CN105914296A - 利用射频磁控溅射技术制备钙钛矿薄膜的方法 - Google Patents

利用射频磁控溅射技术制备钙钛矿薄膜的方法 Download PDF

Info

Publication number
CN105914296A
CN105914296A CN201610365685.9A CN201610365685A CN105914296A CN 105914296 A CN105914296 A CN 105914296A CN 201610365685 A CN201610365685 A CN 201610365685A CN 105914296 A CN105914296 A CN 105914296A
Authority
CN
China
Prior art keywords
thin film
magnetron sputtering
perovskite thin
sputtering technology
pbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610365685.9A
Other languages
English (en)
Inventor
张志荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hexi University
Original Assignee
Hexi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hexi University filed Critical Hexi University
Priority to CN201610365685.9A priority Critical patent/CN105914296A/zh
Publication of CN105914296A publication Critical patent/CN105914296A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

利用射频磁控溅射技术制备钙钛矿薄膜的方法,本发明涉及功能薄膜的制备技术领域;一、清洗衬底;二、采用射频磁控溅射技术在所述衬底上生长PbO薄膜,制成PbO薄膜样品;三、将上述PbO薄膜样品在甲基卤化胺的异丙醇溶液中浸泡,经化学反应后原位生成有机金属卤化物钙钛矿薄膜;四、将上述钙钛矿薄膜样品加以煺火处理。该方法制得的钙钛矿薄膜均匀性和覆盖率高、结晶质量优,具有成本低、工艺简单可控、易于量化生产等优点。

Description

利用射频磁控溅射技术制备钙钛矿薄膜的方法
技术领域
本发明涉及功能薄膜的制备技术领域,具体涉及利用射频磁控溅射技术制备钙钛矿薄膜的方法。
背景技术
以CH3NH3PbI3为代表的有机金属卤化物钙钛矿是一类通过有机分子与无机分子自组装形成的复合晶体材料,它具有诸多优异的光电功能性能,如宽光谱高吸收且带隙可调、长激子寿命和扩散长度、双极性传输、易于合成、低温低成本制备等。因此,这类材料在能源转换及贮存、平板显示技术、传感技术等领域具有广阔的应用前景。就基于有机金属卤化物钙钛矿材料的薄膜半导体光电器件而言(如太阳能电池、薄膜晶体管、发光二极管等),钙钛矿薄膜的质量及形貌特性直接影响到其性能的优劣。目前最为常用的钙钛矿薄膜沉积工艺有一步法、两步法(以及在此两者基础上衍生的其它沉积方法)等,但这些方法仅用来制备小面积(大多在0.1cm2左右甚至更小)薄膜及器件,而且只是作为实验室研究而无法扩展应于大面积钙钛矿薄膜的制备,这将势必在一定程度上阻碍杂化钙钛矿光电薄膜器件走向实用化的进程。Snaith课题组首次报道用双源共蒸法制备CH3NH3PbI3-xClx薄膜,与溶液旋涂法获得的膜相比,其表面形貌更加均匀且覆盖率更高。但该方法也存在难以控制、制备成本高等缺点,难以大规模推广使用。介于此,探索更优的有机金属卤化物钙钛矿薄膜的制备方法就非常必要,特别是开发适用于大面积钙钛矿薄膜制备的工艺对钙钛矿薄膜器件的进一步发展有着重要的意义。
发明内容
本发明的目的在于针对现有技术的缺陷和不足,提供一种设计合理的利用射频磁控溅射技术制备钙钛矿薄膜的方法,该方法制得的钙钛矿薄膜均匀性和覆盖率高、结晶质量优,具有成本低、工艺简单可控、易于量化生产等优点。
为实现上述目的,本发明采用的技术方案是:它的制作步骤如下:
一、清洗衬底;
二、采用射频磁控溅射技术在所述衬底上生长PbO薄膜,制成PbO薄膜样品;
三、将上述PbO薄膜样品在甲基卤化胺的异丙醇(超干)溶液中浸泡,经化学反应后原位生成有机金属卤化物钙钛矿薄膜;
四、将上述钙钛矿薄膜样品加以煺火处理。
进一步地,所述步骤一中的衬底为氟掺杂氧化锡(FTO)导电玻璃。
进一步地,所述步骤一中清洗衬底的方法为:依次用水(加玻璃清洁剂)、丙醇、无水乙醇和去离子水将衬底各超声清洗10~20分钟,之后用氮气吹干再放入紫外臭氧清洗机处理10~20分钟。
进一步地,所述的步骤二中的射频磁控溅射采用纯度为99.999%的PbO靶材。
进一步地,所述步骤二中利用射频频磁控溅射技术制成PbO薄膜样品时,靶材与FTO导电玻璃基底间的距离为40~80mm,本底气压为1×10-4mTorr,通入高纯氩气为溅射气体,工作压强为0.5~2mTorr,溅射功率为20~100W,溅射时间为3~15分钟。
进一步地,所述的步骤二中生长PbO薄膜的厚度为50~120nm。
进一步地,所述的步骤三中甲基卤化胺为CH3NH3I或CH3NH3I和CH3NH3Cl的混合体(摩尔比为3∶1);甲基卤化胺异丙醇溶液的浓度为10~50mg/mL;浸泡时间为5~30分钟。
进一步地,所述的步骤三中有机金属卤化物钙钛矿薄膜为CH3NH3PbI3或CH3NH3PbI3-xClx
进一步地,所述的步骤四中有机金属卤化物钙钛矿薄膜样品的煺火温度为70~120℃,煺火时间为15~45分钟。
本发明的有益效果如下:
一、可制备大面积的有机金属卤化物钙钛矿薄膜,在数十平方厘米(但不排除更大)大小范围内保持良好的均匀性和表面覆盖率,而这对于基干旋涂工艺的方法则是无法实现的;
二、基于已成熟商业化应用的磁控溅射技术,可按照工业化生产的规模放大,易于实现批量生产;
三、工艺简单可控,可重复性高,且成本相对较低,符合工业化量产的要求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明中制备的CH3NH3PbI3杂化钙钛矿薄膜的SEM表面形貌图。
图2是本发明中制备的CH3NH3PbI3杂化钙钛矿薄膜的XRD图谱。
图3是本发明中制备的CH3NH3PbI3杂化钙钛矿薄膜的UV-Vis吸收谱。
具体实施方式
本具体实施方式(实施例一)采用的技术方案是:它的制作步骤如下:
一、将纯度为99.999%的PbO靶固定在溅射装置的靶位置上;
二、将清洗完毕的FTO导电玻璃基底(面积为2×2cm2)放入磁控溅射腔室,设定相关溅射工艺参数(靶材与衬底间的距离为60mm,本底气压为1×10-4mTorr,通入高纯氩气为溅射气体,工作压强为0.5mTorr,溅射功率为50W,溅射时间为6分钟),待溅射完毕后获得厚度约为60nm的PbO薄膜样品;
三、将上述PbO薄膜样品浸泡在CH3NH3I的异丙醇溶液中(浓度为40mg/mL)保持静态10分钟,得到CH3NH3PbI3钙钛矿薄膜;
四、将上述CH3NH3PbI3钙钛矿薄膜样品加以煺火处理,温度升至100℃时起保持30分钟后自然冷却,得到所述有机金属卤化物钙钛矿薄膜。
对本具体实施方式中所制备的CH3NH3PbI3薄膜加以扫描显微镜(SEM)形貌分析、X射线衍射(XRD)、紫外-可见光(UV-Vis)吸收等表征,结果显示:所述有机金属卤化物钙钛矿薄膜由粒径大小在50~600nm的晶粒组成,在大面积范围内具有良好的均匀性和表面覆盖率,其XRD图谱及UV-Vis吸收谱与典型的两步法(旋涂碘化铅后浸泡)所制备的钙钛矿膜具有相同的基本特征。
本具体实施方式的有益效果如下:该方法制得的钙钛矿薄膜均匀性和覆盖率高、结晶质量优,具有成本低、工艺简单可控、易于量化生产等优点。
实施例二:
本实施例与实施例一的不同之处在于,用以浸泡PbO薄膜样品的CH3NH3I/异丙醇溶液的的浓度为50mg/mL,其余步骤与实施条件与实施例一相同。
实施例三:
本实施例与实施例一的不同之处在于,用以浸泡的CH3NH3I/异丙醇溶液的浓度为30mg/mL,其余步骤与实施条件与实施例一相同。
实施例四:
本实施例与实施例一的不同之处在于,FTO导电玻璃基底的面积为4×4cm2,其余步骤与实施条件与实施例一相同。
实施例五:
本实施例与实施例一的不同之处在于,将PbO薄膜样品浸泡在浓度为40mg/mL的CH3NH3I与CH3NH3Cl的混合异丙醇溶液(两者摩尔比为3∶1),其余步骤与实施条件与实施例一相同。
以上所述,仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其它修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (9)

1.利用射频磁控溅射技术制备钙钛矿薄膜的方法,其特征在于:它的制作步骤如下:
(一)、清洗衬底;
(二)、采用射频磁控溅射技术在所述衬底上生长PbO薄膜,制成PbO薄膜样品;
(三)、将上述PbO薄膜样品在甲基卤化胺的异丙醇溶液中浸泡,经化学反应后原位生成有机金属卤化物钙钛矿薄膜;
(四)、将上述钙钛矿薄膜样品加以煺火处理。
2.根据权利要求1所述的利用射频磁控溅射技术制备钙钛矿薄膜的方法,其特征在于:所述步骤(一)中的衬底为氟掺杂氧化锡导电玻璃。。
3.根据权利要求1所述的利用射频磁控溅射技术制备钙钛矿薄膜的方法,其特征在于:所述步骤(一)中清洗衬底的方法为:依次用水、丙醇、无水乙醇和去离子水将衬底各超声清洗10~20分钟,之后用氮气吹干再放入紫外臭氧清洗机处理10~20分钟。。
4.根据权利要求1所述的利用射频磁控溅射技术制备钙钛矿薄膜的方法,其特征在于:所述的步骤(二)中的射频磁控溅射采用纯度为99.999%的PbO靶材。
5.根据权利要求1所述的利用射频磁控溅射技术制备钙钛矿薄膜的方法,其特征在于:所述步骤(二)中利用射频频磁控溅射技术制成PbO薄膜样品时,靶材与FTO导电玻璃基底间的距离为40~80mm,本底气压为1×10-4mTorr,通入高纯氩气为溅射气体,工作压强为0.5~2mTorr,溅射功率为20~100W,溅射时间为3~15分钟。
6.根据权利要求1所述的利用射频磁控溅射技术制备钙钛矿薄膜的方法,其特征在于:所述的步骤(二)中生长PbO薄膜的厚度为50~120nm。
7.根据权利要求1所述的利用射频磁控溅射技术制备钙钛矿薄膜的方法,其特征在于:所述的步骤(三)中甲基卤化胺为CH3NH3I或CH3NH3I和CH3NH3Cl的混合体,摩尔比为3∶1;甲基卤化胺异丙醇溶液的浓度为10~50mg/mL;浸泡时间为5~30分钟。
8.根据权利要求1所述的利用射频磁控溅射技术制备钙钛矿薄膜的方法,其特征在于:所述的步骤(三)中有机金属卤化物钙钛矿薄膜为CH3NH3PbI3或CH3NH3PbI3-xClx
9.根据权利要求1所述的利用射频磁控溅射技术制备钙钛矿薄膜的方法,其特征在于:所述的步骤(四)中有机金属卤化物钙钛矿薄膜样品的煺火温度为70~120℃,煺火时间为15~45分钟。
CN201610365685.9A 2016-05-26 2016-05-26 利用射频磁控溅射技术制备钙钛矿薄膜的方法 Pending CN105914296A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610365685.9A CN105914296A (zh) 2016-05-26 2016-05-26 利用射频磁控溅射技术制备钙钛矿薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610365685.9A CN105914296A (zh) 2016-05-26 2016-05-26 利用射频磁控溅射技术制备钙钛矿薄膜的方法

Publications (1)

Publication Number Publication Date
CN105914296A true CN105914296A (zh) 2016-08-31

Family

ID=56742571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610365685.9A Pending CN105914296A (zh) 2016-05-26 2016-05-26 利用射频磁控溅射技术制备钙钛矿薄膜的方法

Country Status (1)

Country Link
CN (1) CN105914296A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190053452A (ko) * 2017-11-10 2019-05-20 주식회사 조인솔루션 페로브스카이트 태양전지의 흡수층 박막 제조방법 및 페로브스카이트 박막 제조용 스퍼터링 장치
KR20190055616A (ko) * 2017-11-15 2019-05-23 엘지전자 주식회사 태양전지의 제조 방법
WO2023087307A1 (zh) * 2021-11-22 2023-05-25 宁德时代新能源科技股份有限公司 一种钙钛矿薄膜的制备方法及相关的钙钛矿薄膜和太阳能电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617219A (zh) * 2014-12-26 2015-05-13 西安电子科技大学 基于CH3NH3PbI2+xCl1-x光活性层的平面钙钛矿太阳能电池及制备方法
US9082992B2 (en) * 2013-05-09 2015-07-14 National Cheng Kung University Hybrid organic solar cell with perovskite structure as absorption material and manufacturing method thereof
CN105541644A (zh) * 2015-12-15 2016-05-04 浙江大学 一种新型空穴传输层材料及其构成的钙钛矿太阳电池
CN105576132A (zh) * 2016-03-16 2016-05-11 南京工业大学 基于上转化材料掺杂的钙钛矿太阳能电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9082992B2 (en) * 2013-05-09 2015-07-14 National Cheng Kung University Hybrid organic solar cell with perovskite structure as absorption material and manufacturing method thereof
CN104617219A (zh) * 2014-12-26 2015-05-13 西安电子科技大学 基于CH3NH3PbI2+xCl1-x光活性层的平面钙钛矿太阳能电池及制备方法
CN105541644A (zh) * 2015-12-15 2016-05-04 浙江大学 一种新型空穴传输层材料及其构成的钙钛矿太阳电池
CN105576132A (zh) * 2016-03-16 2016-05-11 南京工业大学 基于上转化材料掺杂的钙钛矿太阳能电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIN HUA HUANG等: "Direct Conversion of CH3NH3PbI3 from Electrodeposited PbO for Highly Efficient Planar Perovskite Solar Cells", 《SCIENTIFIC REPORTS》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190053452A (ko) * 2017-11-10 2019-05-20 주식회사 조인솔루션 페로브스카이트 태양전지의 흡수층 박막 제조방법 및 페로브스카이트 박막 제조용 스퍼터링 장치
KR102158186B1 (ko) * 2017-11-10 2020-09-21 주식회사 조인솔루션 페로브스카이트 태양전지의 흡수층 박막 제조방법 및 페로브스카이트 박막 제조용 스퍼터링 장치
KR20190055616A (ko) * 2017-11-15 2019-05-23 엘지전자 주식회사 태양전지의 제조 방법
CN111357120A (zh) * 2017-11-15 2020-06-30 Lg电子株式会社 制造太阳能电池的方法
EP3712967A4 (en) * 2017-11-15 2021-08-11 LG Electronics Inc. SOLAR CELL MANUFACTURING PROCESS
US11133481B2 (en) 2017-11-15 2021-09-28 Lg Electronics Inc. Method for manufacturing solar cell
KR102525426B1 (ko) * 2017-11-15 2023-04-26 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양전지의 제조 방법
CN111357120B (zh) * 2017-11-15 2024-05-28 晶澳太阳能有限公司 制造太阳能电池的方法
WO2023087307A1 (zh) * 2021-11-22 2023-05-25 宁德时代新能源科技股份有限公司 一种钙钛矿薄膜的制备方法及相关的钙钛矿薄膜和太阳能电池
US11862407B2 (en) 2021-11-22 2024-01-02 Contemporary Amperex Technology Co., Limited Preparation method for perovskite film, and related perovskite film and solar cell

Similar Documents

Publication Publication Date Title
CN104250723B (zh) 一种基于铅单质薄膜原位大面积控制合成钙钛矿型CH3NH3PbI3薄膜材料的化学方法
CN106953015B (zh) 一种高效率大面积钙钛矿太阳能电池的制备方法
CN105369232A (zh) 基于铅单质薄膜原位大面积控制合成钙钛矿型CH3NH3PbBr3薄膜材料的化学方法
WO2019218567A1 (zh) 一种有机铵金属卤化物薄膜的制备装置及制备和表征方法
CN103396009B (zh) 一种制备铜铝碲薄膜的方法
CN108649121B (zh) 动态旋涂制备钙钛矿薄膜的方法
CN105355794A (zh) 一种使用化学气相沉积法制备钙钛矿薄膜太阳能电池的方法
CN105914296A (zh) 利用射频磁控溅射技术制备钙钛矿薄膜的方法
CN108539025B (zh) 一种由基底调控的高取向性二维杂化钙钛矿薄膜及其制备方法
CN106058060A (zh) 一种制备高质量钙钛矿晶体薄膜的方法
US20220230813A1 (en) Method for preparing perovskite solar cell absorbing layer by means of chemical vapor deposition
CN111139518A (zh) 一种空气稳定的全无机混合卤素钙钛矿纳米线的制备方法
CN105481697A (zh) 气液或者气固两相原位反应制备有机无机杂化钙钛矿材料
CN105777800A (zh) 氧化铅薄膜制备有机钙钛矿甲基胺基碘化铅薄膜的方法
CN111455462B (zh) 一种CsPbCl3单晶的制备方法
CN102664215A (zh) 一种制备硒化锌光电薄膜的方法
CN105428539B (zh) 一种控制退火时压强气氛提高其光电性能的钙钛矿太阳能电池吸收层的制备方法
CN107170889A (zh) 一种通过引入碱金属离子在潮湿空气中制备高效率钙钛矿太阳能电池的方法
CN114373864A (zh) 一种有机-无机杂化钙钛矿薄膜的制备方法
CN107245689A (zh) 一种大面积制备卤化甲胺铅光电薄膜的化学方法
CN111668374B (zh) 大面积三维-二维钙钛矿异质结原位制备方法
CN113584436B (zh) 一种基于非溶剂的钙钛矿薄膜、制备方法及应用
CN106830072B (zh) 一种二氧化钛纳米线阵列的制备方法
CN102881563B (zh) 一种多晶硅薄膜组件的制备方法
CN109904317A (zh) 一种钙钛矿层的制备方法、应用及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160831

RJ01 Rejection of invention patent application after publication