CN106098923A - 一种硫银锗矿热电材料及其制备方法 - Google Patents

一种硫银锗矿热电材料及其制备方法 Download PDF

Info

Publication number
CN106098923A
CN106098923A CN201610578274.8A CN201610578274A CN106098923A CN 106098923 A CN106098923 A CN 106098923A CN 201610578274 A CN201610578274 A CN 201610578274A CN 106098923 A CN106098923 A CN 106098923A
Authority
CN
China
Prior art keywords
thermoelectric material
argyrodite
preparation
temperature
quartz ampoule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610578274.8A
Other languages
English (en)
Inventor
裴艳中
李文
林思琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201610578274.8A priority Critical patent/CN106098923A/zh
Publication of CN106098923A publication Critical patent/CN106098923A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种硫银锗矿热电材料,其化学式为Ag8Sn1‑xNbxSe6,x=0~0.05;该热电材料的制备方法以单质为原料,按所述的化学式的化学计量比进行配料,通过真空封装、熔融反应淬火及热处理淬火后,研磨成粉末,进行真空高温热压烧结,缓慢冷却后得到的块体材料即为硫银锗矿热电材料。与现有技术相比,本发明制得了低导热高热电性能的高性能热电材料,探索出制备高致密度、高机械强度和高热电性能的热电材料的方法,该热电材料在全温度范围内具有极低的晶格热导率(0.2~0.4W/m·K),温度为900K时热电峰值达到1.2,在300~850K时平均热电优质zTave~0.8,是一类极具潜力的热电材料。

Description

一种硫银锗矿热电材料及其制备方法
技术领域
本发明属于新能源材料技术领域,具体涉及一种低导热高性能的硫银锗矿热电材料及其制备方法。
背景技术
能源危机和环境污染为已成为世界亟待解决的两大问题。环境污染和能源危机日益严重,以石油和煤炭为主要能源供给的方式岌岌可危,清洁可再生资源的开发和利用是解决能源环境问题的根本需求。热电能源材料,通过半导体材料中的载流子输运实现热能和电能两种形式能源的相互转换,因为无噪音、无污染、环境友好等特点,被认为是一类绿色可持续能源转换材料,在航天航空供电、工业余热回收、汽车尾气热量利用已经得到广泛应用。
热电材料的转换效率通常用无量纲热电热电优质zT来衡量,zT=S2σT/κ,其中:T为绝对温度,S是塞贝克系数;σ是电导率;κ是热导率,有电子热导率κE和晶格热导率κL两部分组成。由于塞贝克系数S、电导率σ、电子热导率κE三个参数之间通过载流子浓度相互耦合,因此单一优化某一参数并不能提高整体热电优值。晶格热导率作为独立的参数,通过形成纳米结构、晶格缺陷或者增加晶格非谐性振动降低材料的晶格热导率的手段已被报道,并最终实现热电性能的提升。同时,探索和开发具有低晶格热导的新材料也逐渐成为热电材料研究的主流方向之一。晶体结构复杂、摩尔质量较大和晶格畸变的材料往往能有本征较低的晶格热导率,是开发低导热热电材料的主要指导思路。
硫银锗矿是一类分布于地球岩层内的天然矿物,化合物种类丰富多样,通用化学式表示为AgI 8MV XVI 6(M=Si,Ge,Sn and X=S,Se,Te)。硫银锗矿化合物不仅具有离子导体性质而且晶体结构非常复杂,符合热电材料需要的基本条件。Ag8SiTe6、Ag8GeTe6已有文献报道具有极低的晶格热导率,被视为具有开发潜力的热电材料。但是,该类材料机械强度低、样品在制备过程非常容易碎裂,合适的制备条件难以确定,极大限制了硫银锗矿在热电领域的发展。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种致密度高、机械强度较好、低导热高热电性能的硫银锗矿热电材料及其制备方法。
本发明的目的可以通过以下技术方案来实现:
一种硫银锗矿热电材料,其化学式为Ag8Sn1-xNbxSe6,x=0~0.05。
优选地,所述的x=0.01~0.05,载流子浓度相对较高。
进一步优选地,所述的x=0.05时,电学性能实现优化,获得较高的功率因数。
一种硫银锗矿热电材料的制备方法,包括以下步骤:
(1)真空封装:以纯度大于99.99%的单质为原料,按照化学式的化学计量比进行配料,混合均匀后真空封装在石英管中;
(2)熔融反应淬火:将石英管加热,使原料在熔融状态下进行反应,然后淬火冷却,得到第一铸锭;
(3)热处理淬火:将第一铸锭真空封装在石英管中,进行热处理,然后淬火冷却,得到第二铸锭;
(4)加压烧结:将第二铸锭研磨成粉末,置于石墨模具中,进行真空高温热压烧结,缓慢冷却后得到的块体材料即为所述的硫银锗矿热电材料。
优选地,步骤(2)中以150~300K/h的速率将石英管从室温升温至1073~1273K并保温6~12h,使原料在熔融状态下进行反应。
进一步优选地,步骤(2)中,将石英管从室温升温至1173K。
优选地,步骤(3)中以150~300K/h的速率将石英管从室温升温至800~1000K并保温2~4天,进行热处理。
进一步优选地,步骤(3)中,将石英管从室温升温至900K,并保温3天,进行热处理。
优选地,步骤(4)中,将第二铸锭研磨成粉末,置于石墨模具中,采用感应加热,以100~300K/min的速率升温至800~1000K,调节压力为50~70MPa,并恒温恒压处理20~30min,进行真空高温热压烧结,然后以20~30K/min的速率缓慢冷却降至室温,制得硫银锗矿热电材料。
进一步优选地,步骤(4)中,烧结的温度为900K,烧结压力为65MPa。
优选地,步骤(1)、步骤(3)及步骤(4)中所述的真空的绝对真空度均不大于10-1Pa。
与现有技术相比,本发明具有以下有益效果:
(1)通过对原料熔融-热处理-高温热压条件进行探索优化,获得低导热高热电性能的Ag8SnSe6块体材料,并进一步通过掺杂铌(Nb),优化掺杂载流子浓度,得到zT~1.2的高性能Ag8Sn1-xNbxSe6块体材料。
(2)在本发明中所述的制备条件下,能够制备高致密度、高机械强度和高热电性能的Ag8Sn1-xNbxSe6热电材料。Ag8Sn1-xNbxSe6材料具有较低的声速,因此在全温度范围内具有极低的晶格热导率(0.2~0.4W/m·K)。Ag8Sn1-xNbxSe6在温度为900K时热电峰值达到1.2,在温度范围区间为300K~850K时平均热电优质zTave~0.8,是一类极具潜力的热电材料。
(3)本发明对Ag8Sn1-xNbxSe6块体材料的制备方法进行探索,通过对原料熔融-热处理-高温热压条件进行探索优化,高温热压后缓慢降温释放材料应力,得到机械强度高的块体材料,该制备方法对开发新型硫银锗矿化合物(AgI 8MV XVI 6)、探索低热导的内在机制、深入研究热电性能具有指导意义。
附图说明
图1为不同载流子浓度的Ag8Sn1-xNbxSe6的霍尔迁移率(μ)与温度的关系图;
图2为不同载流子浓度的Ag8Sn1-xNbxSe6的电阻率(ρ)与温度的关系图;
图3为不同浓度载流子浓度的Ag8Sn1-xNbxSe6的塞贝克系数(S)与温度的关系图;
图4为不同浓度载流子浓度的Ag8Sn1-xNbxSe6的总热导(κ)和晶格热导率(κL)与温度的关系图;
图5为不同浓度载流子浓度的Ag8Sn1-xNbxSe6的zT值与温度的关系图;
图6为不同浓度载流子浓度的Ag8Sn1-xNbxSe6的在温度范围为300~800K的平均热电优值zTavg值及PbTe和CoSb3的平均热电优值。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
一种硫银锗矿热电材料,其化学式为Ag8Sn1-xNbxSe6,x=0~0.05,本实施例中通过取x=0、0.01、0.02、0.03及0.05(当x=0时,化学式为Ag8SnSe6,当x=0.01、0.02、0.03及0.05时,即通过掺杂不同浓度的Nb来优化载流子浓度),按照下述制备方法,得到不同载流子浓度的Ag8Sn1-xNbxSe6块状材料:
(1)根据不同x取值,按组成为Ag8Sn1-xNbxSe6(x=0~0.05)的化学计量比称量纯度大于99.99%的单质原料银Ag、锡Sn、铌Nb、硒Se,将原料放置于石英管,并在真空下封装石英管。
(2)将放置原料的石英管悬挂于高温马弗炉中,以150~300K/h的速率缓慢升温至1073~1273K,并保温6~12h,之后快速淬火冷却得到第一铸锭;本实施例的该步骤选择以200K/h的速率缓慢升温至1173K,在1173K温度下保温8h。
(3)对步骤(2)得到的高温熔融淬火后的第一铸锭进行热处理,以150~300K/h的速率缓慢升温至800~1000K,保温2~4天,之后快速淬火冷却得到第二铸锭;本实施例的该步骤选择以200K/h的速率缓慢升温至900K,保温3天。
(4)将步骤(3)所得到的第二铸锭研磨成粉末,将粉末置于石墨模具中,采用感应加热,以100~300K/min的速率升温至577~677K,调节压力为50~70MPa,并恒温20~30min,进行真空高温热压烧结,然后以20~30K/min的速率缓慢冷却至室温,得到Ag8Sn1- xNbxSe6块体材料,即为所述的硫银锗矿热电材料;本实施例的该步骤选择以200K/min的速率升温至900K,调节压力为65MPa,并恒温25min,进行真空高温热压烧结,然后以25K/min的速率缓慢冷却至室温。
当x=0时,化学式为Ag8SnSe6,虽然样品制备条件一致,但是材料本身的不稳定性,所以不同Ag8SnSe6样品载流子浓度数值存在差异,故当x=0时,对应的样品的载流子浓度不同;当x=0.01时,热电材料的载流子浓度为7.2×1018cm-3;当x=0.02时,热电材料的载流子浓度为7.6×1018cm-3;当x=0.03时,热电材料的载流子浓度为6.9×1018cm-3;当x=0.05时,热电材料的载流子浓度为7.0×1018cm-3
不同载流子浓度的Ag8Sn1-xNbxSe6的霍尔迁移率(μ)与温度的关系如图1所示;从图中可以看出,霍尔迁移率随温度的变化趋势为μ~T-1.5,揭示输运性能机制由声学声子散射为主导,性能优异的热电材料一般都符合声子声学散射机制。
不同载流子浓度的Ag8Sn1-xNbxSe6的电阻率(ρ)与温度的关系如图2所示,该图的图例与图1相同;从图中可以看出,低载流子浓度样品的电阻率随温度升高为出现先上升后下降的趋势是因为在高温发生少子效应。随着Nb的掺杂浓度的增加,载流子浓度增加,电阻率的变化趋势随温度上升而增加,对热电性能的提升有利。
不同浓度载流子浓度的Ag8Sn1-xNbxSe6的塞贝克系数(S)与温度的关系如图3所示;塞贝克系数为正数指明该材料为n型材料,与霍尔载流子浓度测试结果一致。低载流子浓度样品的塞贝克系数数值随温度升高为出现先上升后下降的趋势是因为在高温发生少子效应。随着Nb的掺杂浓度的增加,载流子浓度增加,塞贝克系数的变化趋势随温度上升而增加,对热电性能的提升有利。
不同浓度载流子浓度的Ag8Sn1-xNbxSe6的总热导(κ)和晶格热导率(κL)与温度的关系如图4所示;从图中可以看出,在全测试温度范围内,Ag8Sn1-xNbxSe6均表现出极低的晶格热导率(0.2~0.4W/m·K),低热导率对高热电性能有很大贡献。
不同浓度载流子浓度的Ag8Sn1-xNbxSe6的zT值与温度的关系如图5所示;通过掺杂Nb,优化载流子浓度,在温度为850K是,无量纲热电优值峰值~1.2,证明Ag8Sn1-xNbxSe6是一类性能优异的热电材料。
不同浓度载流子浓度的Ag8Sn1-xNbxSe6的在温度范围为300~800K的平均热电优值zTavg值及PbTe和CoSb3的平均热电优值如图6所示,从左至右依次为x=0(2.2×1018cm-3)、x=0(3.3×1018cm-3)、x=0.1(7.2×1018cm-3)、x=0.2(7.6×1018cm-3),x=0.3(6.9×1018cm-3)、x=0.5(7.0×1018cm-3)、x=0(4.2×1018cm-3)、x=0(4.0×1018cm-3)、x=0(4.7×1018cm-3)对应的Ag8Sn1-xNbxSe6样品的平均热电优值及PbTe和CoSb3的平均热电优值。x=0时,载流子浓度不同,是因为Ag8SnSe6本征材料不稳定性,不同样品间载流子浓度存在一定差异。从图中可以看出,Ag8Sn1-xNbxSe6与典型热电材料PbTe、CoSb3的平均热电优值具有可比性。

Claims (10)

1.一种硫银锗矿热电材料,其特征在于,其化学式为Ag8Sn1-xNbxSe6,x=0~0.05。
2.根据权利要求1所述的一种硫银锗矿热电材料,其特征在于,所述的x=0.01~0.05。
3.根据权利要求2所述的一种硫银锗矿热电材料,其特征在于,所述的x=0.05。
4.如权利要求1所述的一种硫银锗矿热电材料的制备方法,其特征在于,包括以下步骤:
(1)真空封装:以纯度大于99.99%的单质为原料,按照化学式的化学计量比进行配料,混合均匀后真空封装在石英管中;
(2)熔融反应淬火:将石英管加热,使原料在熔融状态下进行反应,然后淬火冷却,得到第一铸锭;
(3)热处理淬火:将第一铸锭真空封装在石英管中,进行热处理,然后淬火冷却,得到第二铸锭;
(4)加压烧结:将第二铸锭研磨成粉末,置于石墨模具中,进行真空高温热压烧结,缓慢冷却后得到的块体材料即为所述的硫银锗矿热电材料。
5.根据权利要求4所述的一种硫银锗矿热电材料的制备方法,其特征在于,步骤(2)中以150~300K/h的速率将石英管从室温升温至1073~1273K并保温6~12h,使原料在熔融状态下进行反应。
6.根据权利要求5所述的一种硫银锗矿热电材料的制备方法,其特征在于,步骤(2)中,将石英管从室温升温至1173K。
7.根据权利要求4所述的一种硫银锗矿热电材料的制备方法,其特征在于,步骤(3)中以150~300K/h的速率将石英管从室温升温至800~1000K并保温2~4天,进行热处理。
8.根据权利要求7所述的一种硫银锗矿热电材料的制备方法,其特征在于,步骤(3)中,将石英管从室温升温至900K,并保温3天,进行热处理。
9.根据权利要求4所述的一种硫银锗矿热电材料的制备方法,其特征在于,步骤(4)中,将第二铸锭研磨成粉末,置于石墨模具中,采用感应加热,以100~300K/min的速率升温至800~1000K,调节压力为50~70MPa,并恒温恒压处理20~30min,进行真空高温热压烧结,然后以20~30K/min的速率缓慢冷却降至室温,制得硫银锗矿热电材料。
10.根据权利要求9所述的一种硫银锗矿热电材料的制备方法,其特征在于,步骤(4)中,烧结的温度为900K,烧结压力为65MPa。
CN201610578274.8A 2016-07-21 2016-07-21 一种硫银锗矿热电材料及其制备方法 Pending CN106098923A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610578274.8A CN106098923A (zh) 2016-07-21 2016-07-21 一种硫银锗矿热电材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610578274.8A CN106098923A (zh) 2016-07-21 2016-07-21 一种硫银锗矿热电材料及其制备方法

Publications (1)

Publication Number Publication Date
CN106098923A true CN106098923A (zh) 2016-11-09

Family

ID=57448997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610578274.8A Pending CN106098923A (zh) 2016-07-21 2016-07-21 一种硫银锗矿热电材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106098923A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711317A (zh) * 2016-11-22 2017-05-24 同济大学 一种硫族铅化物热电材料及其制备方法
CN107235477A (zh) * 2017-07-04 2017-10-10 中国科学院上海硅酸盐研究所 一种n型高性能硫银锗矿热电材料及其制备方法
CN107359231A (zh) * 2017-06-08 2017-11-17 同济大学 一种新型低导热硫银锗矿热电材料及其制备方法
CN108346736A (zh) * 2017-10-16 2018-07-31 同济大学 一种高性能银碲化合物热电半导体材料及其制备方法
CN108598252A (zh) * 2018-06-07 2018-09-28 上海大学 硫银锗矿型热电材料及其制备方法
CN108821771A (zh) * 2018-05-29 2018-11-16 桂林电子科技大学 一种高热电性能银硒三元化合物多晶块体材料的制备方法
CN109970083A (zh) * 2017-12-27 2019-07-05 现代自动车株式会社 用于全固体电池的氮掺杂硫化物基固体电解质
CN110098310A (zh) * 2018-01-30 2019-08-06 中国科学院宁波材料技术与工程研究所 一种SnSe基热电材料取向多晶的制备方法
CN111116201A (zh) * 2020-01-07 2020-05-08 北京科技大学 一种GeS基热电材料的制备方法
EP4292982A1 (en) 2022-06-14 2023-12-20 Akademia Gorniczo-Hutnicza im. Stanislawa Staszica w Krakowie Gamma-argyrodite structure material for thermoelectric conversion and the method of obtaining the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101556986A (zh) * 2009-05-20 2009-10-14 南京大学 多态阻变材料、用其制得的薄膜、多态阻变储存元件及所述储存元件在储存装置中的应用
CN101821199A (zh) * 2007-10-08 2010-09-01 锡根大学 锂-硫银锗矿
CN102931336A (zh) * 2012-10-19 2013-02-13 深圳大学 一种GeTe基复合热电材料及其制备方法
CN103872237A (zh) * 2012-12-07 2014-06-18 中国科学院上海硅酸盐研究所 铜硫基高性能热电材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101821199A (zh) * 2007-10-08 2010-09-01 锡根大学 锂-硫银锗矿
CN101556986A (zh) * 2009-05-20 2009-10-14 南京大学 多态阻变材料、用其制得的薄膜、多态阻变储存元件及所述储存元件在储存装置中的应用
CN102931336A (zh) * 2012-10-19 2013-02-13 深圳大学 一种GeTe基复合热电材料及其制备方法
CN103872237A (zh) * 2012-12-07 2014-06-18 中国科学院上海硅酸盐研究所 铜硫基高性能热电材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI WEN,ET AL: "Low Sound Velocity Contributing to the High Thermoelectric Performance of Ag<sub>8</sub>SnSe<sub>6</sub>", 《ADV. SCI.》 *
ZHANG XIAO,ET AL: "Thermoelectric properties of n-type Nb-doped Ag<sub>8</sub>SnSe<sub>6</sub>", 《J. APPL. PHYS.》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711317B (zh) * 2016-11-22 2019-06-11 同济大学 一种硫族铅化物热电材料及其制备方法
CN106711317A (zh) * 2016-11-22 2017-05-24 同济大学 一种硫族铅化物热电材料及其制备方法
CN107359231A (zh) * 2017-06-08 2017-11-17 同济大学 一种新型低导热硫银锗矿热电材料及其制备方法
CN107359231B (zh) * 2017-06-08 2019-12-27 同济大学 一种低导热硫银锗矿热电材料及其制备方法
CN107235477A (zh) * 2017-07-04 2017-10-10 中国科学院上海硅酸盐研究所 一种n型高性能硫银锗矿热电材料及其制备方法
CN108346736A (zh) * 2017-10-16 2018-07-31 同济大学 一种高性能银碲化合物热电半导体材料及其制备方法
CN109970083B (zh) * 2017-12-27 2022-09-20 现代自动车株式会社 用于全固体电池的氮掺杂硫化物基固体电解质
US11637313B2 (en) 2017-12-27 2023-04-25 Hyundai Motor Company Nitrogen-doped sulfide-based solid electrolyte for all-solid batteries
US11631891B2 (en) 2017-12-27 2023-04-18 Hyundai Motor Company Nitrogen-doped sulfide-based solid electrolyte for all-solid batteries
CN109970083A (zh) * 2017-12-27 2019-07-05 现代自动车株式会社 用于全固体电池的氮掺杂硫化物基固体电解质
US11575154B2 (en) 2017-12-27 2023-02-07 Hyundai Motor Company Nitrogen-doped sulfide-based solid electrolyte for all-solid batteries
CN110098310A (zh) * 2018-01-30 2019-08-06 中国科学院宁波材料技术与工程研究所 一种SnSe基热电材料取向多晶的制备方法
CN110098310B (zh) * 2018-01-30 2023-11-14 中国科学院宁波材料技术与工程研究所 一种SnSe基热电材料取向多晶的制备方法
CN108821771B (zh) * 2018-05-29 2020-06-09 桂林电子科技大学 一种高热电性能银硒三元化合物多晶块体材料的制备方法
CN108821771A (zh) * 2018-05-29 2018-11-16 桂林电子科技大学 一种高热电性能银硒三元化合物多晶块体材料的制备方法
CN108598252A (zh) * 2018-06-07 2018-09-28 上海大学 硫银锗矿型热电材料及其制备方法
CN111116201A (zh) * 2020-01-07 2020-05-08 北京科技大学 一种GeS基热电材料的制备方法
EP4292982A1 (en) 2022-06-14 2023-12-20 Akademia Gorniczo-Hutnicza im. Stanislawa Staszica w Krakowie Gamma-argyrodite structure material for thermoelectric conversion and the method of obtaining the same

Similar Documents

Publication Publication Date Title
CN106098923A (zh) 一种硫银锗矿热电材料及其制备方法
CN108238796B (zh) 铜硒基固溶体热电材料及其制备方法
CN103872237B (zh) 铜硫基高性能热电材料及其制备方法
JP6266099B2 (ja) 可逆的相転移を有する高性能p型熱電材料及びその製造方法
CN106830940A (zh) 一种GeTe基高性能热电材料及其制备方法
CN105671344B (zh) 一步制备高性能CoSb3基热电材料的方法
CN103130200B (zh) 热电材料化合物及其制备方法
CN107799646A (zh) 一种合金热电半导体材料及其制备方法
CN107235477A (zh) 一种n型高性能硫银锗矿热电材料及其制备方法
CN111640853B (zh) 通过Sb和Cu2Te共掺杂提高n型PbTe热电性能的方法
CN103236493B (zh) TmCuTe2化合物及其制备和用途
CN109534303A (zh) 一种高性能低温热电材料及其制备方法
CN107195767B (zh) 一种五元n型热电材料及其制备方法
CN110408989B (zh) 一种氧化物热电材料BiCuSeO单晶体及其制备方法
CN105449093B (zh) 一种具有高热电优值的硒锡化合物半导体芯/玻璃包层复合材料热电纤维及其制备方法
CN107359231B (zh) 一种低导热硫银锗矿热电材料及其制备方法
CN105990510B (zh) 一种铜硒基高性能热电材料及其制备方法
CN108516526B (zh) 一种高性能PbTe基固溶体热电材料及其制备方法
CN101857928A (zh) 一种p型Zn4Sb3基热电材料及其制备方法
CN111312888A (zh) 通过Bi、Cu、Cd掺杂提高SnTe热电性能的方法
CN103811653A (zh) 一种多钴p型填充方钴矿热电材料及其制备方法
CN101857929A (zh) 一种多孔结构p型锌锑基热电材料及其制备方法
CN106676322B (zh) 一种环境友好型硫族锡化物热电材料及其制备方法
CN111653662B (zh) 伪立方相结构GeTe基热电材料及其制备方法
CN101533888B (zh) 一种制备Yb14MnSb11基半导体热电材料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161109

RJ01 Rejection of invention patent application after publication