CN106053548A - Pd掺杂SnO2氧化物半导体CO传感器制备与应用 - Google Patents

Pd掺杂SnO2氧化物半导体CO传感器制备与应用 Download PDF

Info

Publication number
CN106053548A
CN106053548A CN201610352182.8A CN201610352182A CN106053548A CN 106053548 A CN106053548 A CN 106053548A CN 201610352182 A CN201610352182 A CN 201610352182A CN 106053548 A CN106053548 A CN 106053548A
Authority
CN
China
Prior art keywords
sensor
sensitive material
oxide semiconductor
sno
earthenware
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610352182.8A
Other languages
English (en)
Inventor
王庆吉
林君
李旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201610352182.8A priority Critical patent/CN106053548A/zh
Publication of CN106053548A publication Critical patent/CN106053548A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

一种Pd掺杂SnO2氧化物半导体CO传感器制备方法及其在检测矿井和大气环境中一氧化碳浓度方面的应用,属于气体传感器技术领域。传感器由市售的外表面自带有2个环形金电极的Al2O3绝缘陶瓷管、涂覆在环形金电极和Al2O3绝缘陶瓷管外表面的Pd掺杂SnO2氧化物半导体敏感材料、穿过Al2O3绝缘陶瓷管内部的镍镉合金加热线圈组成。该传感器对较低浓度(检测下限10ppm)的CO具有较好的线性度,这些特点使Pd掺杂SnO2氧化物半导体CO传感器能够很好的应用于大气环境和矿井中CO的检测,进一步可以通过检测一氧化碳浓度判断矿井安全与环境安全。

Description

Pd掺杂SnO2氧化物半导体CO传感器制备与应用
技术领域
本发明属于气体传感器技术领域,具体涉及一种Pd掺杂SnO2氧化物半导体CO传感器制备方法及其在检测矿井和大气环境中一氧化碳浓度方面的应用。
背景技术
一氧化碳(CO)是一种无色、无味和无臭的气体,是大气中含碳量第三的成分,仅次于CO2和CH4,是全球碳循环研究中一种重要的气体。在排放源分布不均的情形下,导致全球大气CO浓度呈明显的时空分布差异,也常被作为温室气体源汇研究中重要的示踪物。1949年,通过对太阳光谱的研究发现了大气中的CO,利用分光计方法实现了对大气中CO浓度的首次测量;此后,相关研究机构陆续开展了很多CO浓度观测研究。CO虽然不是温室气体,但是它能通过与OH自由基发生光化学反应影响大气的氧化能力,从而影响大气CO2和CH4的浓度。因此,CO是一种间接的温室气体。间接影响着大气在大气中的浓度的分布和变化,进而对全球气候产生重大影响。CO对大气中微量气体成分变化影响较大,只有更好地了解了CO的源汇分布特征,才能更准确地估算其它相关微量气体的时空变化,因此大气CO浓度的观测研究工作非常必要。
20世纪60年代后期,各国科学家开始对流层大气CO的源汇研究。Robins等(1968)和Seiler等(1974)第一次做了全球CO分布的分析。研究证实CO浓度在两个半球都随季节变化。大气CO浓度资料再分析及源汇研究具有非常重要的作用。大气中CO的源主要包括化石燃料燃烧和生物质燃烧以及CH4和NMHC的氧化导致全球大气CO浓度呈明显的时空分布差异。目前测量本底大气CO浓度的方法也有很多,大气CO主要有采样和在线两种观测方式。
目前,国内外对低浓度一氧化碳气敏传感器的研究工作都处于起步程度,针对低浓度一氧化碳气体的专门传感器还没有形成有效的产业化。限制此类传感器实用化的一个主要因素就是传感器的检测下限较高和灵敏度较低。为了使传感器能够具有低检测下限和高灵敏度,可以使用高性能的敏感材料来实现。
发明内容
本发明的目的是提供一种利用一步水热方法制备的Pd掺杂SnO2氧化物半导体CO传感器制备方法及其在检测矿井和大气环境中一氧化碳浓度方面的应用。本发明通过对半导体材料进行掺杂,可以降低传感器的检测下限,增加传感器的灵敏度,促进此种传感器在矿井和大气环境中一氧化碳浓度检测的实用化。
本发明所得到的传感器除了具有高灵敏度、低检测下限外,并具有良好的重复性。该传感器的检测下限为10ppm,因此可用于矿井和大气环境中一氧化碳含量的检测,进而判断矿井和大气环境中的安全。
如图1所示,本发明所述Pd掺杂SnO2氧化物半导体CO传感器,由市售的外表面自带有2个环形金电极(5)的Al2O3绝缘陶瓷管(1)、涂覆在环形金电极(5)和Al2O3绝缘陶瓷管(1)外表面的半导体敏感材料(2)、穿过Al2O3绝缘陶瓷管(1)镍镉合金加热线圈(3)组成;每个环形金电极(5)上同时带有2条铂线(4),通过测量铂线间的电阻可以获得两个金环形电极间的电阻,根据灵敏度S的定义公式即S=Ra/Rg,经过计算可得到传感器的灵敏度。其特征在于:利用Pd掺杂SnO2氧化物半导体作为敏感材料,一方面掺入Pd改变了SnO2纳米空心球的催化能力,会提供更多的反应活性位点,这会大幅提高气体与敏感材料的反应效率,进而提高传感器的灵敏度。另一方面Pd和SnO2颗粒间会形成大量的异质结,这些异质结的出现会提供更多的反应活性位点,这两方面都会大幅提高气体与敏感材料的反应效率,进而提高传感器的灵敏度。此外,管式结构的传感器和氧化物半导体的制作工艺简单,利于工业上批量生产。
本发明所述的Pd掺杂SnO2氧化物半导体CO传感器的具体制作过程为:
(1)首先将42mg K2SnO3.3H2O、180mg尿素、5ml乙醇、5ml水搅拌10分钟形成匀质溶液,一定量PdCl2加入到上述溶液使得元素Pd和元素Sn的质量比为3.0wt%;
(2)将(1)混合溶液放入45ml聚四氟乙烯釜中密封,放入150℃烘箱中24小时,结束后自然降温到室温,将样品收集用乙醇和去离子水离心后放到培养皿中80℃保持12个小时,收集样品;
(3)将上述纳米气体敏感材料在500℃下煅烧2小时,得到气体敏感材料,将该敏感材料与去离子水混合成糊状,然后均匀涂覆在市售的外表面自带有2个环形金电极(5)的绝缘Al2O3陶瓷管(1)表面,形成10~40微米的敏感材料薄膜(2),陶瓷管的长为4~4.5mm,外径为1.2~1.5mm,内径为0.8~1.0mm,并使敏感材料完全覆盖环形金电极(5);
(4)在红外灯下烘烤15分钟左右,待敏感材料干燥后,把绝缘Al2O3陶瓷管(1)在400℃下煅烧2小时;然后将电阻值为30~40Ω的镍镉加热线圈(3)穿过绝缘Al2O3陶瓷管(1)内部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到本发明所述氧化物半导体CO传感器。
Pd掺杂SnO2氧化物半导体一氧化碳传感器的敏感机理是:当氧气分子与传感器接触时吸附在敏感材料表面,氧气分子从SnO2导带中夺取电子,形成O-,如式(1)-(3)。
当温度低于150℃时发生(1)、(2)反应,吸附的氧分子以O2 -形式存在;当温度在150-400℃范围,发生(1)、(2)和(3)反应,Pd掺杂SnO2氧化物半导体一氧化碳传感器的工作温度在100℃,所以吸附的氧分子以O2 -形式存在。当氧化物半导体材料接触空气中的氧气时能带上弯,并且在表面形成耗尽层,传感器的电阻升高。当传感器与一氧化碳接触时,一氧化碳会与半导体材料上的O2 -发生如下反应(4)
2CO+O2 -→2CO2+e- (4)
之前被氧分子夺走的电子会释放出来,重新回到SnO2的导带中,半导体材料中的能带上弯程度减小,且之前形成耗尽层消失,传感器的电阻降低。Ra为传感器在空气中接触氧气后的电阻,Rg为传感器接触一氧化碳后的电阻,测量传感器在空气和一氧化碳中的电阻并通过传感器的灵敏度S定义公式:S=Ra/Rg,计算可得到传感器的灵敏度。
本发明的优点:
(1)传感器利用常见的半导体材料SnO2,它具有良好的电导率和化学稳定性;
(2)利用掺杂了Pd的SnO2可以使传感器的灵敏度显著提高,促进其实用化;
(3)Pd掺杂SnO2空心球是利用水热方法且一步合成,方法简单,造价低廉利于批量化的工业生产。
附图说明
图1:Pd掺杂SnO2氧化物半导体CO传感器的结构示意图;
图2:对比例、实施例1、实施例2和实施例3中传感器在不同工作温度对100ppm一氧化碳的灵敏度对比图。
图3:对比例、实施例1、实施例2和实施例3的浓度-灵敏度的标准工作曲线。
如图1所示,各部件名称为:Al2O3绝缘陶瓷管(1),半导体敏感材料(2),镍镉合金线圈(3),铂线(4)、环形金电极(5);
图2为对比例和实施例1、2、3所制作的器件对100ppm一氧化碳的灵敏度随工作温度的变化曲线。从图中可以看出,对比例的最佳温度在250℃以上,灵敏度为2.5。实施例2最佳工作温度为200℃,此时灵敏度为14.7和;实施例1和实施例3的最佳工作温度为200℃,此时的灵敏度分别为4.9和5.4。在最佳工作温度下,实施例2的灵敏度最高,且实施例2的最佳工作温度比对比例的最佳工作温度低很多,更低的最佳工作温度有利于降低功耗。由此可见,通过掺杂Pd可以改善敏感材料与一氧化碳的反应效率,进而得到了一个具有高灵敏度的Pd掺杂SnO2氧化物半导体一氧化碳传感器。
图3为对比例和实施例1、实施例2、实施例3在最佳工作温度250℃、200℃、200℃、200℃的一氧化碳浓度-灵敏度的标准工作曲线。灵敏度测试方法:首先将传感器放入气体箱,通过与传感器连接的电流表测得此时铂线两端的电阻,得到传感器在空气中的电阻值即Ra;然后使用微量进样器向气体箱中注入10~200ppm的一氧化碳,通过测量得到传感器在不同浓度一氧化碳中的电阻值即Rg,根据灵敏度S的定义公式S=Ra/Rg,通过计算得到不同浓度下传感器的灵敏度,最终得到一氧化碳浓度-灵敏度的标准工作曲线。从图中可以看出,实施例2传感器的检测下限为10ppm,此时的灵敏度为3.0;一氧化碳浓度为200ppm时,此时的灵敏度为21.1。实际测量时可通过上述办法测得Ra、Rg,得到灵敏度值后与一氧化碳浓度-灵敏度的标准工作曲线进行对比,从而得到人体呼吸中的一氧化碳含量。另外,如图所示(10ppm-200ppm),传感器灵敏度的线性较好,这些特点使Pd掺杂SnO2氧化物半导体一氧化碳传感器能够很好的能够应用于矿井和大气环境中一氧化碳检测。
具体实施方式
对比例1:
以SnO2纳米空心球作为敏感材料制作旁热式一氧化碳传感器,其具体的制作过程:
(1)首先将42mg K2SnO3.3H2O、180mg尿素、5ml乙醇、5ml水搅拌10分钟形成匀质溶液;
(2)将(1)混合溶液放入45ml聚四氟乙烯釜中密封,放入150℃烘箱中24小时,结束后自然降温到室温,将样品收集用乙醇和去离子水离心后放到培养皿中80℃保持12个小时,收集样品;
(3)将上述纳米气体敏感材料在500℃下煅烧2小时,得到气体敏感材料,将该敏感材料与去离子水混合成糊状,然后均匀涂覆在市售的外表面自带有2个环形金电极(5)的绝缘Al2O3陶瓷管(1)表面,形成10~40微米的敏感材料薄膜(2),陶瓷管的长为4~4.5mm,外径为1.2~1.5mm,内径为0.8~1.0mm,并使敏感材料完全覆盖环形金电极(5);
(4)在红外灯下烘烤15分钟左右,待敏感材料干燥后,把绝缘Al2O3陶瓷管(1)在400℃下煅烧2小时;然后将电阻值为30~40Ω的镍镉加热线圈(3)穿过绝缘Al2O3陶瓷管(1)内部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到本发明所述氧化物半导体CO传感器。
实施例1:
以反应物中元素Pd/Sn质量比为0.015:1的Pd掺杂SnO2氧化物半导体作为敏感材料制作旁热式一氧化碳传感器,其具体的制作过程:
(1)首先将42mg K2SnO3.3H2O、180mg尿素、5ml乙醇、5ml水搅拌10分钟形成匀质溶液,一定量PdCl2加入到上述溶液使得元素Pd和元素Sn的质量比为1.5wt%;
(2)将(1)混合溶液放入45ml聚四氟乙烯釜中密封,放入150℃烘箱中24小时,结束后自然降温到室温,将样品收集用乙醇和去离子水离心后放到培养皿中80℃保持12个小时,收集样品;
(3)将上述纳米气体敏感材料在500℃下煅烧2小时,得到气体敏感材料,将该敏感材料与去离子水混合成糊状,然后均匀涂覆在市售的外表面自带有2个环形金电极(5)的绝缘Al2O3陶瓷管(1)表面,形成10~40微米的敏感材料薄膜(2),陶瓷管的长为4~4.5mm,外径为1.2~1.5mm,内径为0.8~1.0mm,并使敏感材料完全覆盖环形金电极(5);
(4)在红外灯下烘烤15分钟左右,待敏感材料干燥后,把绝缘Al2O3陶瓷管(1)在400℃下煅烧2小时;然后将电阻值为30~40Ω的镍镉加热线圈(3)穿过绝缘Al2O3陶瓷管(1)内部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到本发明所述氧化物半导体CO传感器。
实施例2:
以反应物中元素Pd/Sn质量比为0.030:1的Pd掺杂SnO2氧化物半导体作为敏感材料制作旁热式一氧化碳传感器,其具体的制作过程:
(1)首先将42mg K2SnO3.3H2O、180mg尿素、5ml乙醇、5ml水搅拌10分钟形成匀质溶液,一定量PdCl2加入到上述溶液使得元素Pd和元素Sn的质量比为3.0wt%;
(2)将(1)混合溶液放入45ml聚四氟乙烯釜中密封,放入150℃烘箱中24小时,结束后自然降温到室温,将样品收集用乙醇和去离子水离心后放到培养皿中80℃保持12个小时,收集样品;
(3)将上述纳米气体敏感材料在500℃下煅烧2小时,得到气体敏感材料,将该敏感材料与去离子水混合成糊状,然后均匀涂覆在市售的外表面自带有2个环形金电极(5)的绝缘Al2O3陶瓷管(1)表面,形成10~40微米的敏感材料薄膜(2),陶瓷管的长为4~4.5mm,外径为1.2~1.5mm,内径为0.8~1.0mm,并使敏感材料完全覆盖环形金电极(5);
(4)在红外灯下烘烤15分钟左右,待敏感材料干燥后,把绝缘Al2O3陶瓷管(1)在400℃下煅烧2小时;然后将电阻值为30~40Ω的镍镉加热线圈(3)穿过绝缘Al2O3陶瓷管(1)内部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到本发明所述氧化物半导体CO传感器。
实施例3:
以反应物中元素Pd/Sn质量比为0.045:1的Pd掺杂SnO2氧化物半导体作为敏感材料制作旁热式一氧化碳传感器,其具体的制作过程:
(1)首先将42mg K2SnO3.3H2O、180mg尿素、5ml乙醇、5ml水搅拌10分钟形成匀质溶液,一定量PdCl2加入到上述溶液使得元素Pd和元素Sn的质量比为4.5wt%;
(2)将(1)混合溶液放入45ml聚四氟乙烯釜中密封,放入150℃烘箱中24小时,结束后自然降温到室温,将样品收集用乙醇和去离子水离心后放到培养皿中80℃保持12个小时,收集样品;
(3)将上述纳米气体敏感材料在500℃下煅烧2小时,得到气体敏感材料,将该敏感材料与去离子水混合成糊状,然后均匀涂覆在市售的外表面自带有2个环形金电极(5)的绝缘Al2O3陶瓷管(1)表面,形成10~40微米的敏感材料薄膜(2),陶瓷管的长为4~4.5mm,外径为1.2~1.5mm,内径为0.8~1.0mm,并使敏感材料完全覆盖环形金电极(5);
(4)在红外灯下烘烤15分钟左右,待敏感材料干燥后,把绝缘Al2O3陶瓷管(1)在400℃下煅烧2小时;然后将电阻值为30~40Ω的镍镉加热线圈(3)穿过绝缘Al2O3陶瓷管(1)内部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到本发明所述氧化物半导体CO传感器。

Claims (5)

1.一种Pd掺杂SnO2氧化物半导体CO传感器,由外表面带有2个环形金电极(5)的Al2O3绝缘陶瓷管(1)、涂覆在环形金电极(5)和Al2O3绝缘陶瓷管(1)外表面的半导体敏感材料(2)、穿过Al2O3绝缘陶瓷管(1)内部的镍镉合金加热线圈(3)和用于导电的铂线(4)组成;其特征在于:半导体敏感材料(2)为Pd掺杂SnO2氧化物半导体,该敏感材料是采用一步水热技术制备,经煅烧,涂覆在环形金电极(5)和Al2O3绝缘陶瓷管(1)外表面。
2.如权利要求1所述的Pd掺杂SnO2氧化物半导体CO传感器,其特征在于:陶瓷管的长为4~4.5mm,外径为1.2~1.5mm,内径为0.8~1.0mm。
3.权利要求1所述的一种Pd掺杂SnO2氧化物半导体CO传感器的制备方法,其步骤如下:
(1)首先将42mg K2SnO3.3H2O、180mg尿素、5ml乙醇、5ml水搅拌10分钟形成匀质溶液,一定量PdCl2加入到上述溶液使得元素Pd和元素Sn的质量比为3.0wt%;
(2)将(1)混合溶液放入45ml聚四氟乙烯釜中密封,放入150℃烘箱中24小时,结束后自然降温到室温,将样品收集用乙醇和去离子水离心后放到培养皿中80℃保持12个小时,收集样品;
(3)将上述纳米气体敏感材料在500℃下煅烧2小时,得到气体敏感材料,将该敏感材料与去离子水混合成糊状,然后均匀涂覆在市售的外表面自带有2个环形金电极(5)的绝缘Al2O3陶瓷管(1)表面,形成10~40微米的敏感材料薄膜(2),陶瓷管的长为4~4.5mm,外径为1.2~1.5mm,内径为0.8~1.0mm,并使敏感材料完全覆盖环形金电极(5);
(4)在红外灯下烘烤15分钟左右,待敏感材料干燥后,把绝缘Al2O3陶瓷管(1)在400℃下煅烧2小时;然后将电阻值为30~40Ω的镍镉加热线圈(3)穿过绝缘Al2O3陶瓷管(1)内部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到本发明所述氧化物半导体CO传感器。
4.权利要求1所述的一种Pd掺杂SnO2氧化物半导体CO传感器,其特征在于:以一步原位合成Pd掺杂SnO2氧化物半导体作为敏感材料,一方面掺入Pd改变了SnO2纳米空心球的催化能力,会提供更多的反应活性位点,这会大幅提高气体与敏感材料的反应效率,进而提高传感器的灵敏度;另一方面Pd和SnO2颗粒间会形成大量的异质结,这些异质结的出现会提供更多的反应活性位点,这两方面都会大幅提高气体与敏感材料的反应效率。
5.如权利要求4所述的一种Pd掺杂SnO2氧化物半导体CO传感器在矿井气体和大气环境检测的应用,其特征在于:用于检测一氧化碳浓度。
CN201610352182.8A 2016-05-25 2016-05-25 Pd掺杂SnO2氧化物半导体CO传感器制备与应用 Pending CN106053548A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610352182.8A CN106053548A (zh) 2016-05-25 2016-05-25 Pd掺杂SnO2氧化物半导体CO传感器制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610352182.8A CN106053548A (zh) 2016-05-25 2016-05-25 Pd掺杂SnO2氧化物半导体CO传感器制备与应用

Publications (1)

Publication Number Publication Date
CN106053548A true CN106053548A (zh) 2016-10-26

Family

ID=57174368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610352182.8A Pending CN106053548A (zh) 2016-05-25 2016-05-25 Pd掺杂SnO2氧化物半导体CO传感器制备与应用

Country Status (1)

Country Link
CN (1) CN106053548A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144615A (zh) * 2017-07-06 2017-09-08 吉林大学 掺银三氧化二铁纳米材料的甲醛气体传感器及其制备方法
CN108037160A (zh) * 2017-12-12 2018-05-15 何旭连 基于射频识别的智能家居甲醛浓度检测系统
CN108120747A (zh) * 2017-11-30 2018-06-05 苏州慧闻纳米科技有限公司 二氧化锡基气敏元件的制备方法及一氧化碳气体传感器系统
CN108387625A (zh) * 2018-02-24 2018-08-10 东北大学 一种抗有机硅中毒的双涂层甲烷气体传感器及其制备方法
CN108545770A (zh) * 2018-07-02 2018-09-18 北京镭硼科技有限责任公司 表面改性的Pd-SnO2微球的制备方法及应用
CN108593718A (zh) * 2018-05-22 2018-09-28 广东美的制冷设备有限公司 气敏元件敏感材料及其制备方法
CN109211982A (zh) * 2017-07-07 2019-01-15 武汉大学 一种高稳定二氧化锡纳米陶瓷基一氧化碳室温传感器及其制备方法
CN110031514A (zh) * 2019-04-25 2019-07-19 吉林大学 基于Pd掺杂SnO2纳米敏感材料的H2S和NO2传感器、制备方法及其应用
CN110346421A (zh) * 2019-06-27 2019-10-18 重庆大学 一种气敏材料及其制备方法和应用
CN111157590A (zh) * 2020-01-21 2020-05-15 复旦大学 一种半导体式一氧化碳传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207653A (ja) * 1988-02-15 1989-08-21 Figaro Eng Inc Coセンサ
JPH05240820A (ja) * 1992-02-28 1993-09-21 Fuji Electric Co Ltd 一酸化炭素ガスセンサ
KR20020031439A (ko) * 2000-10-20 2002-05-02 정명식 일산화탄소 가스에 대한 감도 및 선택성이 우수한가스센서 및 이의 제조방법
JP2002310983A (ja) * 2001-04-19 2002-10-23 Matsushita Electric Ind Co Ltd 一酸化炭素ガスセンサ
CN104880490A (zh) * 2015-05-20 2015-09-02 吉林大学 Pd-SnO2氧化物半导体一氧化碳传感器、制备与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207653A (ja) * 1988-02-15 1989-08-21 Figaro Eng Inc Coセンサ
JPH05240820A (ja) * 1992-02-28 1993-09-21 Fuji Electric Co Ltd 一酸化炭素ガスセンサ
KR20020031439A (ko) * 2000-10-20 2002-05-02 정명식 일산화탄소 가스에 대한 감도 및 선택성이 우수한가스센서 및 이의 제조방법
JP2002310983A (ja) * 2001-04-19 2002-10-23 Matsushita Electric Ind Co Ltd 一酸化炭素ガスセンサ
CN104880490A (zh) * 2015-05-20 2015-09-02 吉林大学 Pd-SnO2氧化物半导体一氧化碳传感器、制备与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FABIAN GYGER ET AL.: "Nanoscale SnO2 Hollow Spheres and Their Application as a Gas-Sensing Material", 《CHEMISTRY OF MATERIALS》 *
S. Y. HO ET AL.: "Controllable Porosity of Monodispersed Tin Oxide Nanospheres via an Additive-Free Chemical Route", 《CRYSTAL GROWTH & DESIGN》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144615A (zh) * 2017-07-06 2017-09-08 吉林大学 掺银三氧化二铁纳米材料的甲醛气体传感器及其制备方法
CN109211982A (zh) * 2017-07-07 2019-01-15 武汉大学 一种高稳定二氧化锡纳米陶瓷基一氧化碳室温传感器及其制备方法
CN108120747A (zh) * 2017-11-30 2018-06-05 苏州慧闻纳米科技有限公司 二氧化锡基气敏元件的制备方法及一氧化碳气体传感器系统
CN108120747B (zh) * 2017-11-30 2020-10-30 江苏智闻智能传感科技有限公司 二氧化锡基气敏元件的制备方法及一氧化碳气体传感器系统
CN108037160A (zh) * 2017-12-12 2018-05-15 何旭连 基于射频识别的智能家居甲醛浓度检测系统
CN108387625A (zh) * 2018-02-24 2018-08-10 东北大学 一种抗有机硅中毒的双涂层甲烷气体传感器及其制备方法
CN108387625B (zh) * 2018-02-24 2019-06-18 东北大学 一种抗有机硅中毒的双涂层甲烷气体传感器及其制备方法
CN108593718A (zh) * 2018-05-22 2018-09-28 广东美的制冷设备有限公司 气敏元件敏感材料及其制备方法
CN108545770A (zh) * 2018-07-02 2018-09-18 北京镭硼科技有限责任公司 表面改性的Pd-SnO2微球的制备方法及应用
CN110031514A (zh) * 2019-04-25 2019-07-19 吉林大学 基于Pd掺杂SnO2纳米敏感材料的H2S和NO2传感器、制备方法及其应用
CN110346421A (zh) * 2019-06-27 2019-10-18 重庆大学 一种气敏材料及其制备方法和应用
CN111157590A (zh) * 2020-01-21 2020-05-15 复旦大学 一种半导体式一氧化碳传感器
CN111157590B (zh) * 2020-01-21 2023-03-07 复旦大学 一种半导体式一氧化碳传感器

Similar Documents

Publication Publication Date Title
CN104880490B (zh) Pd‑SnO2氧化物半导体一氧化碳传感器
CN106053548A (zh) Pd掺杂SnO2氧化物半导体CO传感器制备与应用
CN105806899A (zh) Pt-SnO2氧化物半导体一氧化碳传感器制备与应用
Urasinska-Wojcik et al. Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment
CN107655948B (zh) 一种以La2NiO4为敏感电极的YSZ基混成电位型H2S传感器及其制备方法
CN108872325A (zh) 一种基于SnSe2/SnO2异质结的二氧化氮气体传感器、制备工艺及应用
CN106587134B (zh) 贵金属掺杂的花状CuO纳米材料的制备方法及其制备气敏元件的方法
CN105181762B (zh) 一种基于Co‑Sn复合氧化物半导体敏感材料的乙醇传感器
CN102621199B (zh) 一种石墨烯修饰的Pt电极及检测痕量重金属的方法
CN109001263B (zh) 一种基于MOF模板合成ZnO负载三氧化二铁纳米异质结构的气敏元件的方法
CN104897761A (zh) 基于分等级In2O3敏感电极的YSZ基混成电位型NO2传感器及制备方法
CN109107358B (zh) 一种氧化铈/氧化铜异质结复合氧化物及其制备方法和应用
CN109946358A (zh) 一种以MTiO3为敏感电极的YSZ基混成电位型SO2传感器、制备方法及其应用
CN107091868B (zh) 以LaxSm1-xFeO3为敏感电极材料的混成电位型SO2传感器及其制作方法
CN111017986A (zh) 一种还原氧化石墨烯-CuO/ZnO气敏材料的制备方法
CN113740391A (zh) 一种MOF衍生的NiO-Co3O4丙酮气体传感器的制备方法
CN108007977A (zh) 基于β-Ga2O3/CuGa2O4/[HONH3]PbI3异质结的气敏传感器
CN111830089A (zh) 一种基于双壳形Cu2O分等级结构微米球敏感材料的正丙醇气体传感器及其制备方法
CN111017985A (zh) 一种CuO/ZnO基半导体丙酮气敏材料的制备方法
CN109596676A (zh) 基于CexMn1-xO2-SnO2材料的气体传感器及其制备和应用
CN104819998A (zh) 一种阻抗谱型NOx传感器及其固体电解质材料的制备方法
CN112986340B (zh) 用于丙酮气敏元件的厚膜材料、制备方法及丙酮气敏元件
CN112362701A (zh) 一种基于一步溶剂热法合成的Au负载ZnO纳米复合材料的正戊醇传感器及其制备方法
CN108572198B (zh) 一氧化氮气敏材料及其在制备传感器上的应用
CN105606679A (zh) 基于稳定氧化锆和ZnNb2O6敏感电极的高灵敏乙醇传感器及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161026