CN1061187C - 具有单偏置单元的低压射频放大器和混频器及其方法 - Google Patents

具有单偏置单元的低压射频放大器和混频器及其方法 Download PDF

Info

Publication number
CN1061187C
CN1061187C CN94116000A CN94116000A CN1061187C CN 1061187 C CN1061187 C CN 1061187C CN 94116000 A CN94116000 A CN 94116000A CN 94116000 A CN94116000 A CN 94116000A CN 1061187 C CN1061187 C CN 1061187C
Authority
CN
China
Prior art keywords
circuit
amplifier
mixer
emitter
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN94116000A
Other languages
English (en)
Other versions
CN1106965A (zh
Inventor
C·施图宾
R·D·舒尔茨
T·D·布罗刚
S·G·李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harris Corp
Original Assignee
Harris Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harris Corp filed Critical Harris Corp
Publication of CN1106965A publication Critical patent/CN1106965A/zh
Application granted granted Critical
Publication of CN1061187C publication Critical patent/CN1061187C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/4508Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using bipolar transistors as the active amplifying circuit
    • H03F3/45085Long tailed pairs
    • H03F3/45089Non-folded cascode stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1433Balanced arrangements with transistors using bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1441Balanced arrangements with transistors using field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1458Double balanced arrangements, i.e. where both input signals are differential
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1491Arrangements to linearise a transconductance stage of a mixer arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/302Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in bipolar transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0001Circuit elements of demodulators
    • H03D2200/0025Gain control circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0043Bias and operating point
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/453Controlling being realised by adding a replica circuit or by using one among multiple identical circuits as a replica circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45311Indexing scheme relating to differential amplifiers the common gate stage of a cascode dif amp being implemented by multiple transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45374Indexing scheme relating to differential amplifiers the AAC comprising one or more discrete resistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45464Indexing scheme relating to differential amplifiers the CSC comprising one or more coils
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45508Indexing scheme relating to differential amplifiers the CSC comprising a voltage generating circuit as bias circuit for the CSC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45544Indexing scheme relating to differential amplifiers the IC comprising one or more capacitors, e.g. coupling capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45596Indexing scheme relating to differential amplifiers the IC comprising one or more biasing resistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45702Indexing scheme relating to differential amplifiers the LC comprising two resistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

单个或多个低压RF电路的单偏置单元包括具有对温度和集成电路工艺参数进行补偿的一个以上放大器和一个以上单或双平衡混频器,电源可以是低电压而不影响放大器和/或混频器的动态范围,这是由于将整个电源电压加于负载,通过运算放大器和/或缓冲器电路将偏置施加给基极电路。对于混频器,把增益控制阻抗从发射极移到集电极电路使其具有较低的噪声系数。电路可以是分立元件或集成电路的部件。并披露了相应的方法。

Description

具有单偏置单元的低压射频放大器和混频器及其方法
本发明涉及低压射频放大器和混频器,以及将它们集成的半导体电路,在该电路中一种单偏置单元可以伺服于具有对温度和半导体工艺参数这两者进行补偿的多个低压射频电路。
参照附图,特别是附图1,将会了解射频放大器及通常的应用,在共发射极(即交流接地发射极的配置中,这样的放大器通常运行在例如12至15伏的高压。
关于现有技术的射频放大器,如图1所示,一射频输入信号RF可被送到输入端20,并通过跨接的耦合电容器送到-NPN晶体管Q1的基极,该集电极通过一负载电阻RL连接到该偏置电路,已被放大的输出电压信号可从晶体Q1的集电极取出,并通过跨接的耦合电容器送到一输出端22。
用于该放大器的偏置电路在图1中的方块表示,也可以方便地用图2、图3的若干种形式表示并特别由Heyward和DeMaw,Solid State Design For The Radio Amateur,American RadioRelay League,Inc.Newington,Connecticut 1986(参阅第11-12页,图13和图14)所披露,在图2的偏置电路中,由于使用一晶体管而增强了温度稳定性,和在图3中则利用一运算放大器。
如所熟知的,共射放大器集电极上的电压在零集电极电流时,在它的动态范围的上端施加一制约,当电压箝位开始时,由于增益压缩的结果而产生的谐波,使得动态范围同其它频道相干扰,如图1放大器中该偏置电路两端电压降的结果是,能提供给负载电阻的最大电压远小于Vcc,一般约0.6Vcc。
最近,例如已熟知的,申请号为5,105,165的美国专利所详细说明的,它提出去偏置射频放大器的基极而不是其中包括有电感元件的发射极,无论如何,这样放大器的偏置不包括用于隔离来自负载影响的该偏置电路晶体管的装置。
本发明的一个目的是提供一新颖的低压射频放大器电路和能消除在现有技术中用低压电源对该动态范围方面的一个重要限制的方法。
本发明的进一步的目的提供一新颖的放大器和降低由于增益压缩的结果而导致的动态范围的损耗。
另一个目的是提供用在射频放大器中使谐波干扰减至最小的新颖方法和电路,并提供用于降低在噪声数据没有实质减少的射频放大器中的增益压缩的方法和电路。
本发明还有一个进一步目的是提供隔离负载对偏置影响的新颖放大器和方法,还提供使温度补偿低压放大器的一新颖方法和电路。
混频器一般用在射频通讯中,使低频信息信号(例如一音频信号)的频率变换为射频以用于传输,并将所接收的射频信号的频率进行下降变换为音频。如图6所示是现有技术的一单平衡有源混频器,其中一本机振荡器信号LO同射频信号RF相混频以提供一中间频率信号IF,如图6所示,用于该混频器的并由连接增益控制电阻RG的晶体管Q3的射极电路中的电流源所提供的该偏置可以有,但不必一定有。
如已熟知的,混频器中的噪声系数是输出信号的信噪比与输入信号的信噪比之比。该电阻器h控制该晶体管Q3的增益,这样并影响该电路的动态范围,另外,该电阻器是在射频晶体管Q3的发射极电路中,它也影响输入阻抗和该混频器的噪声系数。
在双平衡混频器中,如图8所示的现有技术,将增益控制电阻器RG典型的配置在该两个射频放大器晶体管Q5和Q6的射极电路中,并要求两个互补射频输入信号RF和RF,该补偿射频输入信号的产生,依次需要利用昂贵的平衡变压器。
在两个RF输入信号不是所要求的(即,非平衡混频器)的情况下,在图8中的端点28可以接地,和IF与IF输出信号以适当的相移相结合(在电路中示出),以避免在不使用有效输出信号的情况下的固有功率损耗,这种结合产生的结果是明显的带宽损耗。
如图8所示,该LO晶体管的基极-集电极电容器补偿是由以平衡混频器原来就提供的,这样的补偿取消了Cu并改进了本机振荡器晶体管的开关特性,使它们的效率更高并且增加了截止点,无论如何,在单平衡混频器中,由于没有第二对交叉连接的晶体管,使得LO开关变慢。
利用一单偏置单元为多个模拟电路提供偏置,这也是熟知的,如它在集成电路中具有特殊的优点,其中具有较低的冲模尺寸,理想的加工独立性和有效地使用电源,例如,在图13中已表明的,一单偏置单元可包括一跨接一恒流源的电源Vcc,两个晶体管和一个电阻器用于为多个模拟电压放大器(不是共射或交流接地射极结构)提供偏压。这样的低压偏置放大器的举例和ECL门例如在Gray和Meyer的Analysis And Design Of Analog IntegratedCircuits,John Wiley & Sons,Inc.1977(参看236页图4.22)中加以讨论,而这样的偏置电路由于负载是差动的而对注入的电源噪声不敏感,这样差动电路提供相对劣质的噪声系数,因此不能适用于RF电路。
本发明相关的一个目的是提供一新颖的单偏置单元和方法,它能免除现有技术的许多限制及低压电源对多个电路的动态范围的影响,并且还可以提供一新颖的单偏置单元和方法用于对例如放大器和混频器的多个共射电路提供偏置。
如所熟知的,一个放大器的增益取决于电路中该半导体的工作温度和加工参数,顺便的例子是,集成电路模片的温度每增加1℃的结果是在基-射电压VBE的变化是-2.2毫伏。
β和VBE失配的作用随同射极电阻下降而明显降低,该下降改善了交流稳定性并降低了增益,但噪声系数降低。此外在相同模片上的晶体管,在相同温度下,对具有等同特性的该相同的偏置条件和设计可能失配,由于失配的β提供的集电极电流具有30%的变化。
如图13所示,在射极电路中具有电阻的电路中利用“镜象”电路对这些参数进行补偿也是已知的,在镜象电路中具有相同工作温度和工艺参数这两个条件的一半导体晶体管装置,作为一个传感器,去调节提供给运算放大器的基准电压,该运算放大器的参考电压控制该运算电路导通,然而,由于射极电阻的缺乏和由于噪声系数的重要性,这样的技术明显不适合于共射RF级。
本发明还有另一个目的是为单个或多个共射混频器级提供偏置的一新颖的偏置单元和方法,其中电路的增益由例如-激光器微调集电极电路中的增益控制电阻加以控制,以便噪声系数、输入阻抗不受影响。本发明的再一个目的是对多个共射电路,例如放大器和混频器提供温度补偿的一新颖的单偏置单元和方法。
本发明现在将随同举例加以描述并参照其中附图。
图1是以方框图的形式表示偏置电路的现有技术的高压RF放大器的电路简图;
图2是可以被用于图1中的高压放大器的现有技术第一有源偏置电路简图;
图3是可以被用于图1中的高压放大器的先有技术第二有源偏置电路的电路简图;
图4是以方框形式表明偏置电路的本发明的低压RF放大器的电路简图;
图5是表示图4低压RF放大器的一个实施例的电路简图,利用图4电路作为多个接地射极电路的参考装置,像图4的RF放大器和图7、9、10、11和12的混频器电路;
图6是现有技术的单平衡混频器的电路简图;
图7是本发明单平衡混频器的电路简图;
图8是现有技术的双平衡混频器的电路简图;
图9是本发明双平衡混频器的电路简图;
图10是本发明非平衡混频器的电路简图;
图11是本发明具有补偿跨接耦合晶体管电容的单平衡混频器的开关(转换)部分的电路简图;
图12是本发明具有电容器补偿的非平衡混频器的电路简图;
图13是利用具有多个低压模拟电路而不是共射结构的一现有技术的单偏置部件的电路简图。
现在参照图4,其中类似的数字编号表示便于同图1现有技术相对照。在晶体管Q1集电极电路中的负载RL直接连接到Vcc而不是通过偏置电路,在实际的低压应用中该偏置电路的电压降可以是Vcc的百分之四十或更多,该负载直接连接到Vcc,这样就明显增加了跨接该负载和RF晶体管的电压有效性,这种有效电压的增加极大地增大了该放大器的动态范围,相反,为提供所要求的动态范围所需要的功率总量却明显降低了。
应注意,该负载可被置于该放大器内部和同一集成电路之中、集成电路外部或者是它们的结合,由于负载是在集电极而不是发射极电路中,因此该增强的动态范围能使谐波干扰最小。
为保护偏置电路免受晶体管Q1的负载的影响是必要的,特别是要求对该偏置的温度补偿。在图5右手部分所示明的最佳实施例中,由相配的普通运算放大器24所提供的该缓冲器被施加一电压基准VR,结合下面将要讨论的温度补偿可知,该电压基准可以从置于电源和地或电路公共点之间的一简单的电阻分压路获得,另外,该基准信号可以从一独立电源,或具有所要求的温度系数的其它基准电路获得。
该运算放大器24的输出信号被用于在该反馈回路中的晶体管Q的偏置,以及通过一可变电阻器30加到该RF放大器晶体管Q1的基极。如下文将讨论的,来自运算放大器24的输出信号也可施加到在多个其它接地发射极、RF装置,如图5所示放大器中的该晶体管Q2-QN的基极。
本发明的诸多方面适用于单平衡混频器以及非平衡和双平衡混频器。
图7所示的单平衡混频器中,类似的元件对应着类似的标记,以便于同图6中的现有技术单平衡混频器相对照。用于混频器的该电流源偏置被从晶体管Q3的射极电路移去,本发明的偏置电路连接至其中基极。另外,从晶体管Q3的射极电路至其中的集电极电路的该增益控制电阻器RG被重新设置。
因为混频器的噪声系数实质上是图6中处在Q3的基极和发射极的任何电阻性的噪声源的函数,电阻噪声源的降低或消除将改善噪声系数,基于Q3对它的基极和发射极的噪声源敏感的理由,这些噪声源由于Q3的功率增益而被放大,从图6Q3的发射极到图7Q3的集电极的RG被重新设置将从而改善该噪声系数。
混频器的增益实质上是RL和RG的函数,人们一般对RLG不加以控制,仅RG作为降低增益的手段。如前所述在发射极中利用RG降低噪声系数,在图7中在Q3的集电极重新设置这个电阻,利用密勒电容作用混频器的增益能被降低。这一增益的降低仅仅是施加给由密勒电容所确定的极点(pole)之上的若干频率,使图7中的拓朴学布局可适用于RF的应用。以这种方法,电路的动态范围方面的限制取消,增益能被控制,以及交流稳定性明显改善而不影响电路和噪声系数。
如图6所建议的,一电抗电路可加于图6和图7中的晶体管Q3的集电极或发射极电路,以降低在IF频率处的噪声影响。
如图8所示,现有技术的双平衡混频器将增益控制电阻器RG典型地设置在射极电路中(这里表明分成两个电阻,每个RO/2。在发射极电路中电流源由于其两端的电压降而减小了峰值储备(headroom)。
相应于本发明和如图9所示,偏置VG配置在两个NPNRF晶体管Q5和Q6的基极,由于偏置电路两端电压降已被消除,一个较低的电压源可被用于实现较早所述的相同的动态范围。
此外,类似方式的单平衡混频器中,在射极电路中用一电感器代替增益控制电阻和在RF晶体管Q5和Q6的集电极电路中设置两个RG/2的增益控制电阻,既具有控制增益的优点又不会明显影响输入阻抗、负载阻抗或噪声系数。
已经描述了双极型晶体管,另一种类型的晶体管如MOSFETs也可采用,只要它们提供本文所描述的控制开关和电压-电流转换。
如以前描述的,LO晶体管的基极-集电极电容补偿是双平衡混频器所原有的,对应用在模拟差分放大器电路中的基极-集电极电容补偿的概念是熟知的,并特别披露在Grebene的Bipolar andMOS Integrated Circuit Design,John Wiley and Sons,NewYork,New York,1984(参看415-417页)中,在混频器的应用中,基极-集电极电容补偿改善了LO开关装置的开关速度,这是通过抵销Cu对LO电路的带宽方面的作用而实现的,抵销Cu提高了带宽并从而降低了开关速度,这改善了转换效率和混频器的截止点,如图6所示现有技术的单平衡混频器中或图7的新颖的单平衡混频器中,由于没有第二对交叉连接的晶体管,而使LO开关放慢并降低降低了截止点。然而,如图11所示,可以附加第二对交叉连接的了截止点。然而,如图11所示,可以附加第二对交叉连接的晶体管Q1和Q2,该发射极可以是开路或如虚线所示连接到基极。
需要使图11的混频器不平衡时,也可以是图12的形式,它省略了互补本机振荡器信号LO,Q4基极通过一耦合电容器接地。一电阻分压器地包括电阻器R1、R2和R3,可用于对晶体管Q3和Q4的基极提供差动偏置。
由于差动偏置,该电容补偿不如平衡混频器的情况中有益,但仍可在晶体管开关时间上提供明显改进。
另外,由于偏置的不同,两个LO晶体管Q1和Q2在这样的传导中,在晶体管Q2的集电极上可获得大部分功率,和涉及LO和LO输出信号相结合的带宽问题也能避免。
本发明利用电阻分压器的另一个优点是,电阻器R2不仅用于直流偏置,而且也用于为本机振荡器极晶体管Q2的基极接地的终端电阻器。
应注意,用于RF晶体管Q5的增益控制电阻RG被设置在集电极电路BO,这样可以控制增益又不会明显增加噪声系数。
还应注意到偏置电路被连接到RF晶体管Q3的基极,而不是射极电路,这样就免除了峰值储备(headroom)的损耗。
如上讨论的图13的连接形式,用于模拟电路的被使用的单偏置电路不同于共射结构,然而,相应于本发明和如图5所示,一单偏置电路可以被用于偏置多个低压、共射、射频电路。
参照图5,偏置电路的输出端23通过总线连接,为多个低压、共射电路提供基极偏置。而所描述的是两个放大器,该偏置电路可以是任何形式和数量,包括一个或多个放大器,一个或多个混频器和/或一个或多个附加电路。
在偏置电路中对晶体管进行缓冲是必须的,例如,图5中利用一运算放大器,该运算放大器缓冲该晶体管Q1,免受晶体管Q2、Q3-QN的电路中的负载的影响。
图5中多个放大器中的每一个的增益取决于电路中半导体器件的工作温度及加工参数,增益(g)和VBE失配的影响可由每个放大器基极中的偏置控制电阻器30的激光微调加以控制而又不使噪声系数变劣,集电极电路中的负载电阻微调交流增益。
本发明具有许多优点,例如,在低压放大器的集电极上的较高电压能有效增加动态范围,相反,所要求的动态范围能利用较低的电源电压获得。
在混频器中能控制增益不影响输入或输出阻抗或增加噪声系数。
多个RF级,例如多个放大器和或多个混频器,能由一单个电路加以偏置和温度补偿,节省了集成电路芯片中的功率和重要的空间。
另外,混频器可以是不平衡的,利用本机振荡器级的基极的差动偏置,就不会产生明显的功率或带宽损耗。
进而,在单平衡和不平衡混频器里,可以利用交叉耦接晶体管用于电容补偿。
用于单个或多个低压RF电路的单偏置单元包括具有对温度和集成电路加工参数进行补偿的一个或多个放大器和一个或多个单或双平衡混频器。电源可以是低压的而不会牺牲放大器和/或混频器的动态范围,这是由于把整个电源电压加于负栽,偏置通过一运算放大器和/或缓冲器电路加于基极电路。对于混频器,由于利用改变从射极到集电极的增益控制阻抗,所以它具较低的噪声系数也是可以实现的。这一电路可以是分立元件或集成电路的部件。所披露的是降低电源电压又不影响放大器的动态范围的诸多方法。

Claims (1)

1.一种混频器,具有(a)一个本机振荡器,其半导体开关器件串联连接,(b)一个有基极、集电极和发射极的双极面结型晶体管,(c)用以将RF信号加到所述晶体管的基极的装置,以及(d)一个用以控制所述混频器增益的阻抗,其改进在于包括所述增益控制阻抗与所述晶体管的集电极的有效连接,使得所述阻抗与所述本机振荡器的开关器件上的密勒效应电容一起起作用,而无需作为增益控制装置进行衰减。
CN94116000A 1993-07-12 1994-07-12 具有单偏置单元的低压射频放大器和混频器及其方法 Expired - Fee Related CN1061187C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US090,617 1993-07-12
US08/090,617 US5809410A (en) 1993-07-12 1993-07-12 Low voltage RF amplifier and mixed with single bias block and method

Publications (2)

Publication Number Publication Date
CN1106965A CN1106965A (zh) 1995-08-16
CN1061187C true CN1061187C (zh) 2001-01-24

Family

ID=22223555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94116000A Expired - Fee Related CN1061187C (zh) 1993-07-12 1994-07-12 具有单偏置单元的低压射频放大器和混频器及其方法

Country Status (4)

Country Link
US (2) US5809410A (zh)
EP (1) EP0634835A3 (zh)
JP (1) JPH07154158A (zh)
CN (1) CN1061187C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382429C (zh) * 2003-05-19 2008-04-16 三星电子株式会社 可集成的电压控制射频功率放大器

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9503064D0 (en) * 1995-02-16 1995-04-05 Philips Electronics Uk Ltd Improvements in or relating to zero IF receivers
US6104149A (en) * 1997-02-28 2000-08-15 International Rectifier Corp. Circuit and method for improving short-circuit capability of IGBTs
GB9705749D0 (en) * 1997-03-20 1997-05-07 Philips Electronics Nv Radio receiver
US5933771A (en) * 1997-06-20 1999-08-03 Nortel Networks Corporation Low voltage gain controlled mixer
US6029059A (en) * 1997-06-30 2000-02-22 Lucent Technologies, Inc. Quadrature mixer method and apparatus
FI105611B (fi) 1998-03-13 2000-09-15 Nokia Mobile Phones Ltd Radiotajuusvahvistimet
US6041223A (en) * 1998-03-26 2000-03-21 Nortel Networks Corporation High level diode mixer
US6064253A (en) * 1998-04-20 2000-05-16 Endgate Corporation Multiple stage self-biasing RF transistor circuit
JPH11308054A (ja) * 1998-04-22 1999-11-05 Fujitsu Ltd 二重平衡変調器及び直交変調器
US6212369B1 (en) * 1998-06-05 2001-04-03 Maxim Integrated Products, Inc. Merged variable gain mixers
US6226509B1 (en) * 1998-09-15 2001-05-01 Nortel Networks Limited Image reject mixer, circuit, and method for image rejection
US6205325B1 (en) * 1998-12-31 2001-03-20 Nokia Mobile Phones, Limited Active radio frequency mixer circuit with feedback
US6529721B1 (en) 1999-06-04 2003-03-04 Infineon Technologies North America Corp. Low-noise mixer and method
GB2351404B (en) * 1999-06-24 2003-11-12 Nokia Mobile Phones Ltd A transmitter and a modulator therefor
JP4056739B2 (ja) * 1999-06-29 2008-03-05 三菱電機株式会社 高調波ミクサ
JP3386019B2 (ja) 1999-10-27 2003-03-10 日本電気株式会社 ミキサ回路
JP2001196868A (ja) 2000-01-13 2001-07-19 Sony Corp 増幅器およびこれを用いた無線通信装置
DE10004995A1 (de) * 2000-02-04 2001-08-09 Infineon Technologies Ag Analogmultiplizierer
US6665528B2 (en) * 2000-06-07 2003-12-16 Infineon Technologies North America Corp. Dual band fet mixer
US6333677B1 (en) 2000-10-10 2001-12-25 Rf Micro Devices, Inc. Linear power amplifier bias circuit
US6531922B1 (en) * 2000-10-16 2003-03-11 Koninklijke Philips Electronics N.V. DC-coupling approach for current mode circuits
US6765802B1 (en) 2000-10-27 2004-07-20 Ridley Engineering, Inc. Audio sound quality enhancement apparatus
US7474536B2 (en) * 2000-10-27 2009-01-06 Ridley Ray B Audio sound quality enhancement apparatus and method
US6480067B1 (en) * 2000-11-27 2002-11-12 Sirenza Microdevices, Inc. Peaking control for wideband laser driver applications
WO2002045253A1 (fr) * 2000-12-01 2002-06-06 Mitsubishi Denki Kabushiki Kaisha Amplificateur haute fréquence
JP2002217378A (ja) * 2001-01-19 2002-08-02 Toshiba Corp 高周波電力増幅器
US6893101B2 (en) * 2001-07-27 2005-05-17 Telefonaktiebolaget L.M. Ericsson Active element bias circuit for RF power transistor input
US6529077B1 (en) 2001-08-22 2003-03-04 Institute Of Microelectronics Gain compensation circuit for CMOS amplifiers
JP3929031B2 (ja) * 2002-03-28 2007-06-13 松下電器産業株式会社 増幅装置
US6600301B1 (en) * 2002-04-30 2003-07-29 Raytheon Company Current shutdown circuit for active bias circuit having process variation compensation
US7536165B2 (en) * 2002-07-24 2009-05-19 Nxp B.V. Offset correction for down-conversion mixers
US6861891B2 (en) * 2002-11-25 2005-03-01 Dragonwave, Inc. Sub-harmonic mixer
US7177620B1 (en) 2003-01-29 2007-02-13 Marvell International Ltd. Mixer constant linear range biasing apparatus and method
US7266360B2 (en) * 2004-04-07 2007-09-04 Neoreach, Inc. Low noise amplifier for wireless communications
KR100574470B1 (ko) * 2004-06-21 2006-04-27 삼성전자주식회사 전류증폭결합기를 포함하는 선형 혼합기회로
US7853233B2 (en) * 2004-09-16 2010-12-14 Qualcomm Incorporated Zero if down converter with even order harmonic suppression
JP2006129416A (ja) * 2004-09-28 2006-05-18 Sharp Corp 電圧−電流変換回路、それを用いた増幅器、ミキサ回路および携帯機器
EP1889293B1 (en) * 2005-05-26 2013-03-06 Nxp B.V. Electronic device
JP4772707B2 (ja) * 2007-01-22 2011-09-14 三菱電機株式会社 ミクサ回路
US9312938B2 (en) * 2007-02-19 2016-04-12 Corning Optical Communications Wireless Ltd Method and system for improving uplink performance
JP2008154280A (ja) * 2008-03-11 2008-07-03 Matsushita Electric Ind Co Ltd バイアス回路
JP2013247537A (ja) * 2012-05-28 2013-12-09 Sony Corp 信号処理装置および方法、並びに通信装置
WO2016031306A1 (ja) * 2014-08-28 2016-03-03 株式会社村田製作所 バイアス制御回路及び電力増幅モジュール
JP6547636B2 (ja) * 2016-01-15 2019-07-24 三菱電機株式会社 電力増幅器
FR3069126B1 (fr) * 2017-07-12 2020-11-13 Commissariat Energie Atomique Dispositif de regeneration de composants electroniques en environnement nucleaire
EP4020798A1 (en) 2020-12-23 2022-06-29 Carrier Corporation Oscillator circuit comprising surface integrated waveguide resonator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0257345A2 (en) * 1986-08-21 1988-03-02 Tektronix Inc. Compensated current mirror
EP0415620A2 (en) * 1989-08-31 1991-03-06 Delco Electronics Corporation Electrical circuit
EP0442637A2 (en) * 1990-02-16 1991-08-21 Nokia Mobile Phones Ltd. Circuit arrangement for connecting RF amplifier and supply voltage filter

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3500222A (en) * 1966-09-19 1970-03-10 Hitachi Ltd Semiconductor amplifier gain control circuit
US3497822A (en) * 1968-05-10 1970-02-24 Bell Telephone Labor Inc Bias control circuit for pulse power transistor amplifiers to stabilize the quiescent current therein
US3849677A (en) * 1973-06-26 1974-11-19 Westinghouse Electric Corp Hybrid power filters employing both active and passive elements
JPS5339811A (en) * 1976-09-24 1978-04-12 Hitachi Ltd High frequency amplifier circuit
US4344188A (en) * 1980-10-09 1982-08-10 Matsushita Electric Industrial Co., Ltd. Balanced modulator
IT1211106B (it) * 1981-09-16 1989-09-29 Ates Componenti Elettron Stadio d'ingresso amplificatore e miscelatore a transistori per un radioricevitore.
US4419632A (en) * 1981-12-11 1983-12-06 Bell Telephone Laboratories, Incorporated Bias circuit for microwave FETs
JPS5922406A (ja) * 1982-07-28 1984-02-04 Matsushita Electric Ind Co Ltd 周波数変換器
JPS5981906A (ja) * 1982-11-02 1984-05-11 Matsushita Electric Ind Co Ltd 周波数変換回路
DE3329664A1 (de) * 1983-08-17 1985-03-07 Telefunken electronic GmbH, 7100 Heilbronn Schaltung zum umwandeln von gleichsignalen
NL8503435A (nl) * 1985-12-13 1987-07-01 Philips Nv Uhf-versterkermengschakeling.
SU1517116A1 (ru) * 1987-12-18 1989-10-23 Рязанский Радиотехнический Институт Балансный смеситель
US4924194A (en) * 1989-05-19 1990-05-08 Motorola, Inc. RF power amplifier
JPH0417405A (ja) * 1990-05-10 1992-01-22 Alps Electric Co Ltd ミキサ回路
JPH0456404A (ja) * 1990-06-25 1992-02-24 Nec Corp 増幅装置
US5105165A (en) * 1990-12-17 1992-04-14 At&T Bell Laboratories Low distortion, low noise, amplifier
JP2887919B2 (ja) * 1991-01-29 1999-05-10 日本電気株式会社 周波数逓倍・ミキサ回路
US5319267A (en) * 1991-01-24 1994-06-07 Nec Corporation Frequency doubling and mixing circuit
JP2887993B2 (ja) * 1991-10-25 1999-05-10 日本電気株式会社 周波数ミキサ回路
FR2685578A1 (fr) * 1991-12-23 1993-06-25 Philips Electronique Lab Circuit integre comprenant un amplificateur a gain variable.
US5166645A (en) * 1992-01-15 1992-11-24 Quartzdyne, Inc. Differential mixer oscillator
JPH05315862A (ja) * 1992-05-07 1993-11-26 Nec Corp 増幅回路
US5268649A (en) * 1992-08-03 1993-12-07 Texas Instruments Incorporated Bias circuit for bipolar transistors
US5422522A (en) * 1992-08-20 1995-06-06 Sgs-Thomson Microelectronics, Inc. Device for biasing an RF device operating in quasi-linear modes with temperature compensation
US5357089A (en) * 1993-02-26 1994-10-18 Harris Corporation Circuit and method for extending the safe operating area of a BJT
US5379457A (en) * 1993-06-28 1995-01-03 Hewlett-Packard Company Low noise active mixer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0257345A2 (en) * 1986-08-21 1988-03-02 Tektronix Inc. Compensated current mirror
EP0415620A2 (en) * 1989-08-31 1991-03-06 Delco Electronics Corporation Electrical circuit
EP0442637A2 (en) * 1990-02-16 1991-08-21 Nokia Mobile Phones Ltd. Circuit arrangement for connecting RF amplifier and supply voltage filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382429C (zh) * 2003-05-19 2008-04-16 三星电子株式会社 可集成的电压控制射频功率放大器

Also Published As

Publication number Publication date
EP0634835A2 (en) 1995-01-18
US5809410A (en) 1998-09-15
EP0634835A3 (en) 1996-02-07
JPH07154158A (ja) 1995-06-16
CN1106965A (zh) 1995-08-16
US6018270A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
CN1061187C (zh) 具有单偏置单元的低压射频放大器和混频器及其方法
US5548248A (en) RF amplifier circuit
US6255889B1 (en) Mixer using four quadrant multiplier with reactive feedback elements
JP2759128B2 (ja) 広帯域増幅器
US6392492B1 (en) High linearity cascode low noise amplifier
US20010040483A1 (en) Bias network for high efficiency RF linear power amplifier
EP0370725B1 (en) Amplifier circuit using feedback load
US5399990A (en) Differential amplifier circuit having reduced power supply voltage
US4461042A (en) Transistor balanced mixer
EP0368329A2 (en) Self equalizing multi-stage radio frequency power amplifier
US7242253B2 (en) Low noise amplifier
US7135927B2 (en) Ultra fast, low noise operational amplifier with dynamic biasing
US7161429B2 (en) Multi-port cross-connected multi-level cascode differential amplifier
EP0853379B1 (en) Low noise amplifier
US4600847A (en) Predistortion equalizing circuit
US5424686A (en) Negative-resistance-compensated microwave buffer
US3239770A (en) Complementary high frequency amplifier including multiple feedback paths
US4369410A (en) Monolithically integrable transistor amplifier having gain control means
US5172017A (en) Integrated circuit arrangement including a differential amplifier which generates a constant output voltage over a large temperature range
US3835406A (en) Neutralized amplifier circuit
US4227157A (en) Frequency compensated high frequency amplifiers
US4145666A (en) Multistage amplifier circuit
US4804926A (en) FT quadrupler amplifier with linearity correction
US4481480A (en) Feedback amplifier having a voltage-controlled compensation circuit
CA1252526A (en) Wideband amplifier with active high-frequency compensation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee