B1 (ko) 전력용 센스 모스펫 제조 방법
CN112864245A (zh) 整合肖特基功率mosfet及其制造方法
CN106847923B (zh) 超结器件及其制造方法
CN104900703A (zh) 一种沟槽mosfet终端结构和沟槽mosfet器件及其制备方法
CN208819887U (zh) 耗尽型mosfet器件
CN107895738B (zh) 一种阱局部高掺的mos型器件及制备方法
CN108428733B (zh) 超结器件及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant