CN109320234A - 一种x9r型陶瓷电容器介质陶瓷的制备方法及其介质陶瓷 - Google Patents

一种x9r型陶瓷电容器介质陶瓷的制备方法及其介质陶瓷 Download PDF

Info

Publication number
CN109320234A
CN109320234A CN201811270821.1A CN201811270821A CN109320234A CN 109320234 A CN109320234 A CN 109320234A CN 201811270821 A CN201811270821 A CN 201811270821A CN 109320234 A CN109320234 A CN 109320234A
Authority
CN
China
Prior art keywords
tio
capacitor dielectric
ceramic capacitor
type ceramic
ninb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811270821.1A
Other languages
English (en)
Inventor
肖谧
孙宏瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201811270821.1A priority Critical patent/CN109320234A/zh
Publication of CN109320234A publication Critical patent/CN109320234A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种X9R型陶瓷电容器介质陶瓷及其制备方法,其组成为0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3·x mol%NiNb2O6,其中0<x≤2.5。制备方法包括:首先通过固相法合成(Bi0.5Na0.5)TiO3和NiNb2O6,将BaTiO3和(Bi0.5Na0.5)TiO3按照摩尔比9:1混合球磨、干燥、过筛,于1050℃预烧;再将NiNb2O6粉末加入到预烧后的0.9BaTiO3‑0.1(Bi0.5Na0.5)TiO3固溶体粉末中,再次球磨、干燥后加原料8%重量百分比的石蜡进行造粒,压制成坯体,坯体于1200~1250℃烧结,制得X9R型陶瓷电容器介质陶瓷。本发明介质陶瓷,满足EIA X9R标准,介电常数较高,损耗较低。本发明制备工艺简单,过程无污染,是一种很有前途的多层陶瓷电容器介质材料,具有良好的产业化前景。

Description

一种X9R型陶瓷电容器介质陶瓷的制备方法及其介质陶瓷
技术领域
本发明属于电子元器件陶瓷材料技术领域,具体涉及一种X9R型陶瓷电容器介质陶瓷的制备方法及其介质陶瓷。
背景技术
多层陶瓷电容器(Multilayer Ceramic Capacitors,简称MLCCs)是片式无源元件的重要组成部分。可以起到隔断直流、储存电荷、滤波、耦合、辨别不同频率以及协调电路的作用。MLCCs具有体积小、价格低廉、结构紧凑、大容量等优点,在信息、军工、移动通信、电子电器、航空、石油勘探等行业得到了广泛的应用。在表面贴装技术迅猛发展的今天,MLCCs可以大大提高电路组装密度,缩小整机体积,这使得MLCCs成为当今世界发展最快、用量最大的片式电子元器件。
BaTiO3具有较高的介电常数和较低的损耗,是最常用来制备MLCCs的介质材料。但由于其自身在居里温度(约130℃)处具有尖锐的相变峰,使得在该温度附近的介电常数变化较大,容温变化率较大。因此想要得到较高温度稳定型的介质材料需要对纯BaTiO3进行改性,这可以从两个方面来进行:(1)通过在BaTiO3中掺杂居里温度较高的具有钙钛矿结构的物质来形成固溶体,从而提高介质的居里温度;(2)在BaTiO3基陶瓷中形成芯-壳结构以改善材料的温度稳定性。
发明内容
本发明的目的是提供一种X9R型陶瓷电容器介质陶瓷的制备方法。
本发明的另一目的在于提供一种用上述方法制备的X9R型陶瓷电容器介质陶瓷。
为了达到上述的目的,本发明采取以下技术方案:
一种X9R型陶瓷电容器介质陶瓷的制备方法,包括如下步骤:
(1)将Bi2O3、Na2CO3、TiO2按照摩尔比1:1:4进行配料,放入球磨机上混合球磨6h,烘干后过40目筛,然后置于马弗炉中以5℃/min的升温速率升温至900℃保温2h,然后自然冷却至常温后,得到(Bi0.5Na0.5)TiO3备用;
(2)将NiO、Nb2O5按照摩尔比1:1进行配料,放入球磨机上混合球磨6h,烘干后过40目筛,然后置于马弗炉中以5℃/min的升温速率升温至1000℃保温2h,然后自然冷却至常温后,得到NiNb2O6备用;
(3)将BaTiO3、(Bi0.5Na0.5)TiO3按照摩尔比9:1进行配料,放入球磨机上混合球磨6h,烘干后过40目筛,然后置于马弗炉中以5℃/min的升温速率升温至1050℃保温8h,然后自然冷却至常温,将冷却后的熔块用研钵磨碎成粉体,得到0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3固溶体粉末备用。
(4)将NiNb2O6、0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3按照化学式0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3·xmol%NiNb2O6,其中0<x≤2.5进行配料,放入球磨机上混合球磨6h,烘干后过40目筛,在陶瓷粉料中外加陶瓷粉料8%质量百分比的石蜡进行造粒,过60目筛,再用粉末压片机压制成坯体;
(5)将在步骤(4)的坯体于1180-1250℃烧结,保温3h,制得X9R型陶瓷电容器介质陶瓷。
所述步骤(5)制得的X9R型陶瓷电容器介质陶瓷的化学式为:0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3·x mol%NiNb2O6,其中0<x≤2.5。
优选的,所述步骤(1)的Bi2O3、Na2CO3、TiO2,步骤(2)的NiO、Nb2O5,步骤(3)的BaTiO3原料的质量纯度大于99.9%。
优选的,所述步骤(3)的BaTiO3原料平均粒径为300nm。
优选的,所述步骤(1)、步骤(2)、步骤(3)和步骤(4)的球磨机均为行星式球磨机。
优选的,所述步骤(4)的粉末压片机的压力为4Mpa。
优选的,所述步骤(4)的坯体为直径15mm,厚度为1mm的圆柱。
优选的,所述步骤(5)的烧结温度为1200℃。
一种采用上述方法制得的X9R型陶瓷电容器介质陶瓷,所述介质陶瓷的化学式为:0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3·x mol%NiNb2O6,其中0<x≤2.5。
优选的,所述X9R型陶瓷电容器介质陶瓷的化学式为:0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3·x mol%NiNb2O6,其中x=1.5。
本发明的有益效果是:以BaTiO3基电容器介质陶瓷为基础,用NiNb2O6对其进行掺杂,成功地获得了性能优良的介质陶瓷:当x=1.5时,在1200℃烧结,其介电常数较高,室温下为1652,损耗较低,室温下为1.8%,且表现出良好的温度稳定性,满足EIA X9R标准。本发明制备工艺简单,成本较低,过程无污染,可重复性较好,适合批量生产,是一种很有前途的多层陶瓷电容器介质材料,具有良好的产业化前景。
具体实施方式
本发明采用纯度大于99.9%的化学原料Bi2O3、Na2CO3、TiO2、NiO、Nb2O5,、BaTiO3制备0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3·x mol%NiNb2O6,其中0<x≤2.5介质陶瓷。具体实施例如下。
实施例1
(1)依照(Bi0.5Na0.5)TiO3化学式,称取Bi2O3-7.8421g、Na2CO3-1.7838g、TiO2-5.3741g共15g配料;混合粉料加入球磨罐,加入150ml无水乙醇和150g锆球后,在行星式球磨机上球磨6h,球磨转速为1000转/分;将球磨后的原料置于75℃温度条件下烘干,过40目筛,获得颗粒均匀的粉料;将颗粒均匀的粉料于900℃煅烧2小时,然后自然冷却至常温后,得到(Bi0.5Na0.5)TiO3备用;
(2)依照NiNb2O6化学式,称取NiO-3.2907g、Nb2O5-11.7093g共15g配料;混合粉料加入球磨罐,加入150ml去离子水和150g锆球后,在行星式球磨机上球磨6h,球磨转速为1000转/分;将球磨后的原料置于110℃温度条件下烘干,过40目筛,获得颗粒均匀的粉料;将颗粒均匀的粉料于900℃煅烧2小时,然后自然冷却至常温后,得到NiNb2O6备用;
(3)依照0.9BaTiO3-0.1(Bi0.5Na0.5)TiO3化学式,称取BaTiO3-13.6248g、(Bi0.5Na0.5)TiO3-1.3752g共15g配料;混合粉料加入球磨罐,加入150ml无水乙醇和150g锆球后,在行星式球磨机上球磨6h,球磨转速为1000转/分;将球磨后的原料置于75℃温度条件下烘干,过40目筛,获得颗粒均匀的粉料;将颗粒均匀的粉料于1050℃煅烧8小时,得到0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3固溶体粉末备用;
(4)依照介质陶瓷组分0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3·x mol%NiNb2O6,其中x=0.5,称取0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3-14.8903g、NiNb2O6-0.1097g共15g配料;混合粉料加入球磨罐,加入150ml去离子水和150g锆球后,在行星式球磨机上球磨6h,球磨转速为1000转/分;将球磨后的原料置于110℃温度条件下烘干,过40目筛,然后加入原料8%重量百分比的石蜡进行造粒,并过60目筛;再用粉末压片机以4Mpa的压力压成直径为15mm,厚度为1mm的坯体;
(5)将坯体于1200℃烧结,保温4小时,制得介质陶瓷,记为0.9BT·0.1BNT·0.5mol%NiNb2O6
(6)将烧结的胚体经过抛光、烧银,测量其介电性能,其介电性能参数见表1。
实施例2
其基本步骤与实施例1基本相同,不同的是步骤(4)中依照介质陶瓷组分0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3·x mol%NiNb2O6,其中x=1.0,称取0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3-14.7822g、NiNb2O6-0.2178g共15g配料,其他步骤与实施例1相同,记为0.9BT·0.1BNT·1.0mol%NiNb2O6
实施例3
其基本步骤与实施例1基本相同,不同的是步骤(4)中依照介质陶瓷组分0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3·x mol%NiNb2O6,其中x=1.5,称取0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3-14.6756g、NiNb2O6-0.3244g共15g配料,其他步骤与实施例1相同,记为0.9BT·0.1BNT·1.5mol%NiNb2O6
实施例4
其基本步骤与实施例1基本相同,不同的是步骤(4)中依照介质陶瓷组分0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3·x mol%NiNb2O6,其中x=2.0,称取0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3-14.5706g、NiNb2O6-0.4294g共15g配料,其他步骤与实施例1相同,记为0.9BT·0.1BNT·2.0mol%NiNb2O6。。
实施例5
其基本步骤与实施例1基本相同,不同的是步骤(4)中依照介质陶瓷组分0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3·x mol%NiNb2O6,其中x=2.5,称取0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3-14.4670g、NiNb2O6-0.5329g共15g配料,其他步骤与实施例1相同,记为0.9BT·0.1BNT·2.5mol%NiNb2O6
对比例
(1)依照(Bi0.5Na0.5)TiO3化学式,称取Bi2O3-7.8421g、Na2CO3-1.7838g、TiO2-5.3741g配料,共15g;混合粉料加入球磨罐,加入150ml无水乙醇和150g锆球后,在行星式球磨机上球磨6h,球磨转速为1000转/分;将球磨后的原料置于75℃温度条件下烘干,过40目筛,获得颗粒均匀的粉料;将颗粒均匀的粉料于900℃煅烧2小时,然后自然冷却至常温后,得到(Bi0.5Na0.5)TiO3备用;
(2)依照0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3化学式,称取BaTiO3-13.6248g、(Bi0.5Na0.5)TiO3-1.3752g配料,共15g;混合粉料加入球磨罐,加入150ml无水乙醇和150g锆球后,在行星式球磨机上球磨6h,球磨转速为1000转/分;将球磨后的原料置于75℃温度条件下烘干,过40目筛,获得颗粒均匀的粉料;将颗粒均匀的粉料于1050℃煅烧8小时,得到0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3固溶体粉末备用;
(3)将上步得到的0.9BaTiO3-0.1(Bi0.5Na0.5)TiO3粉体加入球磨罐,加入150ml去离子水和150g锆球后,在行星式球磨机上球磨6h,球磨转速为1000转/分;将球磨后的原料置于110℃温度条件下烘干,过40目筛,然后加入原料8%重量百分比的石蜡进行造粒,并过60目筛;再用粉末压片机以4Mpa的压力压成直径为15mm,厚度为1mm的坯体;
(4)将坯体于1200℃烧结,保温4小时,制得介质陶瓷,记为0.9BT·0.1BNT;
(5)将烧结的胚体经过抛光、烧银,测量其介电性能,其介电性能参数见表1。
表1
从表1可以看出,用NiNb2O6对BaTiO3基电容器介质陶瓷,得到了性能优良的X9R型陶瓷电容器介质陶瓷:当x=1.5时,在1200℃烧结,其介电常数较高,室温下为1652,损耗较低,室温下为1.8%,且表现出良好的温度稳定性,满足EIA X9R标准。

Claims (10)

1.一种X9R型陶瓷电容器介质陶瓷的制备方法,其特征在于,包括如下步骤:
(1)将Bi2O3、Na2CO3、TiO2按照摩尔比1:1:4进行配料,放入球磨机上混合球磨6h,烘干后过40目筛,然后置于马弗炉中以5℃/min的升温速率升温至900℃保温2h,然后自然冷却至常温后,得到(Bi0.5Na0.5)TiO3备用;
(2)将NiO、Nb2O5按照摩尔比1:1进行配料,放入球磨机上混合球磨6h,烘干后过40目筛,然后置于马弗炉中以5℃/min的升温速率升温至1000℃保温2h,然后自然冷却至常温后,得到NiNb2O6备用;
(3)将BaTiO3、(Bi0.5Na0.5)TiO3按照摩尔比9:1进行配料,放入球磨机上混合球磨6h,烘干后过40目筛,然后置于马弗炉中以5℃/min的升温速率升温至1050℃保温8h,然后自然冷却至常温,将冷却后的熔块用研钵磨碎成粉体,得到0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3固溶体粉末备用。
(4)将NiNb2O6、0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3按照化学式0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3·xmol%NiNb2O6,其中0<x≤2.5进行配料,放入球磨机上混合球磨6h,烘干后过40目筛,在陶瓷粉料中外加陶瓷粉料8%质量百分比的石蜡进行造粒,过60目筛,再用粉末压片机压制成坯体;
(5)将在步骤(4)的坯体于1180-1250℃烧结,保温3h,制得X9R型陶瓷电容器介质陶瓷。
2.根据权利要求1所述的X9R型陶瓷电容器介质陶瓷的制备方法,其特征在于,所述步骤(5)制得的X9R型陶瓷电容器介质陶瓷的化学式为:0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3·xmol%NiNb2O6,其中0<x≤2.5。
3.根据权利要求1所述的X9R型陶瓷电容器介质陶瓷的制备方法,其特征在于,所述步骤(1)的Bi2O3、Na2CO3、TiO2,步骤(2)的NiO、Nb2O5,步骤(3)的BaTiO3原料的质量纯度大于99.9%。
4.根据权利要求1所述的X9R型陶瓷电容器介质陶瓷的制备方法,其特征在于,所述步骤(3)的BaTiO3原料平均粒径为300nm。
5.根据权利要求1所述的X9R型陶瓷电容器介质陶瓷的制备方法,其特征在于,所述步骤(1)、步骤(2)、步骤(3)和步骤(4)的球磨机均为行星式球磨机。
6.根据权利要求1所述的X9R型陶瓷电容器介质陶瓷的制备方法,其特征在于,所述步骤(4)的粉末压片机的压力为4Mpa。
7.根据权利要求1所述的X9R型陶瓷电容器介质陶瓷的制备方法,其特征在于,所述步骤(4)的坯体为直径15mm,厚度为1mm的圆柱。
8.根据权利要求1所述的X9R型陶瓷电容器介质陶瓷的制备方法,其特征在于,所述步骤(5)的烧结温度为1200℃。
9.一种权利要求1所述方法制得的X9R型陶瓷电容器介质陶瓷,其特征在于,所述介质陶瓷的化学式为:0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3·x mol%NiNb2O6,其中0<x≤2.5。
10.根据权利要求9所述的X9R型陶瓷电容器介质陶瓷,其特征在于,所述X9R型陶瓷电容器介质陶瓷的化学式为:0.9BaTiO3·0.1(Bi0.5Na0.5)TiO3·x mol%NiNb2O6,其中x=1.5。
CN201811270821.1A 2018-10-29 2018-10-29 一种x9r型陶瓷电容器介质陶瓷的制备方法及其介质陶瓷 Pending CN109320234A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811270821.1A CN109320234A (zh) 2018-10-29 2018-10-29 一种x9r型陶瓷电容器介质陶瓷的制备方法及其介质陶瓷

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811270821.1A CN109320234A (zh) 2018-10-29 2018-10-29 一种x9r型陶瓷电容器介质陶瓷的制备方法及其介质陶瓷

Publications (1)

Publication Number Publication Date
CN109320234A true CN109320234A (zh) 2019-02-12

Family

ID=65259690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811270821.1A Pending CN109320234A (zh) 2018-10-29 2018-10-29 一种x9r型陶瓷电容器介质陶瓷的制备方法及其介质陶瓷

Country Status (1)

Country Link
CN (1) CN109320234A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110105067A (zh) * 2019-05-01 2019-08-09 太原师范学院 一种高介电x7r陶瓷介质材料及其制备方法
TWI756158B (zh) * 2021-08-26 2022-02-21 國巨股份有限公司 介電陶瓷材料、其製造方法及積層陶瓷電容器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104291810A (zh) * 2014-09-26 2015-01-21 天津大学 X9r型多层陶瓷电容器用介质材料的制备方法
CN106747417A (zh) * 2016-11-30 2017-05-31 天津大学 一种ltcc低频介质陶瓷电容器材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104291810A (zh) * 2014-09-26 2015-01-21 天津大学 X9r型多层陶瓷电容器用介质材料的制备方法
CN106747417A (zh) * 2016-11-30 2017-05-31 天津大学 一种ltcc低频介质陶瓷电容器材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MI XIAO ET AL.: "Microstructure and dielectric properties of BaTiO3-(Bi0.5Na0.5) TiO3-NiNb2O6 ceramics", 《JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110105067A (zh) * 2019-05-01 2019-08-09 太原师范学院 一种高介电x7r陶瓷介质材料及其制备方法
CN110105067B (zh) * 2019-05-01 2021-12-28 太原师范学院 一种高介电x7r陶瓷介质材料及其制备方法
TWI756158B (zh) * 2021-08-26 2022-02-21 國巨股份有限公司 介電陶瓷材料、其製造方法及積層陶瓷電容器

Similar Documents

Publication Publication Date Title
CN109574656A (zh) 一种高储能钛酸铋钠-钛酸锶基介质材料及其制备方法
CN104446468B (zh) 一种x9r型陶瓷电容器介质材料及其制备方法
CN104177083B (zh) 用于中温烧结具有偏压特性的温度稳定x8r型mlcc介质材料
CN105036734B (zh) 高介电常数x8r型多层陶瓷电容器用介质材料及其制备方法
CN109133915A (zh) 一种高储能钛酸钡基介质材料及其制备方法
CN109553411B (zh) 一种高击穿场强钛酸铜锶钙介电陶瓷材料及其制备方法
CN105732020A (zh) 一种巨介电、低损耗二氧化钛基复合陶瓷的制备方法
CN111484325A (zh) 一种钛酸锶钡基陶瓷材料及其制备方法和应用
CN113880569A (zh) 一种多层片式陶瓷电容器的介质材料及其制备方法
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN108863348A (zh) 一种超宽温度稳定性的介电陶瓷材料及其制备方法
CN109320234A (zh) 一种x9r型陶瓷电容器介质陶瓷的制备方法及其介质陶瓷
CN104817322B (zh) 一种温度稳定型电容器陶瓷材料Sr4EuTiNb9O30及其制备方法
CN106348748A (zh) 一种高温x8r型陶瓷电容器介质材料及其制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN109721359A (zh) 一种锂钛共掺高q值锂镁铌系介质材料及其制备方法
CN105399405A (zh) 一种低介微波铁电陶瓷及其制备方法
CN103113100A (zh) 一种高温度稳定陶瓷电容器介质
CN109251028A (zh) 一种低介高q锂镁铌系微波介质陶瓷及其制备方法
CN104817323B (zh) 温度稳定型陶瓷电容器介质材料Sr4GdTiNb9O30及其制备方法
CN107746271B (zh) 低频低介电损耗的AgTa共掺二氧化钛基介电陶瓷材料及其制备方法
CN105884352A (zh) 一种新型陶瓷电容器材料Ba4RFe0.5Nb9.5O30(R=La,Eu,Gd)及其制备方法
CN109231982A (zh) 一种钛酸镁基微波介质陶瓷的制备方法
CN109437896A (zh) 一种正温度系数x7r陶瓷介质材料及其制备方法
CN108727013A (zh) 一种超低介电损耗高介电常数陶瓷介电材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190212