CN105895668B - 用于降低半导体装置中的泄漏电流的结层间电介质 - Google Patents

用于降低半导体装置中的泄漏电流的结层间电介质 Download PDF

Info

Publication number
CN105895668B
CN105895668B CN201610081031.3A CN201610081031A CN105895668B CN 105895668 B CN105895668 B CN 105895668B CN 201610081031 A CN201610081031 A CN 201610081031A CN 105895668 B CN105895668 B CN 105895668B
Authority
CN
China
Prior art keywords
layer
semiconductor device
dielectric interlayer
dielectric
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610081031.3A
Other languages
English (en)
Other versions
CN105895668A (zh
Inventor
J·P·德索扎
K·E·弗格尔
J·吉姆
D·K·萨达纳
B·A·瓦卡塞尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN105895668A publication Critical patent/CN105895668A/zh
Application granted granted Critical
Publication of CN105895668B publication Critical patent/CN105895668B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0895Tunnel injectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • H01L29/66219Diodes with a heterojunction, e.g. resonant tunneling diodes [RTD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66522Unipolar field-effect transistors with an insulated gate, i.e. MISFET with an active layer made of a group 13/15 material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66643Lateral single gate silicon transistors with source or drain regions formed by a Schottky barrier or a conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明涉及用于降低半导体装置中的泄漏电流的结层间电介质。半导体装置包括衬底和在衬底上的包括掺杂的III‑V材料的p掺杂层。在p掺杂层上形成电介质中间层。在电介质中间层上形成n型层,n型层包括高带隙II‑VI材料以形成电子装置。

Description

用于降低半导体装置中的泄漏电流的结层间电介质
技术领域
本发明涉及半导体装置和工艺,并且更具体地,涉及在p和n层之间使用电介质中间层以降低电流泄漏的半导体装置。
背景技术
使用诸如GaAs、InP或InGaAs衬底的III(族)-V(族)材料的场效应晶体管(FET)通常包括由类似材料制成的掺杂的源区和漏区。在一种通用结构中,III-V FET包括由掺杂的InGaAs(例如,n+InGaAs)形成的源/漏(S/D)区。n+InGaAs用于S/D区并不理想。在InGaAsnFET中,n+InGaAs S/D区遇到低掺杂浓度(例如,1x1019cm-3)的问题。此外,在InGaAs S/D区中存在相对较高的结泄漏和高接触电阻。此外,形成工艺需要n+掺杂剂的图案化的注入,这会增加工艺的时间和成本,并且可能导致结损伤。
发明内容
根据本公开一个方面,提供了一种半导体装置,其包括衬底和在衬底上的包括掺杂的III-V材料的p掺杂层。在p掺杂层上形成电介质中间层。在电介质中间层上形成n型层,n型层包括高带隙II-VI材料以形成电子装置。
根据本公开一个方面,提供了另一半导体装置,其包括衬底和在衬底上的包括掺杂的III-V材料的p掺杂层。在p掺杂层上形成极薄的电介质中间层并且其具有小于1.3nm的厚度。在电介质中间层上形成n型层。n型层包括掺杂铝的ZnO材料以形成电子装置。在n型层上形成接触件。
根据本公开一个方面,提供了用于形成半导体装置的方法,其包括:在衬底上形成包括掺杂的III-V材料的p掺杂层;在p掺杂层上形成电介质中间层;在电介质中间层上形成包括高带隙II-VI材料的n型层;以及处理n型层以形成装置。
联系附图阅读本发明的说明性实施例的以下详细的描述,这些和其它特征以及优点将会变得明显的。
附图说明
在下面参考附图的优选实施例的描述中将提供本公开的细节,在附图中:
图1是根据本公开原理的部分制造的场效应晶体管的截面图,该场效应晶体管具在层间电介质上形成的n型II-VI层,所述n型II-VI层形成源区和漏区;
图2是根据本公开原理的形成有说明性栅结构的图1的部分制造的场效应晶体管的截面图;
图3是根据本公开原理的具有n型II-VI层的二极管的截面图,n型II-VI层在层间电介质上形成并且形成结;
图4是描绘了两个二极管的装置电流密度(mA/cm2)相对于装置电压(伏)的电流密度-电压图,一个二极管包括p-InGaAs上的铝锌氧化物(Aluminum Zinc Oxide,AZO),另一个二极管是根据本公开原理的图3的二极管,其包括AZO和p-InGsAs之间的电介质中间层(0.8nm Al2O3)。
图5是描绘了两个二极管的装置电流密度(mA/cm2)相对于装置电压(伏)的电流密度-电压图,一个二极管是包括p-InGaAs上的n+InGaAs的常规二极管,另一个二极管是根据本公开原理的图3的二极管,其包括AZO和p-InGsAs之间的电介质中间层(0.8nm Al2O3)。
图6是描绘了根据本公开原理的若干装置的装置电流(A)相对于装置栅电压(V)的电流-电压(I-V)图,其中所述装置包括AZO和p-InGsAs之间的不同厚度的电介质中间层(Al2O3);以及
图7是示出用于根据说明性实施例形成半导体装置的方法的框图/流程图。
具体实施方式
根据本公开原理,描述了用于在p-n结中形成电介质层以降低泄漏电流的电子装置、结构和形成方法。电介质层优选地是具有小于约1.3nm的厚度的极薄层。极薄的电介质层优选地包括氧化物,并且形成可以过滤p-n结中的泄漏电流的高带隙材料。电介质层形成在结的p层和n层之间。电介质层降低了在p-n结中具有电介质层的装置的泄漏电流。泄漏电流可以比常规装置显著地降低(例如,约两个数量级)。
在一个尤其有用的实施例中,在p-n结中形成Al2O3层。p-n结可以包括具有诸如InGaAs、GaAs、InP等的III-V材料的p层,并且n层可以包括II-VI材料,优选地包括高带隙II-VI材料,并且尤其是包括掺杂的ZnO。
ZnO可以包括n+掺杂Al的ZnO(ZnO:Al或AZO)。AZO为源区和漏区或二极管中的有源层等提供了替代材料。ZnO:Al具有与n+InGaAs类似的电子亲和势(~4.35-~4.4eV),n+InGaAs的电子亲和势是~4.5eV。ZnO:Al具有较大的掺杂水平,例如可以获得直至约5x1021/cm3的掺杂水平。ZnO:Al处理与金属化处理更兼容。例如,S/D区可以包括在其上形成的金属层。ZnO:Al与在形成这些结构中使用的金属材料更兼容。
ZnO:Al的形成也趋于更容易。例如,可以使用原子层沉积(ALD),而不是利用外延生长工艺及图案化掺杂(例如,对于n+InGaAs),来形成ZnO:Al,但是也可以使用其它工艺。这允许掺杂层具有更少的表面损伤。类似于Al的材料可以直接在ZnO上形成,并且被退火以使得Al扩散来掺杂ZnO,或被氧化以形成氧化铝电介质层。
在尤其有用的实施例中,电介质层包括Al2O3。AZO层提供了高带隙材料(例如,Eg大于约1.0eV并且优选大于2.0eV)。根据本公开原理,可以以非晶或多晶相的方式在Al2O3上形成AZO,这使得工艺更简单。其它半导体材料(例如,InGaAs)的非晶或多晶相不适于在诸如Al2O3的电介质层上生长。这些其它半导体材料理想地需要单晶结构,这难以在高Eg氧化物(Al2O3)上形成。
应理解,将就给出的例示性架构对本发明进行说明;然而,在本发明的范围内,可以对其它架构、结构、衬底材料以及工艺特征和步骤进行改变。
还应理解,当元件(诸如层、区或衬底)被称为在另一元件“上”或“之上”时,该元件可以直接在该另一元件上或者也可以存在中间元件。相反,当元件被称为“直接”在另一元件“上”或“直接”在另一元件“之上”时,不存在中间元件。还应理解,当元件被称为与另一个元件“连接”或“耦接”时,该元件可以直接连接或耦接到该另一个元件或者可以存在中间元件。相反,当元件被称为“直接连接”或“直接耦接”到另一个元件时,不存在中间元件。
根据本公开的原理的集成电路芯片的设计可以利用图形化计算机编程语言创建,并存储在计算机存储介质中(诸如,盘、带、物理硬盘或虚拟硬盘,诸如存储存取网络中的虚拟硬盘)。如果设计者不制造芯片或用于制造芯片的光刻掩模,则该设计者可以通过物理装置(例如,通过提供存储该设计的存储介质的拷贝)或电子地(例如,通过因特网)直接或间接向那些实体传输所得到的设计。所存储的设计继而转换成适当的格式(例如,GDSII)以用于制造光刻掩模,其通常包括要在晶片上形成的所涉及的芯片设计的多个拷贝。光刻掩模被用来定义晶片(和/或其上的层)将被蚀刻或以其它方式进行处理的区域。
本文所说明的方法可以用于制备集成电路芯片。所得到的集成电路芯片可以由制造者以原始晶片的形式(即,作为具有多个未封装芯片的单个晶片)作为裸片或者以封装形式分发。在后一种情况下,芯片被安装在单芯片封装(诸如具有附接于母板或者其它较高层级载体)的引脚的塑料载体)中、或者在多芯片封装(如陶瓷载体,其具有表面互连或者埋入的互连之一或者两者)中。在任何情况下,芯片然后与作为(a)中间产品(如母板)或者(b)最终产品的一部分的其它芯片、分立电路元件、和/或其它信号处理装置集成在一起。最终产品可以是包括集成电路芯片的任何产品,其范围从玩具和其它低端应用到具有显示器、键盘或其它输入设备以及中央处理器的高级计算机产品。
还应理解,将就所列出的元素,例如,InP、InGaAs、ZnO等,对材料复合物(compound)进行说明。这些复合物在复合物内可以包括不同比例的元素,例如InGaAs包括InxGa1-xAs,其中x小于或等于1,或者ZnO包括ZnxO1-x,其中x小于或等于1,等等。另外,复合物中可以包括其它元素(诸如,例如ZnO:Al),并仍然适用于本公开的原理。在本文,具有额外的元素的复合物将被称为合金。
在本说明书中,对本公开的原理的“一个实施例”或“实施例”以及其各种变型的引述意味着,结合该实施例所说明的特定特征、结构或特性被包括在本公开的原理的至少一个实施例中。因而,在说明书通篇的各个位置中出现的短语“在一个实施例中”或“在实施例中”以及任何其它变型不一定全部指的是同一实施例。
应理解,任何下列“/”、“和/或”和“中的至少一个”的使用(例如,对于“A/B”、“A和/或B”和“A和B中的至少一个”的情况)旨在包含:只选择第一个所列出的选项(A),或只选择第二个所列出的选项(B),或两个选项都选(A和B)。另一个示例是,对于“A、B和/或C”以及“A、B和C中的至少一个”的情况,这样的短语旨在包含:只选择第一个所列出的选项(A),或只选择第二个所列出的选项(B),或只选择第三个所列出的选项(C),或只选择第一个和第二个所列出的选项(A和B),或只选择第一个和第三个所列出的选项(A和C),或只选择第二个和第三个所列出的选项(B和C),或三个选项都选(A、B和C)。对本领域及相关领域技术人员而言十分清晰的是,这可以扩展到列出了很多项的情况。
现在参考附图,其中相似标号代表相同或相似元素,并且从图1开始,示出了根据一个说明性示例的部分制造的场效应晶体管(FET)10的截面图。FET 10包括衬底12、p掺杂层14、n型源区和漏区16、以及结电介质层17。虽然根据本公开原理描述和示出的结构尤其有用于n-FET,但是也可以调整掺杂改变和材料,在p-FET装置中实现本公开原理。在一个实施例中,衬底12可以包括III-V晶片、硅材料或其它合适材料或晶片。
p掺杂层14可以包括p掺杂的InGaAs层,但是也可以使用其它III-V材料。在常规装置中,源/漏(S/D)区一般包括使用外延形成的再生长的III-V材料,其具有的通过注入工艺形成的图案化的掺杂区。
II-VI材料(优选具有高带隙)可以用于S/D区16。具体地,可以使用诸如ZnO或其合金的n型材料。一般可以将ZnO施加到具有匹配功函数的III-V材料。n型层16具有约1eV或更大的优选带隙,优选大于2.0eV。尽管ZnO可以用于代替InGaAs或其它III-V材料,然而ZnO也可以用于代替例如Ge或类似材料上带隙小于1eV的半导体材料。
根据本公开原理,在p掺杂层14和n型区16之间形成结电介质层17。结电介质层17可以包括氧化铝,但是也可以使用例如氧化物或氮化物的其它电介质材料。其它电介质材料可以包括,例如,HfO2、TiO2、SiO2、SiNx等。层17可以包括Al2O3,其可以通过以下工艺中的一种或多种来沉积或生长:化学气相沉积(CVD)、原子层沉积(ALD)、金属有机化学气相沉积(MOCVD)或任何其它合适的沉积工艺。层17优选为具有厚度在约0.5nm和1.3nm之间的沉积厚度的极薄层。层17提供了层/区14和16之间的结中的高带隙。
ZnO中n掺杂的范围直至2个原子百分比(例如,~5x1021/cm3)。ZnO掺杂剂可以包括Al、Ga、In等,优选为Al:ZnO。可以通过以下工艺中的一种或多种来沉积或生长ZnO:外延、溅射、原子层沉积(ALD)和金属有机化学气相沉积(MOCVD)。ZnO优选地包括通过原子层沉积ALD沉积的n+ZnO:Al。ALD工艺在层17上形成S/D区16。此外,利用较好的化学计量控制可以获得S/D区16的较高掺杂浓度。区16中的较高掺杂浓度提供了p-n结中较大的Vbi(内部基极-地电压)(Internal Base-ground voltage)。在一个示例中,ALD工艺可以包括使用13周期Zn沉积对1周期Al沉积。S/D区的载流子浓度(电子密度)可以在约3x1020cm-3到约5x1021cm-3之间,对于掺铝氧化锌(ZnO:Al)(AZO)优选为约3.0x1021cm-3。AZO的高带隙能也能帮助降低电流泄漏。
n型材料16(例如,ZnO:Al)可以是晶体形式。这包括单晶结构并且可以包括多晶结构或其它晶体结构(微米晶、纳米晶等)。然而,层16的AZO材料也可以包括非晶相。在一个实施例中,层16的ZnO是非晶的。下面的层,例如p掺杂层16和衬底12,也优选为晶体,但是可以包括其它相。在尤其有用的实施例中,在Al2O3电介质层17上非晶地形成层16的ZnO。
参考图2,通过形成例如HfO2、Al2O3或其它高介电常数材料的栅电介质22来进一步加工FET 10。之后形成栅电极24。栅电极24可以包括任何合适的高导电材料,例如Cu、Cr、Au、Ag等。还穿过电介质材料28在S/D区16上形成接触件26。接触件26可以包括比常规装置更宽范围的材料,即,更多兼容材料适于用作接触金属。例如,FET 10可以包括例如Al和Au的双层的金属接触件。可以将Al衬垫放置在S/D区16上,接着放置诸如Au或Pt的高导电材料。也构思了其它金属或金属的组合。可以将Al(或其它金属层)用作掺杂剂源,用于掺杂或进一步掺杂下部S/D区16。可以执行退火工艺以帮助用接触件金属掺杂S/D区16。
参考图3,示出了根据一个说明性示例的二极管50的截面图。二极管50包括衬底52、p掺杂层54、结层间电介质55和n型层56。虽然根据本公开原理描述和示出的结构尤其适用于n型二极管,但是可以调整掺杂改变和材料在p型装置中实现本公开原理。在一个实施例中,衬底52可以包括诸如InP的III-V材料,但是也可以使用Si衬底以及其它材料。p掺杂层54可以包括p掺杂的InGaAs层,但是也可以使用其它III-V材料。
根据本公开原理,结电介质层55形成在p掺杂层54和n型区56之间。结电介质层55可以包括氧化铝,但是也可以使用例如氧化物或氮化物的其它电介质。其它电介质材料可以包括,例如,HfO2、TiO2、SiO2、SiNx等。层55可以包括Al2O3,其可以通过以下工艺中的一种或多种来沉积或生长:化学气相沉积(CVD)、原子层沉积(ALD)、金属有机化学气相沉积(MOCVD)或任何其它合适的沉积工艺。层55优选为具有厚度在约0.5nm和1.3nm之间的沉积厚度的极薄层。层55在层/区54和56之间的结中提供高带隙。
根据有用的实施例,可以将高带隙II-VI材料用于n型层56。具体地,可以使用ZnO或ITO。ZnO优选地包括通过原子层沉积ALD沉积的n+ZnO:Al,但是也可以使用例如MOCVD、溅射、外延等的其它形成工艺。ALD工艺形成层56以提供对包括层54的下面的层的较小表面损伤。此外,利用较好化学计量控制可以获得层56的较高掺杂浓度。在一个示例中,ALD工艺可以包括使用13周期Zn沉积对1周期Al沉积。层56的载流子浓度(电子密度)可以在约1x1021cm-3到约5x1021cm-3之间,对于掺铝氧化锌(ZnO:Al)(AZO)优选地约3.0x1021cm-3。层56可以包括在约5nm和50nm之间的厚度,优选地具有约30nm的厚度。
结电介质层55显著降低了二极管漏电。结电介质层55是在层56(例如,ZnO:Al)和层54(例如,InGaAs)之间形成的中间层。
n型材料56(例如,ZnO:Al)可以包括单晶结构、多晶结构或其它晶体结构(微米晶、纳米晶等)。然而,层56的AZO材料(和层55)也可以包括非晶相。在电介质层55上形成层56时,可能需要层56的非晶生长,并且层56的ZnO是非晶的。下面的层,例如p掺杂层54和衬底52,也优选为晶体,但是也可以包括其它相。
在层56上形成接触件60。由于层56中材料的使用,接触件60可以包括比常规装置更宽范围的材料。例如,二极管50可以包括双层结构(例如,层57和58)的金属接触件,双层结构可以分别包括例如Al和Au。在层56上放置Al衬垫,随后放置诸如Au或Pt的高导电材料。也构思了其它金属或金属的组合。接触件60的Al可以用于掺杂ZnO。接触件60的Al可以通过退火来增加AZO(层56)中的掺杂。
参考图4,电流密度相对于电压的图描绘了两个装置的结电流密度(mA/cm2)相对于装置电压(V)。在这种情形中,通过负电压下的电流密度的幅值来量化泄漏电流。两个装置都包括InP衬底和p掺杂InGaAs层。一个曲线70对应于包括在p掺杂层上形成并用作二极管的n掺杂层的30nm的AZO的装置。由Al和Au在AZO层上形成双层接触件。
另一曲线72对应于根据图3的结构的装置,其包括的30nm AZO,在p掺杂层和AZO之间形成有界面Al2O3电介质层。由Al和Au在AZO层上形成双层接触件。如图中可见的,根据仅AZO(n+ZnO:Al)的曲线70响应的装置具有比对应于AZO以及界面Al2O3电介质层的曲线72的装置大的泄漏电流。曲线70中装置的泄漏电流比曲线72中装置的泄漏电流大1-2个数量级。界面Al2O3电介质层显著地降低了泄漏电流。
参考图5,电流密度相对于电压的图描绘了两个装置的结电流密度(mA/cm2)相对于装置电压(V)。在这种情形中,通过负电压下的电流密度的幅值来量化泄漏电流。两个装置都包括InP衬底和p掺杂InGaAs层。一个曲线80对应于包括在p掺杂InGaAs层上形成并用作二极管的n掺杂层的n+InGaAs层的装置。在n+InGaAs层上形成Ti/Pa/Au接触层。
另一曲线82对应于根据图3的结构的装置,其包括30nm AZO,在p掺杂层和AZO之间形成有界面Al2O3电介质层(厚度0.8nm)。由Al和Au在AZO层上形成双层接触件。如图中可见的,根据曲线80响应的装置具有比对应于AZO以及界面Al2O3电介质层的曲线82的装置大得多的泄漏电流。曲线80中装置的泄漏电流比曲线82中装置的泄漏电流大1至接近3个数量级。包括界面Al2O3电介质层的结构显著地降低了泄漏电流。
参考图6,电流-电压(I-V)图描绘了具有不同厚度的界面电介质层(在该情形中为Al2O3)的装置的装置电流(安)相对于栅电压(伏)。一个迹线90对应于具有0.6nm的界面电介质层厚度的装置。另一迹线92对应于具有0.8nm的界面电介质层厚度的装置。另一迹线94对应于具有1.1nm的界面电介质层厚度的装置。另一迹线96对应于具有1.3nm的界面电介质层厚度的装置。
在这种情形中,通过负电压下的电流密度的幅值来量化泄漏电流。在约0.5nm和约1.3nm之间的厚度范围表现出超过常规装置的改进性能,并且在约0.6nm和约1.0nm之间的厚度范围中具有最佳性能。
参考图7,示出了根据说明性实施例的用于形成半导体装置的方法。在一些替代实施方式中,框中标示的功能可以不按照图中示出的顺序来发生。例如,取决于所涉及的功能,连续示出两个框可能事实上基本同时执行,或者框有时可以以相反顺序执行。应当注意,可以通过执行特定功能或动作的或进行专用硬件和计算机指令的组合的基于专用硬件的系统来实现框图和/或流程图中每个框以及框图和/或流程图中框的组合。
在框202中,在例如III-V衬底(例如,InP)、Si衬底、Ge衬底等的衬底上生长或形成p掺杂层。p掺杂层优选地包括III-V材料。III-V材料可以包括,例如,InP、InAs、AlAs、AlN、GaN、InN、AlP、GaP、InP、AlAs、GaAs、InAs等,或例如InGaAs、AlGaAs等的三元复合物。
在框204中,在p掺杂层上形成电介质中间层。电介质中间层可以包括氧化物或氮化物。电介质材料可以包括,例如,HfO2、TiO2、SiO2、SiNx等,并且在尤其有用的实施例中,可以使用Al2O3。电介质中间层包括形成具有在约0.5nm和约1.3nm之间的厚度的极薄层。如果电介质中间层包括氧化铝,优选在约0.6nm和约1.0nm之间的厚度。可以通过ALD形成电介质中间层,但是也可以使用其它工艺。
在框206中,形成包括诸如ZnO或ITO的高带隙掺杂II-VI材料的n型层,其通过使用例如ALD工艺、MOCVD、溅射、外延生长等在电介质中间层上形成。n型层形成为具有(或将要处理为具有)在约1x1021cm-3到约5x1021cm-3之间的载流子浓度,优选地约为3x1021cm-3。这是由于材料和其形成工艺。ALD是优选的并且导致对下面的层的最小表面损伤。n型层可以是非晶的。
在框208中,n型层被处理以形成半导体装置。所述处理可以包括对n型层进行图案化、退火、激活、掺杂等,以形成场效应晶体管的源区和漏区或形成二极管结。
在框210中,形成接触层或多个接触层。接触层可以包括在n型层上形成的铝接触层。铝接触层可以是与沉积在其上的其它金属或多个金属的双层的一部分。接触层可以用作对n型层(和/或界面层)的掺杂剂源。在框212中,装置还可以被进一步处理以形成栅结构、金属化等。
已经描述了用于降低半导体装置中的泄漏电流的结中层间电介质的优选实施例(其旨在说明性的而不是限制性的),应当注意,本领域技术人员根据以上教导可以做出修改和变形。因此,应当理解,可以对公开的具体实施例做出修改,这也在所附权利要求限定的本发明的范围内。因此,已经以专利法所要求的细节和特征描述了本发明的方面,所要求和期望被专利保护的内容在所附权利要求中进行阐述。

Claims (20)

1.一种半导体装置,包括:
衬底;
p掺杂层,所述p掺杂层在所述衬底上,包括掺杂的III-V材料;
电介质中间层,所述电介质中间层形成在所述p掺杂层上,其中所述电介质中间层包括具有小于1.3nm的厚度的极薄层;以及
n型层,所述n型层形成在所述电介质中间层上,所述n型层包括高带隙II-VI材料以形成电子装置。
2.如权利要求1所述的半导体装置,其中所述n型层包括掺杂的ZnO。
3.如权利要求1所述的半导体装置,其中所述电介质中间层包括具有在0.5nm和1.3nm之间的厚度的极薄层。
4.如权利要求1所述的半导体装置,其中所述电介质中间层包括氧化物或氮化物中的一种。
5.如权利要求1所述的半导体装置,其中所述电介质中间层包括氧化铝。
6.如权利要求1所述的半导体装置,其中氧化铝电介质中间层包括在0.6nm和1.0nm之间的厚度。
7.如权利要求1所述的半导体装置,其中所述n型层形成场效应晶体管的源区和漏区。
8.如权利要求1所述的半导体装置,其中所述n型层形成二极管结。
9.一种半导体装置,包括:
衬底;
p掺杂层,所述p掺杂层在所述衬底上,包括掺杂的III-V材料;
极薄的电介质中间层,所述极薄的电介质中间层形成在所述p掺杂层上并具有小于1.3nm的厚度;
n型层,所述n型层形成在所述电介质中间层上,所述n型层包括掺杂铝的ZnO材料以形成电子装置;以及
接触件,所述接触件形成在所述n型层上。
10.如权利要求9所述的半导体装置,其中所述电介质中间层包括氧化物或氮化物中的一种。
11.如权利要求9所述的半导体装置,其中所述电介质中间层包括氧化铝。
12.如权利要求11所述的半导体装置,其中氧化铝电介质中间层包括在0.6nm和1.0nm之间的厚度。
13.如权利要求9所述的半导体装置,其中所述n型层形成场效应晶体管的源区和漏区。
14.如权利要求9所述的半导体装置,其中所述n型层形成二极管结。
15.如权利要求9所述的半导体装置,其中所述接触件包括铝。
16.一种用于形成半导体装置的方法,包括:
在衬底上形成包括掺杂的III-V材料的p掺杂层;
在所述p掺杂层上形成电介质中间层,其中所述电介质中间层包括具有小于1.3nm的厚度的极薄层;
在所述电介质中间层上形成包括高带隙II-VI材料的n型层;以及
处理所述n型层以形成装置。
17.如权利要求16所述的方法,其中形成所述n型层包括形成掺杂的ZnO层。
18.如权利要求16所述的方法,其中形成所述电介质中间层包括形成具有在0.5nm和1.3nm之间的厚度的极薄层。
19.如权利要求16所述的方法,其中所述电介质中间层包括具有在0.6nm和1.0nm之间的厚度的氧化铝。
20.如权利要求16所述的方法,其中处理所述n型层以形成装置包括下列之一:形成场效应晶体管的源区和漏区,或形成二极管结。
CN201610081031.3A 2015-02-12 2016-02-05 用于降低半导体装置中的泄漏电流的结层间电介质 Active CN105895668B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/620,966 2015-02-12
US14/620,966 US9653570B2 (en) 2015-02-12 2015-02-12 Junction interlayer dielectric for reducing leakage current in semiconductor devices

Publications (2)

Publication Number Publication Date
CN105895668A CN105895668A (zh) 2016-08-24
CN105895668B true CN105895668B (zh) 2019-02-15

Family

ID=56622496

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610081031.3A Active CN105895668B (zh) 2015-02-12 2016-02-05 用于降低半导体装置中的泄漏电流的结层间电介质

Country Status (2)

Country Link
US (2) US9653570B2 (zh)
CN (1) CN105895668B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9653570B2 (en) * 2015-02-12 2017-05-16 International Business Machines Corporation Junction interlayer dielectric for reducing leakage current in semiconductor devices
US10158039B1 (en) * 2017-10-16 2018-12-18 International Business Machines Corporation Heterojunction diode having a narrow bandgap semiconductor
US10734527B2 (en) * 2018-02-06 2020-08-04 Micron Technology, Inc. Transistors comprising a pair of source/drain regions having a channel there-between

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889295A (en) * 1996-02-26 1999-03-30 Kabushiki Kaisha Toshiba Semiconductor device
CN1652362A (zh) * 2004-02-04 2005-08-10 三星电机株式会社 电极层、包括该电极层的发光器件、以及形成电极层的方法
US8309987B2 (en) * 2008-07-15 2012-11-13 Imec Enhancement mode semiconductor device

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529354A (ja) 1991-07-24 1993-02-05 Nec Corp 半導体装置の製造方法
JP3084820B2 (ja) 1991-09-12 2000-09-04 富士通株式会社 化合物半導体装置
US6005266A (en) 1997-03-13 1999-12-21 The Trustees Of Princeton University Very low leakage JFET for monolithically integrated arrays
JP3457511B2 (ja) * 1997-07-30 2003-10-20 株式会社東芝 半導体装置及びその製造方法
KR100261170B1 (ko) * 1998-05-06 2000-07-01 김영환 반도체소자 및 그 제조방법
US6355580B1 (en) 1998-09-03 2002-03-12 Micron Technology, Inc. Ion-assisted oxidation methods and the resulting structures
JP3488137B2 (ja) 1999-06-11 2004-01-19 Necエレクトロニクス株式会社 光半導体装置およびその製造方法
US7084423B2 (en) * 2002-08-12 2006-08-01 Acorn Technologies, Inc. Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
DE10246718A1 (de) * 2002-10-07 2004-04-22 Infineon Technologies Ag Feldeffekttransistor mit lokaler Source-/Drainisolation sowie zugehöriges Herstellungsverfahren
US7022597B2 (en) * 2004-07-16 2006-04-04 Tekcore Co., Ltd. Method for manufacturing gallium nitride based transparent conductive oxidized film ohmic electrodes
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US7482211B2 (en) 2006-06-22 2009-01-27 Taiwan Semiconductor Manufacturing Company, Ltd. Junction leakage reduction in SiGe process by implantation
US8415749B2 (en) * 2007-04-19 2013-04-09 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structure with dielectric-sealed doped region
JP5354944B2 (ja) * 2008-03-27 2013-11-27 株式会社東芝 半導体装置および電界効果トランジスタ
US8884321B2 (en) * 2008-04-06 2014-11-11 Lg Innotek Co., Ltd. Luminous element
JP5195186B2 (ja) 2008-09-05 2013-05-08 三菱電機株式会社 半導体装置の製造方法
JP5443789B2 (ja) 2009-03-09 2014-03-19 株式会社東芝 半導体装置
US8816391B2 (en) 2009-04-01 2014-08-26 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain engineering of devices with high-mobility channels
US8178939B2 (en) * 2009-06-21 2012-05-15 Sematech, Inc. Interfacial barrier for work function modification of high performance CMOS devices
US20100327300A1 (en) * 2009-06-25 2010-12-30 Koninklijke Philips Electronics N.V. Contact for a semiconductor light emitting device
US8878363B2 (en) * 2009-06-26 2014-11-04 Intel Corporation Fermi-level unpinning structures for semiconductive devices, processes of forming same, and systems containing same
US8450219B2 (en) 2011-09-29 2013-05-28 Atomic Energy Council—Institute of Nuclear Research Method of fabricating Al2O3 thin film layer
US8728861B2 (en) * 2011-10-12 2014-05-20 The United States Of America As Represented By The Secretary Of The Air Force Fabrication method for ZnO thin film transistors using etch-stop layer
US8629013B2 (en) 2011-10-14 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Junction leakage reduction through implantation
JP6167889B2 (ja) * 2012-12-21 2017-07-26 日亜化学工業株式会社 電界効果トランジスタとその製造方法
US20140175618A1 (en) 2012-12-21 2014-06-26 Intermolecular Inc. Transition metal aluminate and high k dielectric semiconductor stack
US8829567B2 (en) 2012-12-28 2014-09-09 Sematech, Inc. Metal alloy with an abrupt interface to III-V semiconductor
EP2775528B1 (en) 2013-03-05 2019-07-17 IMEC vzw Passivated III-V or Ge fin-shaped field effect transistor
US9412836B2 (en) * 2014-03-06 2016-08-09 Taiwan Semiconductor Manufacturing Co., Ltd. Contacts for transistors
US9324813B2 (en) * 2014-09-30 2016-04-26 International Business Machines Corporation Doped zinc oxide as N+ layer for semiconductor devices
US9653570B2 (en) * 2015-02-12 2017-05-16 International Business Machines Corporation Junction interlayer dielectric for reducing leakage current in semiconductor devices
US9620592B2 (en) * 2015-02-12 2017-04-11 International Business Machines Corporation Doped zinc oxide and n-doping to reduce junction leakage
US9530643B2 (en) * 2015-03-12 2016-12-27 International Business Machines Corporation Selective epitaxy using epitaxy-prevention layers
US9799747B2 (en) * 2015-03-12 2017-10-24 International Business Machines Corporation Low resistance contact for semiconductor devices
US9401397B1 (en) * 2015-05-11 2016-07-26 International Business Machines Corporation Reduction of defect induced leakage in III-V semiconductor devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889295A (en) * 1996-02-26 1999-03-30 Kabushiki Kaisha Toshiba Semiconductor device
CN1652362A (zh) * 2004-02-04 2005-08-10 三星电机株式会社 电极层、包括该电极层的发光器件、以及形成电极层的方法
US8309987B2 (en) * 2008-07-15 2012-11-13 Imec Enhancement mode semiconductor device

Also Published As

Publication number Publication date
US20170179230A1 (en) 2017-06-22
US20160240610A1 (en) 2016-08-18
US9653570B2 (en) 2017-05-16
US10038057B2 (en) 2018-07-31
CN105895668A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
CN104823282B (zh) 具有轴向设计的半导体和栅极金属化的垂直纳米线晶体管
US9620605B2 (en) Semiconductor device structure and method
US9287360B1 (en) III-V nanowire FET with compositionally-graded channel and wide-bandgap core
US9941117B2 (en) Tunneling field effect transistors and transistor circuitry employing same
US10756198B2 (en) Fermi-level unpinning structures for semiconductive devices, processes of forming same, and systems containing same
US8344418B2 (en) Materials for interfacing high-K dielectric layers with III-V semiconductors
CN105895674B (zh) 用于减少结泄漏的掺杂的氧化锌和n-掺杂
WO2008011687A2 (en) Conductive contacts on ge
CN108140581A (zh) 隧道场效应晶体管
US10002929B2 (en) Reduction of defect induced leakage in III-V semiconductor devices
CN105895668B (zh) 用于降低半导体装置中的泄漏电流的结层间电介质
TWI784950B (zh) 間斷帶隙接點
US11557658B2 (en) Transistors with high density channel semiconductor over dielectric material
TWI553743B (zh) 半導體元件與其形成方法及電晶體的形成方法
CN105977291B (zh) 半导体装置和形成该半导体装置的方法
US9722033B2 (en) Doped zinc oxide as n+ layer for semiconductor devices
Sarkar et al. Single InxGa1− xAs nanowire/p-Si heterojunction based nano-rectifier diode
US10833187B2 (en) Low resistance contact interlayer for semiconductor devices
US20190378794A1 (en) Bandgap reference diode using thin film transistors
CN106898609A (zh) 一种iii‑v cmos型高电子迁移率晶体管
Schmid et al. III-V semiconductor nanowires for future devices
Chin et al. N-channel MOSFETs with in-situ silane-passivated gallium arsenide channel and CMOS-compatible palladium-germanium contacts
Dong Non-Silicon MOSFETs and Circuits with Atomic Layer Deposited Higher-k Dielectrics
Dong Non-silicon mosfets and circuits with atomic layer deposited higher-κ dielectrics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant