CN106041069A - 一种基于微波烧结的压制型含钪扩散阴极制备方法 - Google Patents

一种基于微波烧结的压制型含钪扩散阴极制备方法 Download PDF

Info

Publication number
CN106041069A
CN106041069A CN201610366220.5A CN201610366220A CN106041069A CN 106041069 A CN106041069 A CN 106041069A CN 201610366220 A CN201610366220 A CN 201610366220A CN 106041069 A CN106041069 A CN 106041069A
Authority
CN
China
Prior art keywords
powder
nitrate
sintering
microwave sintering
compacting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610366220.5A
Other languages
English (en)
Other versions
CN106041069B (zh
Inventor
刘伟
田明创
王金淑
周帆
贾新建
董丽然
赖陈
杨韵斐
张权
祖冠男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201610366220.5A priority Critical patent/CN106041069B/zh
Publication of CN106041069A publication Critical patent/CN106041069A/zh
Priority to US15/409,888 priority patent/US10651000B2/en
Application granted granted Critical
Publication of CN106041069B publication Critical patent/CN106041069B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/026Spray drying of solutions or suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/36Obtaining tungsten
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/064Details of the emitter, e.g. material or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1054Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by microwave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/28Dispenser-type cathodes, e.g. L-cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J19/00Details of vacuum tubes of the types covered by group H01J21/00
    • H01J19/02Electron-emitting electrodes; Cathodes
    • H01J19/04Thermionic cathodes
    • H01J19/14Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J19/22Dispenser-type cathodes, e.g. L-cathode

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid Thermionic Cathode (AREA)

Abstract

一种基于微波烧结的压制型含钪扩散阴极制备方法,属于稀土难溶金属阴极材料技术领域。将各种硝酸盐和偏钨酸氨溶于等离子水,制成均匀混合溶液,利用喷雾干燥得到颗粒均匀的前驱体粉末;然后前驱体粉末经过分解、二次还原得到元素均匀分布的掺杂钨粉;最后利用微波烧结的方法经过一次烧结制备阴极。最终实现阴极烧结一次成型,烧结收缩比显著降低,大幅减少烧结时间,结构均一,重复性好,并且在950℃具有优良发射性能。

Description

一种基于微波烧结的压制型含钪扩散阴极制备方法
技术领域
本发明属于稀土难溶金属阴极材料技术领域,涉及一种钨基复合材料,更具体地说涉及一种基于微波烧结的压制型含钪扩散阴极制备方法。
背景技术
近年来,微焦点X射线(微焦点:小于100um×100um)在医疗、卫生、航天的应用得到迅猛发展,尤其小焦点、大功率X射线器件的研发越来越引起不同领域科研工作者的广泛关注。微焦点X射线应用的核心技术就是微焦点X射线源——微区X射线管阴极,但随着管子分辨率和功率的提升,人们对小尺寸、大功率阴极的需求愈加急切,因此迫切需要研发出高尺寸精度、大电流发射阴极。
在诸多阴极类型中,浸渍型含钪扩散阴极是已有文献报道中发射相对较高的阴极,但它的制备工艺比较复杂,而且由于浸盐的二次变形,不能够一次烧结成型,重复性较差,不能够满足微区X射线管的理想阴极的要求;压制型含钪扩散阴极能够一次成型,但各种活性物质不均匀,结构均一性较差,导致发射性能不高。并且在普通阴极烧结技术中,采用传统烧结炉的升温速率只有5-10℃/min,阴极烧结工艺需要350-400min,带来极大能耗,并且由于降温时间过长容易造成晶粒长大,重复性不高。
微波烧结作为一种新型烧结技术,具有即时性特点,只要有微波辐射,物料即刻得到加热,微波停止加热亦立刻停止,加热速度快,微波能量转换率高,升温速率可达40-50℃/min,可经济地获得1600℃高温;并且由于快速升降温的特点,可以抑制晶粒组织长大,获得超细晶粒结构材料,显著改善材料的显微组织,细晶组织力学性能优良;并且微波烧结收缩比相对普通烧结显著降低,试样的垂直收缩率和水平收缩率只有传统烧结试样的三分之一左右。
综上所述,找到一种节省能源、升温降温速率快、能够一次性烧结成型的烧结方法,并且最终得到结构均一、晶粒细小的阴极,对推动微焦点X射线的性能提升以及太赫兹真空电子器件的发展都具有重要的意义。
发明内容
本发明针对现有技术无法满足微焦点x射线发展且制备工艺复杂、尺寸精度低、烧结工艺物耗及能耗高等问题,提供了一种基于微波烧结的压制型含钪扩散阴极的制备方法,实现阴极烧结一次成型,烧结收缩比显著降低,并且大幅减少烧结时间,结构均一,阴极发射重复性好,并且在950℃具有优良发射性能。
为实现上述目的,本发明所采用的技术方案包含如下步骤:
A.前驱体粉末制备:室温下将偏钨酸氨、硝酸钪、硝酸铝、硝酸钡、硝酸钙分别溶于水,然后将硝酸钪溶液和偏钨酸铵溶液混合,再将硝酸铝、硝酸钡、硝酸钙溶液缓慢加入,并不断搅拌,混合溶液中偏钨酸氨、硝酸钪、硝酸铝、硝酸钡和硝酸钙的总浓度为40-80g/L;利用喷雾干燥得到前驱体粉末,工艺参数为:进料速度200ml/h-600ml/h、鼓风速率0.4m3/min-0.6m3/min、进口温度150℃、出口温度稳定在90-96℃;
B.前驱体粉末的分解还原:将前驱体粉末置于马弗炉中分解,粉末在550℃、大气气氛(或氧气气氛)下保温2-4小时以除去前驱体粉末中的N元素,获得含有氧化钪、氧化钨等氧化物的粉末;将分解后的粉末置于管式炉中在氢气气氛下分两步进行还原,首先在450-550℃保温2-3小时,再将温度升至800-950℃保温2-3小时,获得掺杂钨粉;
C.阴极的压制和微波烧结:将掺杂钨粉在0.8-1.2t/cm2的压力下进行压制,然后将得到的生坯置于保温辅助加热的装置中,并连同保温辅助加热的装置一起放入微波谐振腔内,开启微波源,升温至800-850℃(一般以15-20℃/min的升温速率);再以10-15℃/min的速率升温至1400-1550℃,保温10-30min后,自然冷却至室温,即得;上述烧结在保护气体中进行,如采用氩气。
进一步保温辅助加热的装置在微波谐振腔内不断转动。
所述的步骤A中各物质的加入量使得最终含钪扩散阴极材料的质量含量:W含量85%、Sc2O3含量5%、BaO、CaO和Al2O3三者的含量10%,其中Ba∶Ca∶Al摩尔比为4∶1∶1。
步骤A和B得到的粉末优选都要有经过200目筛网之后再进行下一步。
保温辅助加热的装置为在保温材料中设有空腔用于放置待加热的材料,在保温材料中空腔的四周设有多个加热装置如加热电阻丝或SiC辅助加热片等,保温材料可以采用三氧化二铝、莫来石纤维等。
本发明最终得到结构均一、晶粒细小的阴极,烧结收缩比显著降低,阴极发射重复性好,并且在950℃具有优良发射性能。
附图说明
为了更详实地表述该发明实施例的技术方案,以下对实施例描述中所使用的附图作简单介绍。显然,以下描述中的附图仅为本发明的一些实施例的附图,对于该领域普通技术人员来讲,在未付诸创造性劳动的前提下,还可依据此类附图获得其它的附图。
图1为本发明制备方法的整个合成路线图
图2为本发明微波烧结设备原理示意图
图3为本发明还原后掺杂钨粉的X-射线粉末衍射图
图4为本发明还原后掺杂钨粉的扫描电子显微镜照片和EDAX能谱分析
图5为本发明阴极实物照片和扫描电子显微镜照片
a阴极实物照片
b实例1阴极表面扫描电子显微镜照片
c实例2阴极表面扫描电子显微镜照片
d实例3阴极表面扫描电子显微镜照片
图6为本发明三种实例阴极热发射LogU-LogI曲线。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,使本领域技术人员更好地理解本发明,下面结合附图与实施例对本发明的实施方式作进一步地详细阐述。
实施例1
首先,将20.34g硝酸钡、4.60g四水硝酸钙、14.61g九水硝酸铝、36.84g六水硝酸钪、160.668g偏钨酸氨分别溶于去离子水中,搅拌到全部溶解,先将硝酸钡、硝酸钙、硝酸铝配制成411盐溶液,随后将硝酸钪和偏钨酸氨溶液混合,最后将411盐溶液缓慢加入,于此同时用搅拌器不断搅拌,使其充分混合,最终总浓度68.52g/L,利用喷雾干燥得到前驱体粉末,进料速度600ml/h、鼓风速率0.4m3/min-0.6m3/min、进口温度150℃,出口温度稳定在90-96℃;其次,将得到的前驱体粉末马弗炉中分解,粉末在550℃、大气气氛(或氧气气氛)下保温3小时左右以除去前驱体粉末中的N元素,获得含有氧化钪,氧化钨等氧化物的粉末;将分解后的粉末置于管式炉中在氢气气氛下分两步进行还原,首先在500℃保温2-3小时,再将温度升至900℃保温2-3小时,获得掺杂钨粉;最后将经分解后的粉末在1.2t/cm2的压力下进行压制,然后将生坯置于保温辅助加热的装置中,并连同装置一起放入微波谐振腔内,开启微波源,以20℃/min的速率升温至850℃;再以13℃/min的速率升温至1500℃,保温5min后,自然冷却至室温,即得;
实施例2
首先,将6.78g硝酸钡、1.53g四水硝酸钙、4.78g九水硝酸铝、12.28g六水硝酸钪、56.61g偏钨酸氨分别溶于去离子水中,搅拌到全部溶解,先将硝酸钡、硝酸钙、硝酸铝配制成411盐溶液,随后将硝酸钪和偏钨酸氨溶液混合,最后将411盐溶液缓慢加入,于此同时用搅拌器不断搅拌,使其充分混合,最终总浓度69.28g/L,利用喷雾干燥得到前驱体粉末,进料速度600ml/h、鼓风速率0.4m3/min-0.6m3/min、进口温度150℃,出口温度稳定在90-96℃;其次,将得到的前驱体粉末马弗炉中分解,粉末在550℃、大气气氛(或氧气气氛)下保温3小时左右以除去前驱体粉末中的N元素,获得含有氧化钪,氧化钨等氧化物的粉末;将分解后的粉末置于管式炉中在氢气气氛下分两步进行还原,首先在500℃保温2-3小时,再将温度升至900℃保温2-3小时,获得掺杂钨粉;最后将经分解后的粉末在1.2t/cm2的压力下进行压制,然后将生坯置于辅助加热与保温联合装置中,并连同装置一起放入微波谐振腔内,开启微波源,以20℃/min的速率升温至850℃;再以15℃/min的速率升温至1550℃,保温5min后,自然冷却至室温,即得;
实施例3
首先,将20.34g硝酸钡、4.60g四水硝酸钙、14.61g九水硝酸铝、36.84g六水硝酸钪、160.668g偏钨酸氨分别溶于去离子水中,搅拌到全部溶解,先将硝酸钡、硝酸钙、硝酸铝配制成411盐溶液,随后将硝酸钪和偏钨酸氨溶液混合,最后将411盐溶液缓慢加入,于此同时用搅拌器不断搅拌,使其充分混合,最终总浓度70.32g/L,利用喷雾干燥得到前驱体粉末,进料速度300ml/h、鼓风速率0.4m3/min-0.6m3/min、进口温度150℃、出口温度稳定在90-96℃;其次,将得到的前驱体粉末马弗炉中分解,粉末在550℃、大气气氛(或氧气气氛)下保温3小时左右以除去前驱体粉末中的N元素,获得含有氧化钪,氧化钨等氧化物的粉末;将分解后的粉末置于管式炉中在氢气气氛下分两步进行还原,首先在500保温2小时,再将温度升至900℃保温2小时,获得掺杂钨粉;最后将经分解后的粉末在1.2t/cm2的压力下进行压制,然后将生坯置于辅助加热与保温联合装置中,并连同装置一起放入微波谐振腔内,开启微波源,以20℃/min的速率升温至800-850℃;再以15℃/min的速率升温至1500℃,保温8min后,自然冷却至室温,即得;
本发明所得阴极热发射LogU-LogI曲线见图3。
本发明阴极试样微波与真空烧结收缩率对比见表1。
表1
含钪阴极试样 高度收缩率 直径收缩率 体积收缩率 高径收缩差
真空烧结 15.38 15.41 15.40 -0.03
微波烧结 8.41 6.42 7.41 1.99
以上所述实施方式仅为本发明做进一步描述,然而本发明并非局限于此,凡在不脱离本发明核心的情况下所做的任何修改、等同替换或改进等,均应包含在本发明的保护范围内。

Claims (6)

1.一种基于微波烧结的压制型含钪扩散阴极制备方法,其特征在于,包含如下步骤:
A.前驱体粉末制备:室温下将偏钨酸氨、硝酸钪、硝酸铝、硝酸钡、硝酸钙分别溶于水,然后将硝酸钪溶液和偏钨酸铵溶液混合,再将硝酸铝、硝酸钡、硝酸钙溶液缓慢加入,并不断搅拌,混合溶液中偏钨酸氨、硝酸钪、硝酸铝、硝酸钡和硝酸钙的总浓度为40-80g/L;利用喷雾干燥得到前驱体粉末,工艺参数为:进料速度200ml/h-600ml/h、鼓风速率0.4m3/min-0.6m3/min、进口温度150℃、出口温度稳定在90-96℃;
B.前驱体粉末的分解还原:将前驱体粉末置于马弗炉中分解,粉末在550℃、大气气氛或氧气气氛下保温2-4小时以除去前驱体粉末中的N元素,获得含有氧化钪、氧化钨等氧化物的粉末;将分解后的粉末置于管式炉中在氢气气氛下分两步进行还原,首先在450-550℃保温2-3小时,再将温度升至800-950℃保温2-3小时,获得掺杂钨粉;
C.阴极的压制和微波烧结:将掺杂钨粉在0.8-1.2t/cm2的压力下进行压制,然后将得到的生坯置于保温辅助加热的装置中,并连同保温辅助加热的装置一起放入微波谐振腔内,开启微波源,升温至800-850℃;再以10-15℃/min的速率升温至1400-1550℃,保温10-30min后,自然冷却至室温,即得;上述烧结在保护气体中进行。
2.按照权利要求1所述的一种基于微波烧结的压制型含钪扩散阴极制备方法,其特征在于,所述的步骤A中各物质的加入量使得最终含钪扩散阴极材料的质量含量:W含量85%、Sc2O3含量5%、BaO、CaO和Al2O3三者的含量10%,其中Ba∶Ca∶Al摩尔比为4∶1∶1。
3.按照权利要求1所述的一种基于微波烧结的压制型含钪扩散阴极制备方法,其特征在于,步骤A和B得到的粉末优选都要有经过200目筛网之后再进行下一步。
4.按照权利要求1所述的一种基于微波烧结的压制型含钪扩散阴极制备方法,其特征在于,步骤C中升温至800-850℃采用15-20℃/min的升温速率。
5.按照权利要求1所述的一种基于微波烧结的压制型含钪扩散阴极制备方法,其特征在于,保温辅助加热的装置为在保温材料中设有空腔用于放置待加热的材料,在保温材料中空腔的四周设有多个加热装置。
6.按照权利要求5所述的一种基于微波烧结的压制型含钪扩散阴极制备方法,其特征在于,加热装置为加热电阻丝或SiC辅助加热片;保温材料采用三氧化二铝或莫来石纤维。
CN201610366220.5A 2016-05-27 2016-05-27 一种基于微波烧结的压制型含钪扩散阴极制备方法 Expired - Fee Related CN106041069B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610366220.5A CN106041069B (zh) 2016-05-27 2016-05-27 一种基于微波烧结的压制型含钪扩散阴极制备方法
US15/409,888 US10651000B2 (en) 2016-05-27 2017-01-19 Method for preparing pressed scandia-doped dispenser cathodes using microwave sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610366220.5A CN106041069B (zh) 2016-05-27 2016-05-27 一种基于微波烧结的压制型含钪扩散阴极制备方法

Publications (2)

Publication Number Publication Date
CN106041069A true CN106041069A (zh) 2016-10-26
CN106041069B CN106041069B (zh) 2018-06-12

Family

ID=57176069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610366220.5A Expired - Fee Related CN106041069B (zh) 2016-05-27 2016-05-27 一种基于微波烧结的压制型含钪扩散阴极制备方法

Country Status (2)

Country Link
US (1) US10651000B2 (zh)
CN (1) CN106041069B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144130A (zh) * 2017-05-11 2017-09-08 北京工业大学 一种阴极用可视化微波烧结设备
CN109704377A (zh) * 2019-01-24 2019-05-03 北京工业大学 一种微波烧结411铝酸盐电子发射物质的制备方法
CN109807326A (zh) * 2019-01-24 2019-05-28 北京工业大学 一种微波烧结制备压制型钡钨阴极的方法
CN109834266A (zh) * 2019-01-24 2019-06-04 北京工业大学 一种微波烧结制备浸渍型含钪扩散阴极的方法
CN109926591A (zh) * 2019-03-21 2019-06-25 北京工业大学 一种钡钨阴极的简易制备方法
CN112974834A (zh) * 2019-12-16 2021-06-18 新奥科技发展有限公司 等离子炬阴极材料前驱粉体及其制备方法及等离子炬阴极

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444718A (en) * 1982-03-19 1984-04-24 The United States Of America As Represented By The Secretary Of The Army Method of making a high current density cathode
EP0525646A1 (en) * 1991-07-25 1993-02-03 Nec Corporation Preparation of cathode structures for impregnated cathodes
JPH06168661A (ja) * 1992-09-29 1994-06-14 Nec Kansai Ltd 含浸型陰極の製造方法
CN1889221A (zh) * 2006-07-14 2007-01-03 北京工业大学 含钪的复合稀土掺杂钨基扩散阴极及其制备方法
CN1909143A (zh) * 2006-07-19 2007-02-07 北京工业大学 压制型含钪扩散阴极的制备方法
CN101625950A (zh) * 2009-08-03 2010-01-13 北京工业大学 含钇的压制型钡钨阴极及其制备方法
CN101764006A (zh) * 2010-01-08 2010-06-30 北京工业大学 一种浸渍型钪钨扩散式阴极材料的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8201371A (nl) * 1982-04-01 1983-11-01 Philips Nv Werkwijzen voor het vervaardigen van een naleveringskathode en naleveringskathode vervaardigd volgens deze werkwijzen.
US5407633A (en) * 1994-03-15 1995-04-18 U.S. Philips Corporation Method of manufacturing a dispenser cathode
CN101628336B (zh) * 2009-08-03 2011-01-12 北京工业大学 一种含钪扩散阴极材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444718A (en) * 1982-03-19 1984-04-24 The United States Of America As Represented By The Secretary Of The Army Method of making a high current density cathode
EP0525646A1 (en) * 1991-07-25 1993-02-03 Nec Corporation Preparation of cathode structures for impregnated cathodes
JPH06168661A (ja) * 1992-09-29 1994-06-14 Nec Kansai Ltd 含浸型陰極の製造方法
CN1889221A (zh) * 2006-07-14 2007-01-03 北京工业大学 含钪的复合稀土掺杂钨基扩散阴极及其制备方法
CN1909143A (zh) * 2006-07-19 2007-02-07 北京工业大学 压制型含钪扩散阴极的制备方法
CN101625950A (zh) * 2009-08-03 2010-01-13 北京工业大学 含钇的压制型钡钨阴极及其制备方法
CN101764006A (zh) * 2010-01-08 2010-06-30 北京工业大学 一种浸渍型钪钨扩散式阴极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李雪征等: "白光二极管用Ba3MgSi2O8基质发光材料的溶胶雾化-微波烧成与光谱性质", 《发光学报》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144130A (zh) * 2017-05-11 2017-09-08 北京工业大学 一种阴极用可视化微波烧结设备
CN107144130B (zh) * 2017-05-11 2019-04-19 北京工业大学 一种阴极用可视化微波烧结设备
CN109704377A (zh) * 2019-01-24 2019-05-03 北京工业大学 一种微波烧结411铝酸盐电子发射物质的制备方法
CN109807326A (zh) * 2019-01-24 2019-05-28 北京工业大学 一种微波烧结制备压制型钡钨阴极的方法
CN109834266A (zh) * 2019-01-24 2019-06-04 北京工业大学 一种微波烧结制备浸渍型含钪扩散阴极的方法
CN109704377B (zh) * 2019-01-24 2021-06-04 北京工业大学 一种微波烧结411铝酸盐电子发射物质的制备方法
CN109926591A (zh) * 2019-03-21 2019-06-25 北京工业大学 一种钡钨阴极的简易制备方法
CN109926591B (zh) * 2019-03-21 2020-11-27 北京工业大学 一种钡钨阴极的简易制备方法
CN112974834A (zh) * 2019-12-16 2021-06-18 新奥科技发展有限公司 等离子炬阴极材料前驱粉体及其制备方法及等离子炬阴极

Also Published As

Publication number Publication date
US20170345608A1 (en) 2017-11-30
US10651000B2 (en) 2020-05-12
CN106041069B (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
CN106041069A (zh) 一种基于微波烧结的压制型含钪扩散阴极制备方法
CN1092395C (zh) 包含消气剂的场发射平板显示器及其制造方法
CN100433230C (zh) 压制型含钪扩散阴极的制备方法
CN102394208B (zh) 浸渍型氧化钇-钨基钇、钪酸盐阴极材料及其制备方法
CN101764006B (zh) 一种浸渍型钪钨扩散式阴极材料的制备方法
CN110303165A (zh) 一种浸渍型氧化钪掺杂铼钨多相混合基扩散阴极及制备方法
CN114573346B (zh) 一种热光伏用稀土高熵铝酸盐陶瓷选择性发射体及其制备方法及应用
CN104926355B (zh) 基于明胶溶液冷冻干燥技术制备定向多孔氮化硅陶瓷的方法
CN105645946B (zh) 一种浸渍扩散阴极用含钪铝酸盐及其制备方法
CN109390195B (zh) 一种亚微米结构顶层含钪阴极及其制备方法
CN102549707A (zh) 放电灯用电极、放电灯用电极的制造方法以及放电灯
CN103265286B (zh) 一种微波烧结低温制备Y2O3和MgO共掺ZrO2透明陶瓷的方法
CN101891216B (zh) 一种高纯CeB6纳米粉的制备方法
CN113161572B (zh) 一种连续生产电池/电解池的方法、系统及电池/电解池
CN109461943A (zh) 电池阴极催化剂、其制备方法、电池阴极膜及金属空气电池
CN111739771A (zh) 一种用于热阴材料的含钪锶活性物质
CN104830341B (zh) 一种稀土离子掺杂氟化钇绿色上转换荧光材料的制备方法
CN109926591B (zh) 一种钡钨阴极的简易制备方法
CN104299869A (zh) 一种浸渍型Re3W-Sc2O3混合基阴极材料及其制备方法
CN101628336B (zh) 一种含钪扩散阴极材料的制备方法
CN104830344B (zh) 一种Er3+,Yb3+共掺YOF红色上转换荧光材料的制备方法
CN111128639B (zh) 一种微波烧结制备浸渍型的mm型阴极的方法
CN111662095A (zh) 一种石榴石型无机固体电解质材料的低温烧结方法
CN104478435A (zh) Eu2+/Eu3+共存(Y0.9La0.1)2O3粉体、制法、应用和透明陶瓷制法
CN115417660B (zh) 一种Eu2O3掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180612

Termination date: 20210527