CN105993093A - 锂硫二次电池 - Google Patents

锂硫二次电池 Download PDF

Info

Publication number
CN105993093A
CN105993093A CN201480065532.1A CN201480065532A CN105993093A CN 105993093 A CN105993093 A CN 105993093A CN 201480065532 A CN201480065532 A CN 201480065532A CN 105993093 A CN105993093 A CN 105993093A
Authority
CN
China
Prior art keywords
lithium
sulfur
rechargeable battery
positive
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480065532.1A
Other languages
English (en)
Inventor
塚原尚希
福田羲朗
野末竜弘
村上裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Publication of CN105993093A publication Critical patent/CN105993093A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/399Cells with molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/78Shapes other than plane or cylindrical, e.g. helical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

本发明提供一种锂硫二次电池,其可抑制溶出到电解液中的多硫化物向负极扩散,可抑制充放电效率下降。本发明的锂硫二次电池(B)包括正极(P),其具有含硫的正极活性物质;负极(N),其具有含锂的负极活性物质;以及隔板(S),其配置在正极和负极之间,并允许电解液(L)的锂离子通过,所述锂硫二次电池(B),其特征在于:在隔板的正极侧的表面和负极侧的表面中的至少一面上形成阳离子交换膜(CE)。

Description

锂硫二次电池
技术领域
本发明涉及一种锂硫二次电池。
背景技术
由于锂二次电池具有高能量密度,所以其不仅应用于移动电话和个人电脑等携带式设备等中,还广泛适用于混合动力汽车、电动汽车、电力存储蓄电系统等中。作为这种锂二次电池中的一种,近年来通过锂和硫反应进行充放电的锂硫二次电池受到人们的关注。已知锂硫二次电池包括:正极,其具有含硫的正极活性物质;负极,其具有含锂的负极活性物质;以及隔板,其配置在正极和负极之间,并允许锂离子通过,例如专利文献1。
另一方面,已知一正极,为增加促进电池反应的硫的量,使多个碳纳米管在正极的集电体表面上朝与该表面正交的方向定向,用硫分别覆盖各碳纳米管表面,例如专利文献2。
此处,在锂硫二次电池的正极中,硫和锂在多个阶段进行反应的过程中产生多硫化物,但是多硫化物(尤其是Li2S6和Li2S4)易于溶出到电解液中,溶出的多硫化物作为阴离子而扩散。在上述专利文献1中,使用高分子无纺布或树脂材质多孔膜构成了隔板,但使用这些材料导致多硫化物的阴离子透过隔板向负极扩散。一旦多硫化物与负极的锂发生反应,则无法促进充电反应(产生所谓的氧化还原穿梭现象),充放电容量和充放电效率降低。
现有技术文献
专利文献
专利文献1:专利公开2013-114920号公报
专利文献2:国际公开第2012/070184号说明书
发明内容
发明要解决的技术问题
鉴于以上内容,本发明的课题是提供一种锂硫二次电池,其可抑制溶出到电解液中的多硫化物向负极扩散,并可抑制充放电容量和充放电效率的下降。
解决技术问题的手段
为解决上述技术问题,本发明的锂硫二次电池包括:正极,其具有含硫的正极活性物质;负极,其具有含锂的负极活性物质;以及隔板,其配置在正极和负极之间,并允许电解液的锂离子通过,所述锂硫二次电池,其特征在于:在隔板的正极侧的表面和负极侧的表面中的至少一面上形成阳离子交换膜。
采用本发明,在隔板的表面上形成的阳离子交换膜通过该膜具有的阴离子基团而带负电,允许锂离子(阳离子)通过,但抑制多硫化物(阴离子)的通过。由此,可抑制溶出到电解液中的多硫化物到达负极(即可抑制氧化还原穿梭现象的发生),可抑制充放电容量和充放电效率的降低。
在本发明中,阳离子交换膜优选从全氟磺酸聚合物、芳香族聚醚聚合物、含有不含磺酸基团的疏水性片段和含磺酸基团的亲水性片段的烃类嵌段共聚物中选择。当阳离子交换膜是烃类嵌段共聚物时,所述疏水性片段优选由聚醚砜或聚醚酮构成,所述亲水性片段优选由磺化聚醚砜或磺化聚醚酮构成。
本发明优选适用于正极包括集电体、在集电体表面上以该集电体表面侧为基端朝与集电体表面正交的方向定向生长的多个碳纳米管、以及分别覆盖各碳纳米管表面的硫的情况。此时,与将硫涂在集电体表面的产品相比,正极中浸渗的硫的量更多,多硫化物更容易溶出到电解液中,但采用本发明,可有效抑制多硫化物向负极扩散。
附图说明
图1是示出本发明实施方式的锂硫二次电池的结构的剖面示意图。
图2是将图1中示出的正极进行放大显示的剖面示意图。
图3是示出用于确认本发明的效果的实验结果(充放电曲线)的图表。
图4是示出用于确认本发明的效果的实验结果(充放电容量和充放电效率)的图表。
具体实施方式
在图1中,B是锂硫二次电池,锂硫二次电池B包括:正极P,其具有含硫的正极活性物质;负极N,其具有含锂的负极活性物质;以及隔板S,其配置在正极P和负极N之间,并允许电解液L的锂离子通过。
并且参考图2,正极P包括正极集电体P1和在正极集电体P1表面形成的正极活性物质层P2。正极集电体P1例如具有基底1、在基底1的表面上形成的薄膜厚度为5~50nm的基膜(也叫做“阻隔膜”)2,以及在基膜2上形成的薄膜厚度为0.5~5nm的催化剂层3。对于基底1,例如可使用由Ni、Cu或Pt构成的金属箔或金属网。基膜2是用于提高基底1与下文的碳纳米管4的密合性的产品,例如可从Al、Ti、V、Ta、Mo和W中选出的至少一种金属或该金属的氮化物构成。催化剂层3例如由从Ni、Fe或Co中选出的至少一种金属构成。正极活性物质层P2由在正极集电体P1的表面以该表面侧为基端朝与该表面正交的方向定向生长的多个碳纳米管4、以及分别覆盖各多个碳纳米管4表面的硫5构成。在用硫5覆盖的碳纳米管4彼此间存在间隙,使下文的电解液L流入该间隙。
此处,考虑到电池的特性,各碳纳米管4例如为长度在100~1000μm的范围内、直径在5~50nm的范围内的高长径比的产品是有利的,再有,优选单位面积的生长密度在1×1010~1×1012个/cm2范围内。并且,覆盖各碳纳米管4整个表面的硫5的厚度例如优选在1~3nm的范围内。
上述正极P可通过下述方法形成。即在作为基底1的Ni箔的表面依次形成作为基膜2的Al膜和作为催化剂层3的Ni膜从而得到正极集电体P1。作为基膜2和催化剂层3的形成方法,可使用公知的电子束蒸镀法、溅镀法、使用含催化剂金属的化合物溶液的浸渍法,因此,此处省略详细说明。得到的正极集电体P1设置在公知的CVD装置的处理室内,在100Pa~大气压的工作压力下向处理室内提供含原料气体和稀释气体的混合气体,通过在600~800℃的温度下加热正极集电体P1,在集电体P1的表面上朝与该表面正交的方向定向生长碳纳米管4。作为用于使碳纳米管4生长的CVD法,可使用热CVD法、等离子体CVD法、热丝CVD法。作为原料气体,例如可使用甲烷、乙烯、乙炔等烃类或甲醇、乙醇等醇,再有,作为稀释气体,可使用氮气、氩气或氢气。再有,原料气体和稀释气体的流量可根据处理室的容积而适当设置,例如原料气体的流量可设定在10~500sccm范围内,稀释气体的流量可设定在100~5000sccm的范围内。在碳纳米管4生长的整个区域上从其上方播撒粒径在1~100μm范围内的颗粒状的硫,将正极集电体P1设置在管式炉内,加热到在硫的熔点(113℃)以上的120~180℃的温度使硫熔融。如果在空气中加热,则溶解了的硫与空气中的水反应生成二氧化硫,因此,优选在Ar或He等惰性气体气氛中,或在真空中加热。熔融了的硫流入碳纳米管4彼此间的间隙中,各碳纳米管4的表面全部被硫5所覆盖,相邻的碳纳米管4彼此间存在间隙(参照图2)。此时,可根据碳纳米管4的密度设定上述配置的硫的重量。例如当碳纳米管4的生长密度为1×1010~1×1012个/cm2时,优选将硫的重量设定为碳纳米管4的重量的0.7倍~3倍。像这样形成的正极P,碳纳米管4的单位面积的硫5的重量(浸渗量)为2.0mg/cm2以上。
作为上述负极N,例如除Li单质之外,可使用Li和Al或Li和In的合金,或掺杂了锂离子的Si、SiO、Sn、SnO2或硬碳。
上述隔板S由聚乙烯或聚丙烯等的多孔膜或无纺布构成,以保持电解液L。可通过该电解液L在正极P和负极N之间传导锂离子(Li+)。电解液L包含电解质和溶解电解质的溶剂,作为电解质,可使用公知的双(三氟甲烷磺酰)亚胺锂(下称“LiTFS”)、LiPF6、LiBF4等。再有,作为溶剂,可使用公知的产品,例如可使用从四氢呋喃、甘醇二甲醚、二甘醇二甲醚、三甘醇二甲醚、四甘醇二甲醚、二乙氧基乙烷(DEE)、二甲氧基乙烷(DME)等醚类、碳酸二乙酯、碳酸亚丙酯等酯类中选出的至少一种。再有,为使放电曲线稳定,优选在该选出的至少一种中混合二氧戊环(DOL)。例如,当使用二乙氧基乙烷和二氧戊环的混合液作为溶剂时,可将二乙氧基乙烷和二氧戊环的混合比设定为9:1。
此处,在上述正极P中,硫和锂在多个阶段进行反应的过程中生成多硫化物。多硫化物(尤其是Li2S4和Li2S6)易于溶出到电解液L中,溶出的多硫化物作为阴离子扩散。由于上述隔板S允许该多硫化物的阴离子通过,所以一旦通过隔板S的阴离子到达负极,则产生氧化还原穿梭现象,使充放电容量和充放电效率下降。因此,如何抑制多硫化物和Li的反应很重要。
因此,采用本实施方式,在隔板S的负极N侧的表面上形成阳离子交换膜CE。由于阳离子交换膜CE具有阴离子基团,所以带负电。带负电的阳离子交换膜CE只允许锂离子(阳离子)的通过,但抑制多硫化物(阴离子)的通过。由此,可抑制溶出到电解液L中的多硫化物到达负极N,即可抑制发生氧化还原穿梭现象,因此可抑制充放电容量和充放电效率的下降。
阳离子交换膜CE可从聚四氟乙烯全氟磺酸等全氟磺酸聚合物、芳香族聚醚聚合物、含有不含磺酸基团的疏水性片段和含磺酸基团的亲水性片段的烃类嵌段共聚物中选择。当阳离子交换膜CE是烃类嵌段共聚物时,所述疏水性片段优选由聚醚砜或聚醚酮构成,所述亲水性片段优选由磺化聚醚砜或磺化聚醚酮构成。再有,阳离子交换膜CE的形成方法可使用公知的涂布法,所以此处不对其详细条件进行说明。
接着,为了确认本发明的效果而进行了实验。在本实验中,首先,以如下方式制作了正极P。即以直径厚度0.020mm的Ni箔作为基底1,通过电子束蒸镀法在Ni箔1上形成薄膜厚度为30nm的作为基膜2的Al膜,通过电子束蒸镀法在Al膜2上形成薄膜厚度为1nm的作为催化剂层3的Fe膜,得到正极集电体P1。将得到的正极集电体P1载置于热CVD装置的处理室内,向处理室内提供乙炔15sccm和氮气750sccm,在工作压力为一个大气压、温度为750℃、生长时间为10分钟的条件下,在正极集电体P1表面使碳纳米管4垂直定向生长800μm的长度。通过在碳纳米管4上配置顆粒状的硫,并将其放置在管状炉内,在Ar气氛下以120℃加热5分钟,用硫5覆盖碳纳米管4而制得正极P。在该正极P中,碳纳米管4的单位面积的硫5的重量(浸渗量)为3mg/cm2。再有,以聚丙烯材质的多孔质膜作为隔板S,在该隔板S的表面涂布聚四氟乙烯全氟磺酸(和光纯药工业公司生产的产品名称为“5%全氟磺酸分散液DE521”)在60℃下干燥60分钟形成厚度为500nm的阳离子交换膜CE。以直径为厚度为0.6mm的金属锂作为负极N,这些正极P和负极N在隔板S两侧相对设置,使隔板S保持电解液L制作锂硫二次电池的硬币电池。此处,使用的电解液L是将作为电解质的LiTFSI溶解到二乙氧基乙烷(DEE)和二氧戊环(DOL)的混合液(混合比9:1)中浓度调整为1mol/l的产品。以如此制作出的硬币电池作为发明产品。再有,以不形成阳离子交换膜CE,除此以外都与上述发明产品同样制作的硬币电池为比较产品1。进而,以不形成阳离子交换膜CE而是形成聚偏氟乙烯薄膜,除此以外都与上述发明产品同样制作的硬币电池为比较产品2。对这些发明产品和比较产品1、2分别进行充放电,充放电曲线在图3中示出。由此,确认在比较产品1、2中由于氧化还原穿梭现象充电未完成。另一方面,可知在发明产品中,充电已完成,可抑制氧化还原穿梭现象。并且,确认在发明产品中,可得到比比较产品1、2高的放电容量。
接着,测量上述发明产品的充放电容量和充放电效率,其测量结果如图4所示。由此,确认即便是第十一个周期也可实现1000mAh/g以上的高充电容量和900mAh/g的高放电容量,可得到88%以上的高充电效率。
此外,以不在隔板S表面上形成阳离子交换膜而是在正极P的隔板S侧表面形成上形成阳离子交换膜之外,除此以外都与上述发明产品同样制作的硬币电池为比较产品3。在对该比较产品3进行充放电的过程中,虽然完成了充电,但确认充电容量低于600mAh/g(第十个周期为500mAh/g)。这可以认为是由于正极P表面(碳纳米管的生长端的表面)的凹凸大,无法在其整个表面上形成阳离子交换膜。
以上,对本发明的实施方式进行了说明,但本发明并不仅限于上述内容。锂硫二次电池的形状没有特别限定,除上述硬币电池外,也可以是纽扣型、片型、层叠型、圆筒形等。再有,在上述实施方式中,虽然在隔板S的负极N侧的表面上形成了阳离子交换膜CE,但既可在隔板S的正极P侧的表面上形成阳离子交换膜,也可在隔板S的负极N侧和正极P侧上都形成阳离子交换膜。
附图标记说明
B…锂硫二次电池、P…正极、N…负极、L…电解液、CE…阳离子交换膜、P1…集电体、1…基底、4…碳纳米管、5…硫。

Claims (4)

1.一种锂硫二次电池,其包括:正极,其具有含硫的正极活性物质;负极,其具有含锂的负极活性物质;以及隔板,其配置在正极和负极之间,并允许电解液的锂离子通过,所述锂硫二次电池,其特征在于:
在隔板的正极侧的表面和负极侧的表面中的至少一面上形成阳离子交换膜。
2.根据权利要求1所述的锂硫二次电池,其特征在于:所述阳离子交换膜从全氟磺酸聚合物、芳香族聚醚聚合物、含有不含磺酸基团的疏水性片段和含磺酸基团的亲水性片段的烃类嵌段共聚物中选择。
3.根据权利要求2所述的锂硫二次电池,其特征在于:所述疏水性片段由聚醚砜或聚醚酮构成,所述亲水性片段由磺化聚醚砜或磺化聚醚酮构成。
4.根据权利要求1~3中任意一项所述的锂硫二次电池,其特征在于:所述正极包括集电体、在集电体表面上以该集电体表面侧为基端朝与集电体表面正交的方向定向生长的多个碳纳米管、以及分别覆盖各碳纳米管表面的硫。
CN201480065532.1A 2013-12-03 2014-10-15 锂硫二次电池 Pending CN105993093A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013-249941 2013-12-03
JP2013249941 2013-12-03
PCT/JP2014/005224 WO2015083314A1 (ja) 2013-12-03 2014-10-15 リチウム硫黄二次電池

Publications (1)

Publication Number Publication Date
CN105993093A true CN105993093A (zh) 2016-10-05

Family

ID=53273103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480065532.1A Pending CN105993093A (zh) 2013-12-03 2014-10-15 锂硫二次电池

Country Status (7)

Country Link
US (1) US20160285135A1 (zh)
JP (1) JPWO2015083314A1 (zh)
KR (1) KR20160093699A (zh)
CN (1) CN105993093A (zh)
DE (1) DE112014005499T5 (zh)
TW (1) TW201539842A (zh)
WO (1) WO2015083314A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848150A (zh) * 2016-11-23 2017-06-13 中山大学 一种锂电池用改性隔膜的制备方法
CN107017376A (zh) * 2017-04-08 2017-08-04 深圳市佩成科技有限责任公司 一种Ti3C2Tx/Nafion/Celgard复合隔膜
CN107141503A (zh) * 2017-04-05 2017-09-08 河南师范大学 一种锂硫电池用聚烯烃改性隔膜的制备方法
CN110710049A (zh) * 2017-06-07 2020-01-17 罗伯特·博世有限公司 具有低反离子渗透率层的电池
CN111837260A (zh) * 2018-10-26 2020-10-27 株式会社Lg化学 锂硫二次电池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101610446B1 (ko) * 2013-12-30 2016-04-07 현대자동차주식회사 리튬 황 이차전지 분리막
KR101725650B1 (ko) * 2014-10-29 2017-04-12 주식회사 엘지화학 리튬 황 전지
US20170092954A1 (en) * 2015-09-25 2017-03-30 Board Of Regents, The University Of Texas System Multi-layer carbon-sulfur cathodes
CN108140875B (zh) * 2015-10-14 2021-02-26 株式会社杰士汤浅国际 非水电解质二次电池
CN108807819B (zh) * 2018-06-15 2021-06-29 珠海冠宇电池股份有限公司 隔膜及其制备方法和锂硫电池
JP6992692B2 (ja) * 2018-07-19 2022-01-13 ブラザー工業株式会社 リチウム硫黄電池、及びリチウム硫黄電池の製造方法
US11228053B2 (en) * 2019-05-17 2022-01-18 Nextech Batteries, Inc. Pouch cell battery including an ion exchange membrane

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11502245A (ja) * 1995-03-20 1999-02-23 ヘキスト・アクチェンゲゼルシャフト 高分子電解質およびその製法
JP2004031307A (ja) * 2001-11-29 2004-01-29 Ube Ind Ltd 高分子電解質組成物
US20060019167A1 (en) * 2004-03-16 2006-01-26 Wen Li Battery with molten salt electrolyte and protected lithium-based negative electrode material
JP2009091581A (ja) * 2007-10-11 2009-04-30 Gwangju Inst Of Science & Technology 高分子鎖の内部に架橋構造を有するスルホン化したポリ(アリレンエーテル)共重合体、高分子鎖の内部および末端に架橋構造を有するスルホン化したポリ(アリレンエーテル)共重合体およびそれを用いた高分子電解質膜
JP2009291706A (ja) * 2008-06-04 2009-12-17 Seizo Miyata 炭素触媒及び炭素触媒の製造方法、燃料電池、蓄電装置、炭素触媒の使用方法
JP2010192385A (ja) * 2009-02-20 2010-09-02 Toyota Central R&D Labs Inc 硫黄電池
JP2011195351A (ja) * 2010-03-17 2011-10-06 Fujifilm Corp 含窒素カーボンアロイ及びそれを用いた炭素触媒
US20130202961A1 (en) * 2010-07-02 2013-08-08 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Cathode unit for an alkali metal/sulfur battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012070184A (ja) 2010-09-22 2012-04-05 Fujitsu Ten Ltd 放送受信装置
US9882202B2 (en) * 2010-11-26 2018-01-30 Ulvac, Inc. Positive electrode for lithium-sulfur secondary battery and method of forming the same
JP2013114920A (ja) 2011-11-29 2013-06-10 Toyota Central R&D Labs Inc リチウム硫黄電池
JP6195153B2 (ja) * 2013-08-26 2017-09-13 国立大学法人山口大学 硫黄基材表面に被覆層が形成された硫黄複合体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11502245A (ja) * 1995-03-20 1999-02-23 ヘキスト・アクチェンゲゼルシャフト 高分子電解質およびその製法
JP2004031307A (ja) * 2001-11-29 2004-01-29 Ube Ind Ltd 高分子電解質組成物
US20060019167A1 (en) * 2004-03-16 2006-01-26 Wen Li Battery with molten salt electrolyte and protected lithium-based negative electrode material
JP2009091581A (ja) * 2007-10-11 2009-04-30 Gwangju Inst Of Science & Technology 高分子鎖の内部に架橋構造を有するスルホン化したポリ(アリレンエーテル)共重合体、高分子鎖の内部および末端に架橋構造を有するスルホン化したポリ(アリレンエーテル)共重合体およびそれを用いた高分子電解質膜
JP2009291706A (ja) * 2008-06-04 2009-12-17 Seizo Miyata 炭素触媒及び炭素触媒の製造方法、燃料電池、蓄電装置、炭素触媒の使用方法
JP2010192385A (ja) * 2009-02-20 2010-09-02 Toyota Central R&D Labs Inc 硫黄電池
JP2011195351A (ja) * 2010-03-17 2011-10-06 Fujifilm Corp 含窒素カーボンアロイ及びそれを用いた炭素触媒
US20130202961A1 (en) * 2010-07-02 2013-08-08 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Cathode unit for an alkali metal/sulfur battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848150A (zh) * 2016-11-23 2017-06-13 中山大学 一种锂电池用改性隔膜的制备方法
CN106848150B (zh) * 2016-11-23 2020-11-03 中山大学 一种锂电池用改性隔膜的制备方法
CN107141503A (zh) * 2017-04-05 2017-09-08 河南师范大学 一种锂硫电池用聚烯烃改性隔膜的制备方法
CN107017376A (zh) * 2017-04-08 2017-08-04 深圳市佩成科技有限责任公司 一种Ti3C2Tx/Nafion/Celgard复合隔膜
CN110710049A (zh) * 2017-06-07 2020-01-17 罗伯特·博世有限公司 具有低反离子渗透率层的电池
CN111837260A (zh) * 2018-10-26 2020-10-27 株式会社Lg化学 锂硫二次电池

Also Published As

Publication number Publication date
US20160285135A1 (en) 2016-09-29
DE112014005499T5 (de) 2016-09-01
JPWO2015083314A1 (ja) 2017-03-16
KR20160093699A (ko) 2016-08-08
TW201539842A (zh) 2015-10-16
WO2015083314A1 (ja) 2015-06-11

Similar Documents

Publication Publication Date Title
CN105993093A (zh) 锂硫二次电池
CN103210525B (zh) 锂硫二次电池用正极及其形成方法
Zeng et al. Electrochemical properties of iron oxides/carbon nanotubes as anode material for lithium ion batteries
Xue et al. Porous Co 3 O 4 nanoneedle arrays growing directly on copper foils and their ultrafast charging/discharging as lithium-ion battery anodes
Mahmood et al. Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells
Wang et al. A simple, cheap soft synthesis routine for LiFePO4 using iron (III) raw material
US11380897B2 (en) Preparation method of graphene flower and use of graphene flower in lithium sulfur battery
US9061902B2 (en) Crystalline-amorphous nanowires for battery electrodes
Liu et al. Chemical bath deposition of SnS2 nanowall arrays with improved electrochemical performance for lithium ion battery
Wen et al. Lithium and potassium storage behavior comparison for porous nanoflaked Co3O4 anode in lithium-ion and potassium-ion batteries
JP2018511923A (ja) 金属ナノ粒子を含む正極活物質及び正極、それを含むリチウム−硫黄電池
Zhang et al. Li–S and Li–O 2 batteries with high specific energy
Lei et al. Ag-Cu nanoalloyed film as a high-performance cathode electrocatalytic material for zinc-air battery
Wang et al. Tailoring the subunits of α-Fe2O3 nanoplates for optimizing electrochemical performance
CN105830273A (zh) 锂硫二次电池
Fei et al. Controlling morphology and enhancing electrochemical performance of cobalt oxide by addition of graphite
JP2014203593A (ja) リチウム硫黄二次電池用の正極及びその形成方法
Chang et al. Introduction to metal–air batteries: Theory and basic principles
JP5556618B2 (ja) リチウム空気電池
Li et al. Mesoporous hierarchical NiCoSe2-NiO composite self-supported on carbon nanoarrays as synergistic electrocatalyst for flexible lithium-sulfur batteries
CN105814716B (zh) 锂硫二次电池用正极及其形成方法
US20170194638A1 (en) Negative active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery including the same
TWI636608B (zh) Lithium-sulfur secondary battery
CN113161560B (zh) 铜碳催化剂在锂-二氧化碳电池中的应用
Yao et al. Application of In Situ Electrochemical-Cell Transmission Electron Microscopy for the Study of Rechargeable Batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161005

WD01 Invention patent application deemed withdrawn after publication