CN105948737A - 一种新型CaTiO3基线性储能介质陶瓷材料及其制备方法 - Google Patents

一种新型CaTiO3基线性储能介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN105948737A
CN105948737A CN201610307916.0A CN201610307916A CN105948737A CN 105948737 A CN105948737 A CN 105948737A CN 201610307916 A CN201610307916 A CN 201610307916A CN 105948737 A CN105948737 A CN 105948737A
Authority
CN
China
Prior art keywords
ceramic material
preparation
catio
dielectric ceramic
baseline energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610307916.0A
Other languages
English (en)
Other versions
CN105948737B (zh
Inventor
曹明贺
张亚萍
刘韩星
郝华
尧中华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201610307916.0A priority Critical patent/CN105948737B/zh
Publication of CN105948737A publication Critical patent/CN105948737A/zh
Application granted granted Critical
Publication of CN105948737B publication Critical patent/CN105948737B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种新型CaTiO3基线性储能介质陶瓷材料及其制备方法。CaTiO3基线性储能介质陶瓷材料,其特征在于:表达式为ZnxCa0.97‑ xLa0.03Ti0.97Al0.03O3,其中x=0.01~0.2。制备方法,以CaCO3、TiO2、La2O3、Al2O3和ZnO为原料,按照化学式ZnxCa0.97‑xLa0.03Ti0.97Al0.03O3,其中x=0.01~0.2中化学计量比要求进行称量配料、混合后球磨,烘干,1000~1150℃进行预烧,然后二次球磨得到预烧粉体,将预烧粉体过筛后添加胶粘剂造粒、成型,然后排胶得到陶瓷坯体,再将陶瓷坯体于空气中1200~1300℃保温烧结而得。通过对CaTiO3基陶瓷进行Zn2+和La3+/Al3+共掺,得到ZnxCa0.97‑xLa0.03Ti0.97Al0.03O3线性储能介质陶瓷材料。其具有低介电损耗、频率稳定性好,介电常数适中,击穿强度较高的特点。

Description

一种新型CaTiO3基线性储能介质陶瓷材料及其制备方法
技术领域
本发明涉及一种CaTiO3陶瓷为基体的高工作温度下具有低介电损耗、频率稳定性好,介电常数适中,击穿强度较高的储能介质陶瓷。
背景技术
对于脉冲功率系统来说,高的介电常数是脉冲功率向小型化,紧凑性,系统化发展的必然要求;好的耐压性能则是提高设备寿命和可靠性的必要条件;低的介电损耗是低能量损耗和脉冲波形(尤其对纳秒窄脉冲来说)具有好的下降沿的重要保证;高温下好的频率稳定性是使储能介质陶瓷在极端条件下稳定工作的重要要求之一。
目前固态脉冲形成线用储能介质材料的研究比较多的有聚合物材料、玻璃储能材料和储能介质陶瓷。聚合物和玻璃材料具有高的击穿强度,但是其低的介电常数和差的高温稳定性限制了其广泛应用。储能介质陶瓷中比较常见的为BaxSr1-xTiO3体系,但是其击穿强度却很低,且高温时的介电损耗比较大。CaTiO3基介质陶瓷具有适当可调的介电常数,低的介电损耗,介电常数不随外加电场变化的优点,可作为脉冲形成线储能介质比较理想的候选材料,但CaTiO3介质陶瓷高的烧结温度(1440℃)一定程度上限制了其在大尺寸固态脉冲形成线上的应用。而且其击穿强度较低(200kV/cm),不能满足脉冲形成线的需求,但是击穿强度的提高则会导致介电常数的下降,如何在尽量少的降低介电常数的情况下最多的提高击穿强度成为了研究的热点。另外,CaTiO3介质陶瓷的高温(>150℃)介电损耗比较大,而且频率稳定性也不好。目前将CaTiO3基介质陶瓷作为脉冲形成线储能介质的研究的报道也很少。
发明内容
针对以上现有技术的不足,本发明所要解决的技术问题之一是提供了一种通过对CaTiO3基陶瓷进行Zn2+和La3+/Al3+共掺,得到ZnxCa0.97-xLa0.03Ti0.97Al0.03O3线性储能介质陶瓷材料。其具有低介电损耗、频率稳定性好,介电常数适中,击穿强度较高的特点。
本发明所要解决的技术问题之二是提供一种上述ZnxCa0.97-xLa0.03Ti0.97Al0.03O3线性储能介质陶瓷材料的制备方法,其烧结温度相对较低,成本低廉,工艺简单,具有可重复性。
为解决上述技术问题,本发明所采用的技术方案为:
CaTiO3基线性储能介质陶瓷材料,其特征在于:表达式为ZnxCa0.97- xLa0.03Ti0.97Al0.03O3,其中x=0.01~0.2。
CaTiO3基线性储能介质陶瓷材料的制备方法,其特征在于:以CaCO3、TiO2、La2O3、Al2O3和ZnO为原料,按照化学式ZnxCa0.97-xLa0.03Ti0.94Al0.03O3,其中x=0.01~0.2中化学计量比要求进行称量配料、混合后球磨,烘干,1000~1150℃进行预烧,然后二次球磨得到预烧粉体,将预烧粉体过筛后添加胶粘剂造粒、成型,然后排胶得到陶瓷坯体,再将陶瓷坯体于空气中1200~1300℃保温烧结而得。
按上述方案,所述的球磨为以无水乙醇作为溶剂,氧化锆球作为球磨介质在球磨罐中湿法球磨20~26小时。
按上述方案,所述的烘干为将湿法球磨后的粉料在100℃~150℃烘20h~24h至粉料干燥备用。
按上述方案,所述的造粒用胶粘剂为1-2.5wt%的聚乙烯醇溶液。
按上述方案,所述成型后的坯体直径100mm,厚度约1mm;所述的排胶温度为600℃。
按上述方案,所述的保温烧结时间为2-4h。
按上述方案,所述的排胶升温速率为1~3℃/min,保温时间优选为2~3小时。
按上述方案,所述的CaCO3、TiO2、La2O3和ZnO纯度大于99%,Al2O3纯度大于99.9%,粒径为纳米级别。
本发明具有以下有益效果:
(1)本发明通过将La3+/Al3+和Zn2+适量掺入CaTiO3晶格而提供的CaTiO3基线性储能介质陶瓷材料ZnxCa0.97-xLa0.03Ti0.97Al0.03O3相对于纯的CaTiO3陶瓷结构更加稳定,并具有低介电损耗、频率稳定性好,介电常数适中,击穿强度较高的特点。同时可降低烧结温度。
(2)制备工艺简单,烧结温度较低,成本低廉,可重复性好。
附图说明
图1为本发明对比例中纯CaTiO3陶瓷不同温度下的介电常数和介电损耗随频率的变化图。
图2为本发明实施例1中Zn0.01Ca0.96La0.03Ti0.97Al0.03O3陶瓷不同温度下的介电常数和介电损耗随频率的变化图。
图3为本发明实施例2中Zn0.05Ca0.92La0.03Ti0.97Al0.03O3陶瓷不同温度下的介电常数和介电损耗随频率的变化图。
图4为本发明实施例3中Zn0.1Ca0.87La0.03Ti0.97Al0.03O3陶瓷不同温度下的介电常数和介电损耗随频率的变化图。
图5为本发明实施例4中Zn0.2Ca0.77La0.03Ti0.97Al0.03O3陶瓷不同温度下的介电常数和介电损耗随频率的变化图。
图6为本发明实施例1~4陶瓷的电滞回线图。
图7为本发明实施例1陶瓷的XRD图。
图8为本发明实施例3陶瓷的XRD图。
具体实施方式
为使本发明的目的和优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明,但本发明不限于下面的实施例,在本发明的基础上进行的任何改进都属于本发明的保护范围。
对照例以纯度大于99%的CaCO3和TiO2为原料,按照摩尔比Ca/Ti为1:1进行称量配料,以无水乙醇作为溶剂,氧化锆球作为球磨介质在球磨罐中球磨24小时;然后将湿法球磨后的粉料在100℃烘24h至粉料干燥,放入氧化铝坩埚中在1100℃下预烧2小时,二次球磨烘干后过100目筛;然后加入2wt%粘结剂进行造粒,干压成型为直径10mm,厚度约1mm的坯体,以1℃/min的升温速率升到600℃保温2小时,排胶得到生料坯体;将生料坯体在马弗炉中经过1440℃保温2小时得到CaCO3储能介质陶瓷。该实施例的介电常数和介电损耗在不同温度下随频率的变化关系如图1所示,烧结温度、介电性能及击穿强度见表1。
实施例1~4
以纯度大于99%的CaCO3、TiO2、La2O3、ZnO和纯度大于99.9%的纳米Al2O3为原料,按照化学式ZnxCa0.97-xLa0.03Ti0.97Al0.03O3进行称量配料,其中x分别为0.01、0.05、0.1和0.2,分别以无水乙醇作为溶剂,氧化锆球作为球磨介质在球磨罐中球磨24小时;然后将湿法球磨后的粉料在100℃烘24h至粉料干燥,放入氧化铝坩埚中在1050-1100℃下预烧2小时,二次球磨烘干后过100目筛;然后分别加入1.0wt%~2.5wt%粘结剂进行造粒,干压成型为直径10mm,厚度约1mm的坯体,以1℃/min的升温速率升到600℃保温2小时,排胶得到生料坯体;分别将生料坯体在马弗炉中经过1280℃保温2h、1280℃保温2h、1280℃保温2h和1250℃保温3h得到ZnxCa0.97-xLa0.03Ti0.97Al0.03O3储能介质陶瓷。
实施例2~5的介电常数和介电损耗在不同温度下随频率的变化关系分别如图2~5所示,电滞回线如图6所示,由图可以看出该体系陶瓷是线性电介质,实施例1的XRD图见图7,实施例2的XRD图与实施例1近似,实施例3的XRD图如图8所示,实施例4的XRD图类似图3,如7和图8可看出:本发明La3+/Al3+和Zn2+掺入CaTiO3晶格,晶体结构仍为斜方晶系,在Zn掺量较大时,会有少量第二相Zn2Ti3O8生成。介电性能在不同温度下,频率大于1kHz时的变化范围及击穿强度见表1。
表1可以看到,本发明通过对CaTiO3基陶瓷进行Zn2+和La3+/Al3+共掺,得到的ZnxCa0.97-xLa0.03Ti0.97Al0.03O3线性储能介质陶瓷材料相比较纯的CaTO3陶瓷烧结温度显著降低,介电常数和介电损耗的频率稳定性尤其是高温频率稳定性(≥150℃)得到了明显的提高,击穿强度也得到很大的改善,由200kV/cm最高可提高到325kV/cm;储能密度由0.318J/cm3最高可提高到0.659J/cm3(其中实施例1:击穿强度(kV/cm):275;储能密度(J/cm3):0.425;实施例2:击穿强度(kV/cm):325;储能密度(J/cm3):0.659;实施例4:击穿强度(kV/cm):300;储能密度(J/cm3):0.478)。
表1

Claims (8)

1.CaTiO3基线性储能介质陶瓷材料,其特征在于:表达式为ZnxCa0.97- xLa0.03Ti0.97Al0.03O3,其中x=0.01~0.2。
2.权利要求1所述的CaTiO3基线性储能介质陶瓷材料的制备方法,其特征在于:以CaCO3、TiO2、La2O3、Al2O3和ZnO为原料,按照化学式ZnxCa0.97-xLa0.03Ti0.97Al0.03O3,其中x=0.01~0.2中化学计量比要求进行称量配料、混合后球磨,烘干,1000~1150℃进行预烧,然后二次球磨得到预烧粉体,将预烧粉体过筛后添加胶粘剂造粒、成型,然后排胶得到陶瓷坯体,再将陶瓷坯体于空气中1200~1300℃保温烧结而得。
3.根据权利要求2所述的CaTiO3基线性储能介质陶瓷材料的制备方法,其特征在于:所述的球磨为以无水乙醇作为溶剂,氧化锆球作为球磨介质在球磨罐中湿法球磨20~26小时。
4.根据权利要求2所述的CaTiO3基线性储能介质陶瓷材料的制备方法,其特征在于:所述的烘干为将湿法球磨后的粉料在100℃~150℃烘20h~24h至粉料干燥备用。
5.根据权利要求2所述的CaTiO3基线性储能介质陶瓷材料的制备方法,其特征在于:所述的造粒用胶粘剂为1-2.5wt%的聚乙烯醇溶液。
6.根据权利要求2所述的CaTiO3基线性储能介质陶瓷材料的制备方法,其特征在于:所述成型后的坯体直径100mm,厚度约1mm。
7.根据权利要求2所述的CaTiO3基线性储能介质陶瓷材料的制备方法,其特征在于:所述的保温烧结时间为2-4h。
8.根据权利要求2所述的CaTiO3基线性储能介质陶瓷材料的制备方法,其特征在于:所述的排胶温度为600℃;所述的排胶升温速率为1~3℃/min。
CN201610307916.0A 2016-05-11 2016-05-11 一种CaTiO3基线性储能介质陶瓷材料及其制备方法 Expired - Fee Related CN105948737B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610307916.0A CN105948737B (zh) 2016-05-11 2016-05-11 一种CaTiO3基线性储能介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610307916.0A CN105948737B (zh) 2016-05-11 2016-05-11 一种CaTiO3基线性储能介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105948737A true CN105948737A (zh) 2016-09-21
CN105948737B CN105948737B (zh) 2019-01-04

Family

ID=56911522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610307916.0A Expired - Fee Related CN105948737B (zh) 2016-05-11 2016-05-11 一种CaTiO3基线性储能介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105948737B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106747415A (zh) * 2017-03-03 2017-05-31 华东理工大学 一种低介电损耗钛酸钙陶瓷的制备
CN108947514A (zh) * 2018-09-28 2018-12-07 东北大学 一种优良温度稳定性的铁电材料及其制备方法与应用
CN109231977A (zh) * 2018-11-02 2019-01-18 中国科学院上海硅酸盐研究所 一种高温稳定介质陶瓷材料及其制备方法
CN109761591A (zh) * 2019-03-22 2019-05-17 江西一创新材料有限公司 一种低介电常数高性能微波介质陶瓷及其制备方法
CN115448716A (zh) * 2022-09-16 2022-12-09 桂林理工大学 一种钛酸钡基储能陶瓷材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199036A (zh) * 2011-02-25 2011-09-28 武汉理工大学 一种击穿强度高的储能陶瓷的制备方法
CN105174943B (zh) * 2015-09-22 2017-10-24 桂林电子科技大学 一种介电储能陶瓷及其制备方法
CN105272217B (zh) * 2015-10-21 2017-06-23 浙江大学 一种高储能密度钛酸锶钡基氧化铝复相陶瓷及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106747415A (zh) * 2017-03-03 2017-05-31 华东理工大学 一种低介电损耗钛酸钙陶瓷的制备
CN108947514A (zh) * 2018-09-28 2018-12-07 东北大学 一种优良温度稳定性的铁电材料及其制备方法与应用
CN108947514B (zh) * 2018-09-28 2020-03-31 东北大学 一种优良温度稳定性的铁电材料及其制备方法与应用
CN109231977A (zh) * 2018-11-02 2019-01-18 中国科学院上海硅酸盐研究所 一种高温稳定介质陶瓷材料及其制备方法
CN109231977B (zh) * 2018-11-02 2021-01-12 中国科学院上海硅酸盐研究所 一种高温稳定介质陶瓷材料及其制备方法
CN109761591A (zh) * 2019-03-22 2019-05-17 江西一创新材料有限公司 一种低介电常数高性能微波介质陶瓷及其制备方法
CN115448716A (zh) * 2022-09-16 2022-12-09 桂林理工大学 一种钛酸钡基储能陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN105948737B (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
Wei et al. Novel NaNbO3–Sr0. 7Bi0· 2TiO3 lead-free dielectric ceramics with excellent energy storage properties
CN105948737A (zh) 一种新型CaTiO3基线性储能介质陶瓷材料及其制备方法
CN109133915A (zh) 一种高储能钛酸钡基介质材料及其制备方法
CN103482978B (zh) 固溶体微波介质陶瓷材料及其制备方法与应用
CN109553411B (zh) 一种高击穿场强钛酸铜锶钙介电陶瓷材料及其制备方法
CN104860672A (zh) 一种高介微波陶瓷介质材料及其制备方法
CN114436645B (zh) 一种掺杂稀土元素的钛酸钡巨介电陶瓷材料及其制备方法
CN107473732B (zh) 一种钛酸锶基高储能密度和低介电损耗陶瓷材料及其制备方法
Guihua et al. Sintering behavior and microwave dielectric properties of (1− x) CaTiO3− xLaAlO3 ceramics
Yuan et al. Preparation of BaTiO3-based X7R ceramics with high dielectric constant by nanometer oxides doping method
CN114436643A (zh) 一种巨介电常数、低介电损耗陶瓷及其制备方法
CN105174944A (zh) 一种超宽温高稳定无铅电容器陶瓷介电材料及其制备方法
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN107445611B (zh) 一种无铅低损耗高储能密度陶瓷材料及其制备方法
CN107445616B (zh) 一种钛酸锶基无铅耐高压储能陶瓷材料及其制备方法
CN104909744B (zh) 一种介电材料及其制备方法
CN107459347B (zh) 一种具有高储能密度和高储能效率的无铅陶瓷材料及其制备方法
CN109320234A (zh) 一种x9r型陶瓷电容器介质陶瓷的制备方法及其介质陶瓷
Li et al. Fabrication and characterization of Li1+ x− yNb1− x− 3yTix+ 4yO3 substrates using aqueous tape casting process
CN112521144B (zh) 一种低温巨介电反铁磁陶瓷材料及其制备和应用
CN106145932B (zh) 一种高介电常数的多层陶瓷电容器介质材料及其制备方法
CN103708826A (zh) 低介电损耗钛酸锶钡热释电陶瓷及其制备方法
Zheng et al. Dielectric properties and energy storage behaviors in ZnNb 2 O 6-doped Sr 0.97 Nd 0.02 TiO 3 ceramics
CN112110723A (zh) 一种满足x9r型mlcc应用需求的介质材料及其制备方法
CN109912306A (zh) 一种谐振频率温度系数可调的高q值微波介质陶瓷

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190104

Termination date: 20190511