CN106206073B - 钴离子掺杂聚苯胺/碳纳米管复合电极材料及其制备方法 - Google Patents

钴离子掺杂聚苯胺/碳纳米管复合电极材料及其制备方法 Download PDF

Info

Publication number
CN106206073B
CN106206073B CN201610649902.7A CN201610649902A CN106206073B CN 106206073 B CN106206073 B CN 106206073B CN 201610649902 A CN201610649902 A CN 201610649902A CN 106206073 B CN106206073 B CN 106206073B
Authority
CN
China
Prior art keywords
polyaniline
preparation
carbon nanotube
combination electrode
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610649902.7A
Other languages
English (en)
Other versions
CN106206073A (zh
Inventor
李宝铭
闫冬
施明伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201610649902.7A priority Critical patent/CN106206073B/zh
Publication of CN106206073A publication Critical patent/CN106206073A/zh
Application granted granted Critical
Publication of CN106206073B publication Critical patent/CN106206073B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Composite Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种钴离子掺杂聚苯胺/碳纳米管复合电极材料及其制备方法,属于超级电容器用电极材料的制备领域。该制备方法包括以下过程:将苯胺基团修饰的多壁碳纳米管(MWCNTs‑ph‑NH2)和氯化钴(CoCl2)加入到盐酸水溶液中,超声,使MWCNTs‑ph‑NH2和CoCl2在盐酸水溶液中分散均匀;将苯胺加入到上述配制的MWCNTs‑ph‑NH2和CoCl2的分散液中,滴加过硫酸铵进行化学氧化聚合,经过滤、洗涤、干燥,制备得到钴离子掺杂聚苯胺/碳纳米管复合电极材料。本发明制备的复合电极材料不仅具有大量的纤毛和孔隙结构,而且具有较高的比电容和较优异的循环稳定性,同时制备工艺简单,具有显著的经济价值与社会效益。

Description

钴离子掺杂聚苯胺/碳纳米管复合电极材料及其制备方法
技术领域
本发明属于超级电容器用电极材料的制备领域,具体涉及一种钴离子掺杂聚苯胺/碳纳米管复合电极材料及其制备方法。
背景技术
在众多导电聚合物中,聚苯胺因其独特的掺杂机制、良好的环境稳定性、低廉的价格、简便的制备方法等优点成为超级电容器用的新一代电极材料。然而,聚苯胺的比电容较低,且在长时间循环充放电下,比电容会迅速衰减。因此,研究人员不断开发各种聚苯胺复合材料。研究发现,碳纳米管(CNTs)的加入可以使聚苯胺拥有更加优异的电化学性能。邓梅根(杨邦朝,胡永达,汪斌华;化学学报,2005,63(12):1127-1130)、高珍珍(佟浩,陈建慧,岳世鸿,白文龙,张校刚,潘燕飞,石明,宋玉翔;化学学报,2014,72(11):1175-1181)和钟新仙(王芳平,汪艳芳,王新宇,卢胜彬,王红强;化工新型材料,2010,38(5):56-58)等制备了不同种类的聚苯胺/碳纳米管复合材料,研究发现,将反应可控的聚苯胺沉积在高导电性能的碳纳米管表面,可以显著提高聚苯胺的比电容和循环稳定性。
碳纳米管在聚苯胺中所起到的提高电化学性能的作用与其结构的完整性以及它在聚苯胺中的分散性密切相关。Islam M F(Islam M F, Rojas E, Bergey D M, JohnsonA T, Yodh A G. Nano Letters, 2003, 3(2): 269-273)发现通过十二烷基苯磺酸钠、辛基苯磺酸钠、苯甲酸钠、十二烷基硫酸钠等表面活性剂的物理吸附作用可以制备出水溶性碳纳米管。另外,苯环和碳纳米管间的π-π配位作用可以增加表面活性剂与碳纳米管间的物理吸附作用。潘燕(潘燕,张莉萍,张克营,马海艳,张玉忠;安徽师范大学学报(自然科学版),2007,30(5):575-579)将单壁碳纳米管分散在聚苯乙烯磺酸钠的氯仿溶液中,电镜图显示在碳管上面分散着聚苯乙烯磺酸钠,成功阻止了碳纳米管间的自相缠绕。黎沙泥(黎沙泥,许向彬,李忠明,杨鸣波;工程塑料应用,2004,32(10):70-72)提出,因碳纳米管本身具有高度离域的π电子,因此对碳纳米管进行有机非共价键化修饰,可使碳纳米管表面带有大量的有机官能团,且在不破坏石墨片层自身的大π键电子前提下,这些π电子可以与有机分子中苯基、乙炔基的π电子通过π-π共轭、配位效应相结合。
近些年来,研究人员发现金属离子掺杂聚苯胺具有独特的电子交换方式,它们可以在不改变聚苯胺分子链上π电子结构的前提下,通过配位络合键接在聚苯胺的亚胺N原子上,得到金属离子掺杂聚苯胺。这些金属离子的存在会降低苯胺单体的质子化程度,影响聚苯胺的结构和表面形貌,并通过改变其电子传输路径提高聚苯胺的导电性和电化学性能。目前制备金属离子掺杂聚苯胺主要有两种方法:一种方法是采用化学氧化聚合法合成聚苯胺,然后采用金属离子对聚苯胺进行二次掺杂,如方静(方静,崔沐,张治安,赖延清,李劫;功能材料,2011,42(1):171-174)和袁鹏(袁鹏,郑晓冬;化学工程与装备,2015,(7):27-28)采用化学聚合法制备盐酸掺杂聚苯胺,去掺杂后再分别利用Fe2+、Co2+、Ni2+、Zn2+和Fe3+等金属离子进行二次掺杂,制得金属离子掺杂聚苯胺,这种方法的缺点在于化学氧化聚合法合成聚苯胺的结晶度较高,在二次掺杂过程中,体积较大的金属离子不容易掺杂进入聚苯胺分子内部,导致二次掺杂不完全,金属离子在聚苯胺中的分布也不均匀,势必影响金属离子掺杂聚苯胺的电化学性能。另一种方法是采用电化学方法直接制备金属离子掺杂聚苯胺,如徐惠(徐惠,李春雷,庄君霞,陈泳,张俊龙,陆海林;功能材料,2014,45(16):16014-16017)在含有苯胺、硝酸和硝酸钴的溶液中,采用循环伏安法在不锈钢基底表面制备钴离子掺杂聚苯胺复合薄膜,这种方法存在操作复杂、产量低和分子量小等缺点。
发明内容
本发明的目的在于提供一种钴离子掺杂聚苯胺/碳纳米管复合电极材料及其制备方法。为了进一步提高钴离子掺杂聚苯胺的电化学性能,在化学氧化聚合体系中添加苯胺基团修饰的多壁碳纳米管,同时碳纳米管上的苯胺基团还可以参与聚合反应,提高钴离子掺杂聚苯胺和碳纳米管之间的相容性。该复合电极材料不仅具有大量的纤毛和孔隙结构,而且具有较高的比电容和较优异的循环稳定性,同时制备工艺简单,具有显著的经济价值与社会效益。
为实现上述目的,本发明采用如下技术方案:
将苯胺基团修饰的多壁碳纳米管(MWCNTs-ph-NH2)和氯化钴(CoCl2)的超声分散液加入到苯胺的聚合体系中,经化学氧化法制备得到钴离子掺杂聚苯胺/碳纳米管复合电极材料。
制备方法包括以下步骤:
(1)将MWCNTs-ph-NH2和CoCl2加入到盐酸水溶液中,超声,使MWCNTs-ph-NH2和CoCl2在盐酸水溶液中分散均匀;
(2)将苯胺加入到步骤(1)配制的MWCNTs-ph-NH2和CoCl2的分散液中,滴加过硫酸铵进行化学氧化聚合,经过滤、洗涤、干燥,制备得到钴离子掺杂聚苯胺/碳纳米管复合电极材料。
更具体的步骤如下:
(1)称取20~80 mg MWCNTs-ph-NH2和0.8~2.0 g CoCl2加入到60~150 mL 1 mol/L的盐酸水溶液中,超声30 min,使MWCNTs-ph-NH2和CoCl2在盐酸水溶液中分散均匀;
(2)量取0.6~1.5 g苯胺,加入到步骤(1)配制的MWCNTs-ph-NH2和CoCl2的分散液中,磁力搅拌条件下,向反应体系中缓慢滴加30~90 mL 1 mol/L过硫酸铵的盐酸水溶液,滴加结束后,0~5 ℃继续反应4~12 h,减压过滤,产物依次用无水乙醇和去离子水交叉洗涤至滤液澄清,在60 ℃下真空干燥24 h,制备得到钴离子掺杂聚苯胺/碳纳米管复合电极材料。
本发明所制得的复合电极材料中,钴离子的掺杂率为1.75~2.03 wt%。
本发明的显著优点在于:
本发明制备的复合电极材料具有大量的纤毛和孔隙结构,且制备工艺简单、操作可控,所制备的复合电极材料在充放电电流密度分别为0.2 g/A、0.5 g/A、1 g/A和2 g/A时,比电容分别为488 F/g、406 F/g、360 F/g和272 F/g,比聚苯胺的分别提高207 %、174%、190 %和294 %,充放电1000次后,比电容衰减至初始值的86.6 %,比聚苯胺的提高4 %。因该种材料具有较高的比电容和较优异的循环稳定性,主要用于制备超级电容器用电极。
附图说明
图1为实施例1制得的钴离子掺杂聚苯胺/碳纳米管复合电极材料的扫描电镜图。
具体实施方式
本发明用下列实施例来进一步说明本发明,但本发明的保护范围并不限于下列实施例。
实施例1
一种钴离子掺杂聚苯胺/碳纳米管复合电极材料的制备方法,具体步骤为:
(1)称取50 mg MWCNTs-ph-NH2和1.4 g CoCl2加入到100 mL 1 mol/L的盐酸水溶液中,超声30 min,使MWCNTs-ph-NH2和CoCl2在盐酸水溶液中分散均匀;
(2)量取1.0 g苯胺,加入到步骤(1)配制的MWCNTs-ph-NH2和CoCl2的分散液中,磁力搅拌条件下,向反应体系中缓慢滴加60 mL 1 mol/L过硫酸铵的盐酸水溶液,滴加结束后,2 ℃继续反应8 h,减压过滤,产物依次用无水乙醇和去离子水交叉洗涤至滤液澄清,在60 ℃下真空干燥24 h,制备得到钴离子掺杂聚苯胺/碳纳米管复合电极材料。复合电极材料中,钴离子的掺杂率为2.03 wt%。
将80 wt%产物、15 wt%乙炔炭黑和5 wt%聚偏氟乙烯混合均匀涂在泡沫镍上作为工作电极,以铂丝作为对电极,以饱和甘汞电极作为参比电极,以1 mol/L硝酸钠溶液作为电解液,测得该复合电极材料在充放电电流密度分别为0.2 g/A、0.5 g/A、1 g/A和2 g/A时,比电容分别为488 F/g、406 F/g、360 F/g和272 F/g,比聚苯胺的分别提高207 %、174%、190 %和294 %,充放电1000次后,比电容衰减至初始值的86.6 %,比聚苯胺的提高4 %。
实施例2
一种钴离子掺杂聚苯胺/碳纳米管复合电极材料的制备方法,具体步骤为:
(1)称取20 mg MWCNTs- ph-NH2和0.8 g CoCl2加入到60 mL 1 mol/L的盐酸水溶液中,超声30 min,使MWCNTs- ph-NH2和CoCl2在盐酸水溶液中分散均匀;
(2)量取0.6 g苯胺,加入到步骤(1)配制的MWCNTs- ph-NH2和CoCl2的分散液中,磁力搅拌条件下,向反应体系中缓慢滴加30 mL 1 mol/L过硫酸铵的盐酸水溶液,滴加结束后,0 ℃继续反应4 h,减压过滤,产物依次用无水乙醇和去离子水交叉洗涤至滤液澄清,在60 ℃下真空干燥24 h,制备得到钴离子掺杂聚苯胺/碳纳米管复合电极材料。复合电极材料中,钴离子的掺杂率为1.87 wt%。
将80 wt%产物、15 wt%乙炔炭黑和5 wt%聚偏氟乙烯混合均匀涂在泡沫镍上作为工作电极,以铂丝作为对电极,以饱和甘汞电极作为参比电极,以1 mol/L硝酸钠溶液作为电解液,测得该复合电极材料在充放电电流密度分别为0.2 g/A、0.5 g/A、1 g/A和2 g/A时,比电容分别为465 F/g、397 F/g、341 F/g和269 F/g,比聚苯胺的分别提高192 %、168%、175 %和289 %,充放电1000次后,比电容衰减至初始值的90.1 %,比聚苯胺的提高7.5 %。
实施例3
一种钴离子掺杂聚苯胺/碳纳米管复合电极材料的制备方法,具体步骤为:
(1)称取80 mg MWCNTs-ph-NH2和2.0 g CoCl2加入到150 mL 1 mol/L的盐酸水溶液中,超声30 min,使MWCNTs-ph-NH2和CoCl2在盐酸水溶液中分散均匀;
(2)量取1.5 g苯胺,加入到步骤(1)配制的MWCNTs-ph-NH2和CoCl2的分散液中,磁力搅拌条件下,向反应体系中缓慢滴加90 mL 1 mol/L过硫酸铵的盐酸水溶液,滴加结束后, 5 ℃继续反应12 h,减压过滤,产物依次用无水乙醇和去离子水交叉洗涤至滤液澄清,在60 ℃下真空干燥24 h,制备得到钴离子掺杂聚苯胺/碳纳米管复合电极材料。复合电极材料中,钴离子的掺杂率为1.75 wt%。
将80 wt%产物、15 wt%乙炔炭黑和5 wt%聚偏氟乙烯混合均匀涂在泡沫镍上作为工作电极,以铂丝作为对电极,以饱和甘汞电极作为参比电极,以1 mol/L硝酸钠溶液作为电解液,测得该复合电极材料在充放电电流密度分别为0.2 g/A、0.5 g/A、1 g/A和2 g/A时,比电容分别为435 F/g、387 F/g、344 F/g和270 F/g,比聚苯胺的分别提高173 %、161%、177 %和291 %,充放电1000次后,比电容衰减至初始值的88.8 %,比聚苯胺的提高6.2 %。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (2)

1.一种钴离子掺杂聚苯胺/碳纳米管复合电极材料的制备方法,其特征在于:具体步骤如下:
(1)称取20~80 mg MWCNTs-ph-NH2和0.8~2.0 g CoCl2加入到60~150 mL 1 mol/L盐酸水溶液中,超声30 min,使MWCNTs-ph-NH2和CoCl2在盐酸水溶液中分散均匀;
(2)量取0.6~1.5 g苯胺,加入到步骤(1)配制的MWCNTs-ph-NH2和CoCl2的分散液中,磁力搅拌条件下,向反应体系中缓慢滴加30~90 mL 1 mol/L过硫酸铵的盐酸水溶液,滴加结束后,0~5 ℃继续反应4~12 h,减压过滤,产物依次用无水乙醇和去离子水交叉洗涤至滤液澄清,在60 ℃下真空干燥24 h,制备得到钴离子掺杂聚苯胺/碳纳米管复合电极材料。
2.一种如权利要求1所述的制备方法制得的钴离子掺杂聚苯胺/碳纳米管复合电极材料,其特征在于:复合材料中,钴离子的掺杂率为1.75~2.03 wt%。
CN201610649902.7A 2016-08-10 2016-08-10 钴离子掺杂聚苯胺/碳纳米管复合电极材料及其制备方法 Expired - Fee Related CN106206073B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610649902.7A CN106206073B (zh) 2016-08-10 2016-08-10 钴离子掺杂聚苯胺/碳纳米管复合电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610649902.7A CN106206073B (zh) 2016-08-10 2016-08-10 钴离子掺杂聚苯胺/碳纳米管复合电极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106206073A CN106206073A (zh) 2016-12-07
CN106206073B true CN106206073B (zh) 2018-07-17

Family

ID=57514730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610649902.7A Expired - Fee Related CN106206073B (zh) 2016-08-10 2016-08-10 钴离子掺杂聚苯胺/碳纳米管复合电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106206073B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107093748A (zh) * 2017-04-12 2017-08-25 苏州大学 一种钴和氮共掺杂碳纳米管催化剂、制备方法及应用
CN108615619A (zh) * 2018-05-09 2018-10-02 福州大学 一种金属离子掺杂聚噻吩/石墨烯纳米纤维复合电极材料的制备方法
CN109440158A (zh) * 2018-12-28 2019-03-08 南京时恒电子科技有限公司 一种Cu-Ti-Co复合电极及其制备方法
CN112159523B (zh) * 2020-10-13 2021-10-29 福州大学 一种聚苯胺/二硫化镍/石墨烯纳米纤维复合材料及其制备方法
CN113960140B (zh) * 2021-09-24 2023-11-21 合肥天一生物技术研究所有限责任公司 一种用于血浆中维生素b1含量检测的丝网印刷电极
CN113945618B (zh) * 2021-09-24 2024-02-09 合肥天一生物技术研究所有限责任公司 一种用于血浆中维生素b2含量检测的丝网印刷电极

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381464A (zh) * 2008-10-27 2009-03-11 天津大学 磺化聚苯胺接枝多壁碳纳米管复合材料的制备方法
CN104091695A (zh) * 2014-07-08 2014-10-08 福州大学 一种聚苯胺/碳纳米管复合电极材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381464A (zh) * 2008-10-27 2009-03-11 天津大学 磺化聚苯胺接枝多壁碳纳米管复合材料的制备方法
CN104091695A (zh) * 2014-07-08 2014-10-08 福州大学 一种聚苯胺/碳纳米管复合电极材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Preparation and Characterization of the Cobalt Doped Polyaniline/MWCNT Nanocomposites for Supercapacitor Application;Soumen Giri等;《Journal of Materials Science Research》;20120518;第1卷(第3期);第10-18页 *
聚苯胺/对苯二胺功能化多壁碳纳米管导电复合材料的制备、结构与性能研究;许军;《中国博士学位论文全文数据库工程科技I辑》;20101215(第12期);第B020-37页 *

Also Published As

Publication number Publication date
CN106206073A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN106206073B (zh) 钴离子掺杂聚苯胺/碳纳米管复合电极材料及其制备方法
Ni et al. Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors
Zhu et al. Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications
Zhang et al. Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor
CN108364797B (zh) 一种碳纳米管织物电极及纱线电极的制备方法及电极的应用
Qiu et al. Preparation and application of aligned carbon nanotube/polymer composite material
CN104091695B (zh) 一种聚苯胺/碳纳米管复合电极材料及其制备方法
CN106810675B (zh) 一种石墨烯复合导电材料及制备方法
CN103971941B (zh) 应用于超级电容器的石墨烯/聚苯胺/氧化锡复合材料及其制备方法
CN107004518A (zh) 复合材料及其制备方法
CN104672445A (zh) 一种多壁碳纳米管/聚苯胺纳米复合材料制备方法
CN102558586B (zh) 一种聚乙烯醋酸乙烯酯复合膜的制备方法
CN109755579B (zh) 锂离子电池用正极复合导电粘结剂的制备方法
CN105602387A (zh) 碳纳米管增强聚苯胺电化学防腐复合材料的制备方法及其应用
Kazemi et al. Metal-polyaniline nanofibre composite for supercapacitor applications
CN106876154B (zh) 聚苯胺—磺化石墨烯复合电极材料的制备方法
CN108172846B (zh) 一种双层碳-氮复合物包裹的钴掺杂纳米材料、制备方法及应用
CN106504910A (zh) 一种蒽醌分子共接枝碳/导电聚合物复合材料及其制备方法
CN109167043A (zh) 溶剂热连锁聚合法制备高分子复合电极材料
Olad et al. Surfactant-assisted synthesis of polyaniline nanofibres without shaking and stirring: effect of conditions on morphology and conductivity
Liu et al. A hydrogel-mediated scalable strategy toward core-shell polyaniline/poly (acrylic acid)-modified carbon nanotube hybrids as efficient electrodes for supercapacitor applications
Li et al. Synthesis of feather fan-like PANI electrodes for supercapacitors
CN104979103A (zh) 一种螺旋线形非对称超级电容器制备方法
Cao et al. Redox-active doped polypyrrole microspheres induced by phosphomolybdic acid as supercapacitor electrode materials
Wang et al. Facile strategy for mass production of polymer-supported film electrodes for high performance flexible symmetric solid-state supercapacitors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180717

Termination date: 20210810