CN105895526A - 一种GaN基功率电子器件及其制备方法 - Google Patents

一种GaN基功率电子器件及其制备方法 Download PDF

Info

Publication number
CN105895526A
CN105895526A CN201610265883.8A CN201610265883A CN105895526A CN 105895526 A CN105895526 A CN 105895526A CN 201610265883 A CN201610265883 A CN 201610265883A CN 105895526 A CN105895526 A CN 105895526A
Authority
CN
China
Prior art keywords
gan
electronic device
layer
power electronic
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610265883.8A
Other languages
English (en)
Other versions
CN105895526B (zh
Inventor
黄森
刘新宇
王鑫华
魏珂
包琦龙
王文武
赵超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201610265883.8A priority Critical patent/CN105895526B/zh
Publication of CN105895526A publication Critical patent/CN105895526A/zh
Priority to US15/368,098 priority patent/US10062775B2/en
Application granted granted Critical
Publication of CN105895526B publication Critical patent/CN105895526B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • H01L21/30621Vapour phase etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • H01L29/155Comprising only semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

一种GaN基功率电子器件,包括衬底和衬底之上的外延层,所述外延层包括GaN基异质结构层、超晶格结构层和P型盖帽层,所述超晶格结构层设置于所述异质结构层之上,所述P型盖帽层设置于所述超晶格结构层之上。以及一种GaN基功率电子器件的制备方法。通过该电子器件,进一步扩展了基于P‑Al(In,Ga)N盖帽层技术制备的GaN基功率电子器件的栅压摆幅和安全栅压范围,并且提高器件的动态特性,从而推动基于P‑Al(In,Ga)N盖帽层技术的GaN基功率电子器件的应用进程。

Description

一种GaN基功率电子器件及其制备方法
技术领域
本发明涉及GaN基功率电子应用技术领域,尤其涉及一种GaN基功率电子器件,以及该电子器件的制备方法。
背景技术
高效功率电子器件(又称功率开关器件)在智能电网、工业控制、新能源发电、电动汽车以及消费电子等领域具有重大应用价值,全球70%以上的电力电子系统均由基于功率半导体器件的电力管理系统来调控管理。传统Si功率电子器件性能已经接近Si半导体材料的物理极限,以SiC和GaN为代表的新型宽禁带半导体器件凭借更高的击穿电场、更高的工作频率和更低的导通电阻有望成为下一代高效功率电子技术的强有力竞争者。
增强型是功率电子器件安全工作的关键要求,即在高压工作时,器件即使失去栅控的状态下也是安全的,不会导致系统的烧毁。这就要求功率电子器件必须是增强型的(enhancement-mode,也称normally-off),即器件的阈值要在0V以上。而目前GaN基增强型功率电子器件主要是基于Al(In,Ga)N/GaN异质结构制备的,依靠Al(In,Ga)N势垒层和GaN缓冲层间较强的自发和压电极化效应,在Al(In,Ga)N/GaN异质结沟道中会诱导出高达1013cm-2的二维电子气(2DEG),因此基于该结构制备的GaN基功率电子器件(包括HEMTs和MIS-HEMTs)一般是耗尽型的,为了实现GaN基增强型器件,目前国际上主要有五种技术:1)栅槽刻蚀减薄Al(In,Ga)N势垒层;2)在Al(In,Ga)N势垒层中注入带负电的氟离子;3)在势垒层表面生长P-(Al)GaN盖帽层;4)在势垒层表面生长InGaN或厚GaN反极化层;5)增强型Si-MOSFET与GaN基耗尽型HEMT/MIS-HEMT级联结构。
P-Al(In,Ga)N盖帽层技术是利用PN结的空间电荷区效应耗尽Al(In,Ga)N/GaN异质结沟道的二维电子气以实现增强型,它是通过MOCVD或MBE在Al(In,Ga)N/GaN异质结构上继续原位外延生长P-Al(In,Ga)N层,由于外延技术对厚度和均匀性的控制比较精确,利用P-Al(In,Ga)N盖帽层技术一般能获得较好的阈值一致性,特别是P-Al(In,Ga)N技术已经有相关的示范产品报道,其中包括美国宜普电源转换公司EPC,日本松下(panasonic),韩国三星(samsung),加拿大GaN systems,甚至是中国台湾TSMC。
尽管P-Al(In,Ga)N盖帽层技术能将GaN基增强型器件阈值推进到+1.5V,然而当栅压超过P-N结的正向开启电压时,栅极正向漏电会迅速增大,很可能导致栅极的击穿,影响器件的安全性。因此,研发基于P-Al(In,Ga)N盖帽层的栅极漏电抑制技术,对推动P-Al(In,Ga)N盖帽层技术在GaN基功率电子中的应用和产业化至关重要。
另一方面,由于表面态的存在,GaN基功率电子器件在高压工作时存在严重的电流坍塌,直接导致器件动态导通电阻和功耗的增加。多项研究表明,这些表面态很难被完全去除。因此,研发促进表面态快速恢复的技术,避开界面态处理难题具有重要的应用价值。
但是上述电子器件的低栅极漏电性能还不能满足电子器件需求,而且阈值控制能力包括电流塌陷自我修复能力上,也不能满足电子器件日益苛刻的要求。
发明内容
(一)要解决的技术问题
有鉴于此,本发明的主要目的在于提供一种GaN基功率电子器件结构及其制备方法,以解决以上所述的至少一项问题。
(二)技术方案
为实现上述目的,根据本发明的一方面,提供一种GaN基功率电子器件,包括衬底和衬底之上的外延层,中:
所述外延层包括GaN基异质结构层、超晶格结构层和P型盖帽层,
所述超晶格结构层设置于所述异质结构层之上,所述P型盖帽层设置于所述超晶格结构层之上。
根据本发明的一具体实施方案,所述超晶格结构层为AlN/GaN超晶格结构、AlGaN/GaN超晶格结构、AlN/GaN/AlN量子阱结构或者AlGaN/GaN/AlGaN量子阱结构。
根据本发明的一具体实施方案,所述AlGaN/GaN超晶格中单周期的AlGaN和GaN的厚度分别为x纳米、y纳米,1≤x≤4,1≤y≤4。
根据本发明的一具体实施方案,所述超晶格结构层是P型掺杂的,或者是非掺杂的。
根据本发明的一具体实施方案,所述异质结构层包括缓冲层和其上方的势垒层,所述缓冲层为GaN缓冲层,所述势垒层为Al(In,Ga)N势垒层。
根据本发明的一具体实施方案,所述P型盖帽层是P-GaN,P-InN或P-AlN二元合金层,也可以是P-AlGaN,P-AlInN或P-InGaN三元合金层,或者是AlInGaN四元合金层。
根据本发明的一方面,提供一种GaN基功率电子器件的制备方法,包括以下步骤:
(1)准备衬底;
(2)在衬底上制备外延层,所述外延层包括GaN基异质结构层、超晶格结构层和P型盖帽层,所述超晶格结构层制备于所述异质结构层之上,所述P型盖帽层制备于所述超晶格结构层之上。
(3)在外延层上制备栅极,源极,漏极以及钝化层。
根据本发明的一具体实施方案,所述栅极与源极,栅极与漏极之间具有或者不具有超晶格层。
根据本发明的一具体实施方案,所述栅极与源极,栅极与漏极之间的P型盖帽层采用干法刻蚀去除,制备时所述超晶格结构层作为停止层。
根据本发明的一具体实施方案,所述器件的栅极是肖特基接触,或者是欧姆接触。
(三)有益效果
从上述技术方案可以看出,本发明具有以下有益效果:
1、本发明提供的GaN基功率电子器件结构及制备方法,从材料生长和能带工程角度提供一种抑制基于P型Al(In,Ga)N盖帽层技术的GaN基增强型功率电子器件的栅极正反向漏电的技术,通过在P型盖帽层与异质结构之间插入一层Al(Ga)N/GaN超晶格以提高栅极的势垒高度,从而抑制栅极的正反向漏电,进一步扩展了基于p型盖帽层技术制备的GaN基功率电子器件的栅压摆幅和安全栅压范围,从而推动基于P型盖帽层技术的GaN基功率电子器件的应用进程,促进GaN基功率电子器件的产业化;
2、本发明提供的GaN基功率电子器件结构及制备方法,在栅极正向开启时,位于P型盖帽层与异质结构之间的超晶格中的电子空穴复合发光能促进栅漏和栅源间异质结表面和体内深能级捕获电子的释放,实现器件电流坍塌的同步自我恢复,从而有效抑制器件动态导通电阻的升高;
3、本发明提供的GaN基功率电子器件结构及制备方法,位于P型盖帽层与异质结构之间的超晶格可充当干法刻蚀P型盖帽层的停止层,从而提高器件导通电阻的均匀性和器件的成品率。
附图说明
图1a和1b是根据本发明具体实施方案提供的两种GaN基功率电子器件结构示意图;
图2a和2b是干法刻蚀图1中栅极以外区域P型Al(In,Ga)N层的示意图;
图3是根据对比在P型Al(In,Ga)N层与Al(In,Ga)N/GaN异质结构之间插入Al(Ga)N/GaN超晶格层前后的能带图对比。
图4a和4b分别是图1a和1b中本发明提供的两种GaN基功率电子器件在栅极正向开启时栅下Al(Ga)N/GaN超晶格插入层的发光和传播示意图。
具体实施方式
本发明中,“之上”及“之下”用语仅表示相应层结构的相对位置关系,相应层可以为接触与非接触。另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显 地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以附图的方式体现以简化附图。
根据本发明总体上的发明构思,提供一种GaN基功率电子器件,包括衬底和衬底之上的外延层,其中,所述外延层包括GaN基异质结构层、超晶格结构层和P型盖帽层,所述超晶格结构层设置于所述异质结构层之上,所述p型盖帽层设置于所述超晶格结构层之上。
对于所述衬底,可以为硅衬底、SiC衬底、蓝宝石衬底或者是同质外延的GaN衬底。
对于各外延层的制备方法,可以采用金属有机物化学气相沉积或分子束外延技术进行制备。对于包含GaN基异质结构层、超晶格结构层和P型盖帽层的外延层结构,其具有增强型栅结构。
对于超晶格结构层,优选的,所述超晶格结构层为多周期Al(Ga)N/GaN超晶格结构;进一步优选的,所述多周期Al(Ga)N/GaN超晶格结构为AlN/GaN超晶格结构、AlGaN/GaN超晶格结构、AlN/GaN/AlN量子阱结构或者AlGaN/GaN/AlGaN量子阱结构;对于超晶格中周期层的厚度选择,优选的,所述Al(Ga)N/GaN超晶格中单周期的Al(Ga)N和GaN的厚度分别为x纳米、y纳米,1≤x≤4,1≤y≤4。处于P型盖帽层与GaN基异质结构之间的超晶格不仅能有效抑制GaN基电子器件的栅极正反向漏电,同时在栅极正向开启时该超晶格中的电子空穴复合发光能促进栅漏和栅源间异质结表面和体内深能级捕获电子的释放,实现器件电流坍塌的同步自我恢复。
对于超晶格层的组成,所述超晶格结构层可以是P型掺杂层或者非掺杂层。
对于异质结构层,所述异质结构层包括缓冲层和其上方的势垒层,所述缓冲层为GaN缓冲层,所述势垒层为Al(In,Ga)N势垒层。
所述势垒层的厚度为3-30nm。优选的,上述Al(In,Ga)N势垒层为AlGaN或AlInN三元合金势垒层,或者是AlInGaN四元合金势垒层。
对于P型盖帽层选择,优选P型盖帽层为P-Al(In,Ga)N层,进一步优选的是P-GaN,P-InN或P-AlN二元合金层,也可以是P-AlGaN,P-AlInN或P-InGaN三元合金层,或者是AlInGaN四元合金层。
优选的,在所述p型盖帽层之上还设置有栅极金属,它可以是欧姆接触,也可以是肖特基接触。
优选的,电子器件还包括源极和漏极,源极和漏极通过刻蚀掉P型盖帽层或超晶格层后制备,与相应层为欧姆接触。
在某些方案中,电子器件优选为场效应晶体管。其中,栅源和栅漏间P型盖帽层被刻蚀掉,但是栅源和栅漏间的超晶格结构层可以刻蚀掉,也可以保留。
基于同一发明构思,本发明提供一种GaN基功率电子器件的制备方法,其特征在于包括以下步骤:
(1)准备衬底;
(2)在衬底上制备外延层,所述外延层包括GaN基异质结构层、超晶格结构层和P型盖帽层,所述超晶格结构层制备于所述异质结构层之上,所述p型盖帽层制备于所述超晶格结构层之上。
对于各外延层的制备,在制备过程中,可以采用金属有机物化学气相沉积或分子束外延技术进行制备。
对于栅极与源极,栅极与漏极之间的P型盖帽层采用干法刻蚀去除,制备时所述超晶格结构层成作为停止层。
优选的,在步骤(2)后,采用先栅工艺或后栅工艺在该外延层结构之上形成栅极、源极、漏极以及钝化保护层。
上述方案中,所述先栅工艺是先在外延层结构之上制备栅极,然后刻蚀去掉栅极以外的P型盖帽层制备源极及漏极欧姆接触,最后在栅极与源极以及栅极与漏极之间的接入区域制备钝化保护层;
上述方案中,所述后栅工艺是在外延层结构之上,首先刻蚀去掉源极和漏极区域的P型盖帽层制备源漏欧姆接触,然后在P型盖帽层上制备栅极,最后刻蚀去掉栅源以及栅漏间的P型盖帽层层制备钝化保护层。
下面通过实施方案,并结合附图,对本发明的技术方案作进一步具体的说明。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
本发明提供的两种GaN基功率电子器件结构,如图1a和1b所示,包括:衬底;形成于衬底之上的GaN基高电子迁移率Al(In,Ga)N/GaN异质 结构;形成于高电子迁移率Al(In,Ga)N/GaN异质结构之上的多周期Al(Ga)N/GaN超晶格结构;形成于超晶格结构之上的P型Al(In,Ga)N层。该电子器件是一种场效应晶体管结构,包含源极,栅极和漏极,其中栅极是制作在P-Al(In,Ga)N上,栅极是欧姆接触或肖特基接触。源极和漏极通过刻蚀掉P-Al(In,Ga)N层或P-Al(In,Ga)N/(Al(Ga)N/GaN)SL后制备的,是欧姆接触。另外,栅源和栅漏间P-Al(In,Ga)N层是被刻蚀掉的,但是栅源和栅漏间的Al(Ga)N/GaN超晶格结构层可以刻蚀掉(图1a),也可以保留(图1b)。
图1a和1b中,P-Al(In,Ga)N/(Al(Ga)N/GaN)SL/Al(In,Ga)N/GaN外延层结构是利用金属有机物化学气相沉积或分子束外延技术直接在衬底上依次外延GaN缓冲层,Al(In,Ga)N势垒层,(Al(Ga)N/GaN)SL超晶格,P型Al(In,Ga)N层而形成,以实现增强型栅结构。Al(In,Ga)N势垒层是AlGaN或AlInN三元合金势垒层,或者是AlInGaN四元合金势垒层。(Al(Ga)N/GaN)SL超晶格层是AlN/GaN超晶格结构,或者是AlGaN/GaN超晶格结构,或者是AlN/GaN/AlN量子阱结构,或者是AlGaN/GaN/AlGaN量子阱结构;它可以是Al(Ga)N/GaN(2nm/2nm)超晶格,或者是Al(Ga)N/GaN(x nm/y nm)超晶格;它可以是P型掺杂层,或者是非掺杂的。P-Al(In,Ga)N层是P-GaN,P-InN或P-AlN二元合金层,也可以是P-AlGaN,P-AlInN或P-InGaN三元合金层,或者是AlInGaN四元合金层。衬底为硅衬底、SiC衬底、蓝宝石衬底或同质外延的GaN衬底。
图2a和2b是干法刻蚀图1中栅极以外区域P型Al(In,Ga)N层的示意图。在栅极掩膜的掩蔽下,用Cl基等离子体(Cl2,BCl3)干法刻蚀栅极以外区域P型Al(In,Ga)N层(图2a),直到Al(Ga)N/GaN超晶格停止层(图2b)。
图3是对比了在P型Al(In,Ga)N层与Al(In,Ga)N/GaN异质结构之间插入Al(Ga)N/GaN超晶格层前后的能带图对比。可以看出,由于Al(Ga)N/GaN超晶格的存在,P型Al(In,Ga)N层与Al(In,Ga)N/GaN间的势垒高度明显升高,从而能有效抑制栅极的正反向漏电。
本发明提供的两种具有自恢复能力的低栅极漏电GaN基增强型功率电子器件中,其中处于P型Al(In,Ga)N层与GaN基高电子迁移率 Al(In,Ga)N/GaN异质结构之间的Al(Ga)N/GaN超晶格不仅能有效抑制GaN基增强型功率电子器件的栅极正反向漏电,同时在栅极正向开启时该Al(Ga)N/GaN超晶格中的电子空穴复合发光,如图4a和4b发光示意图所示,该发光能促进栅漏和栅源间Al(In,Ga)N/GaN异质结表面和体内深能级捕获电子的释放,实现器件电流坍塌的同步自我恢复。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种GaN基功率电子器件,包括衬底和衬底之上的外延层,其特征在于:
所述外延层包括GaN基异质结构层、超晶格结构层和P型盖帽层,
所述超晶格结构层设置于所述异质结构层之上,所述P型盖帽层设置于所述超晶格结构层之上。
2.根据权利要求1所述的GaN基功率电子器件,其特征在于,所述超晶格结构层为AlN/GaN超晶格结构、AlGaN/GaN超晶格结构、AlN/GaN/AlN量子阱结构或者AlGaN/GaN/AlGaN量子阱结构。
3.根据权利要求2所述的GaN基功率电子器件,其特征在于,所述AlGaN/GaN超晶格中单周期的AlGaN和GaN的厚度分别为x纳米、y纳米,1≤x≤4,1≤y≤4。
4.根据权利要求2所述的GaN基功率电子器件,其特征在于,所述超晶格结构层是P型掺杂的,或者是非掺杂的。
5.根据权利要求1所述的GaN基功率电子器件,其特征在于,所述异质结构层包括缓冲层和其上方的势垒层,所述缓冲层为GaN缓冲层,所述势垒层为Al(In,Ga)N势垒层。
6.根据权利要求1所述的GaN基功率电子器件,其特征在于,所述P型盖帽层是P-GaN,P-InN或P-AlN二元合金层,也可以是P-AlGaN,P-AlInN或P-InGaN三元合金层,或者是AlInGaN四元合金层。
7.一种GaN基功率电子器件的制备方法,其特征在于包括以下步骤:
(1)准备衬底;
(2)在衬底上制备外延层,所述外延层包括GaN基异质结构层、超晶格结构层和P型盖帽层,所述超晶格结构层制备于所述异质结构层之上,所述P型盖帽层制备于所述超晶格结构层之上;
(3)在外延层上制备栅极,源极,漏极以及钝化层。
8.根据权利要求7所述的GaN基功率电子器件的制备方法,其特征在于,所述栅极与源极,栅极与漏极之间具有或者不具有超晶格层。
9.根据权利要求8所述的GaN基功率电子器件的制备方法,其特征在于,所述栅极与源极,栅极与漏极之间的P型盖帽层采用干法刻蚀去除,制备时所述超晶格结构层作为停止层。
10.根据权利要求7所述的GaN基功率电子器件的制备方法,其特征在于,所述器件的栅极是肖特基接触,或者是欧姆接触。
CN201610265883.8A 2016-04-26 2016-04-26 一种GaN基功率电子器件及其制备方法 Active CN105895526B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610265883.8A CN105895526B (zh) 2016-04-26 2016-04-26 一种GaN基功率电子器件及其制备方法
US15/368,098 US10062775B2 (en) 2016-04-26 2016-12-02 GaN-based power electronic device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610265883.8A CN105895526B (zh) 2016-04-26 2016-04-26 一种GaN基功率电子器件及其制备方法

Publications (2)

Publication Number Publication Date
CN105895526A true CN105895526A (zh) 2016-08-24
CN105895526B CN105895526B (zh) 2019-02-01

Family

ID=56705439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610265883.8A Active CN105895526B (zh) 2016-04-26 2016-04-26 一种GaN基功率电子器件及其制备方法

Country Status (2)

Country Link
US (1) US10062775B2 (zh)
CN (1) CN105895526B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107393956A (zh) * 2017-07-06 2017-11-24 中国科学院半导体研究所 包含p型超晶格的增强型高电子迁移率晶体管及制备方法
CN108511522A (zh) * 2018-03-16 2018-09-07 英诺赛科(珠海)科技有限公司 p-GaN基增强型HEMT器件
CN108550518A (zh) * 2018-05-10 2018-09-18 南京大学 采用分子束外延技术生长用于缓解/消除铝镓氮薄膜表面裂纹的超晶格插入层的方法
CN109065449A (zh) * 2018-08-16 2018-12-21 苏州汉骅半导体有限公司 外延结构的减薄方法
CN110459472A (zh) * 2019-08-05 2019-11-15 中国电子科技集团公司第十三研究所 增强型GaN场效应晶体管及其制造方法
WO2020221222A1 (zh) * 2019-04-30 2020-11-05 大连理工大学 一种高阈值电压常关型高电子迁移率晶体管及其制备方法
CN112582880A (zh) * 2020-12-11 2021-03-30 睿创微纳(无锡)技术有限公司 一种红外探测器
WO2021196602A1 (zh) * 2020-03-30 2021-10-07 苏州晶湛半导体有限公司 半导体结构

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10861942B2 (en) * 2015-12-09 2020-12-08 Intel Corporation Tunable capacitors including III-N multi-2DEG and 3DEG structures for tunable RF filters
JP6841344B2 (ja) * 2017-12-01 2021-03-10 三菱電機株式会社 半導体装置の製造方法、半導体装置
CN109979823B (zh) * 2017-12-28 2022-07-12 深圳尚阳通科技有限公司 一种屏蔽栅功率器件及制造方法
TWI685968B (zh) * 2018-11-23 2020-02-21 財團法人工業技術研究院 增強型氮化鎵電晶體元件及其製造方法
CN112242443A (zh) * 2019-07-18 2021-01-19 联华电子股份有限公司 高电子迁移率晶体管及其形成方法
CN111613668B (zh) * 2020-06-02 2023-01-03 华南师范大学 增强型GaN基MIS-HEMT器件及其制备方法
CN112510087B (zh) * 2020-12-01 2023-07-11 晶能光电股份有限公司 p型栅增强型GaN基HEMT器件及其制备方法
CN112909077B (zh) * 2021-02-07 2022-03-29 电子科技大学 一种双异质结极化增强的准纵向GaN HEMT器件
EP4187616A1 (en) * 2021-11-26 2023-05-31 Epinovatech AB A vertical hemt, an electrical circuit, and a method for producing a vertical hemt

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1855565A (zh) * 2005-04-28 2006-11-01 夏普株式会社 半导体发光器件以及半导体器件的制造方法
US20070108077A1 (en) * 2005-11-16 2007-05-17 Macronix International Co., Ltd. Spacer Electrode Small Pin Phase Change Memory RAM and Manufacturing Method
CN101752389A (zh) * 2009-10-16 2010-06-23 中国科学院上海技术物理研究所 一种Al2O3/AlN/GaN/AlN MOS-HEMT器件及制作方法
WO2011117936A1 (ja) * 2010-03-25 2011-09-29 パナソニック株式会社 トランジスタ及びその製造方法
CN103972284A (zh) * 2013-01-30 2014-08-06 瑞萨电子株式会社 半导体器件
CN104051523A (zh) * 2014-07-04 2014-09-17 苏州能讯高能半导体有限公司 一种低欧姆接触电阻的半导体器件及其制作方法
CN104716176A (zh) * 2013-12-16 2015-06-17 瑞萨电子株式会社 半导体器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7417258B2 (en) * 2005-04-28 2008-08-26 Sharp Kabushiki Kaisha Semiconductor light-emitting device, and a method of manufacture of a semiconductor device
WO2014009856A1 (en) * 2012-07-11 2014-01-16 Koninklijke Philips N.V. Reducing or eliminating nanopipe defects in iii-nitride structures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1855565A (zh) * 2005-04-28 2006-11-01 夏普株式会社 半导体发光器件以及半导体器件的制造方法
US20070108077A1 (en) * 2005-11-16 2007-05-17 Macronix International Co., Ltd. Spacer Electrode Small Pin Phase Change Memory RAM and Manufacturing Method
CN101752389A (zh) * 2009-10-16 2010-06-23 中国科学院上海技术物理研究所 一种Al2O3/AlN/GaN/AlN MOS-HEMT器件及制作方法
WO2011117936A1 (ja) * 2010-03-25 2011-09-29 パナソニック株式会社 トランジスタ及びその製造方法
CN103972284A (zh) * 2013-01-30 2014-08-06 瑞萨电子株式会社 半导体器件
CN104716176A (zh) * 2013-12-16 2015-06-17 瑞萨电子株式会社 半导体器件
CN104051523A (zh) * 2014-07-04 2014-09-17 苏州能讯高能半导体有限公司 一种低欧姆接触电阻的半导体器件及其制作方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107393956A (zh) * 2017-07-06 2017-11-24 中国科学院半导体研究所 包含p型超晶格的增强型高电子迁移率晶体管及制备方法
CN108511522A (zh) * 2018-03-16 2018-09-07 英诺赛科(珠海)科技有限公司 p-GaN基增强型HEMT器件
CN108550518A (zh) * 2018-05-10 2018-09-18 南京大学 采用分子束外延技术生长用于缓解/消除铝镓氮薄膜表面裂纹的超晶格插入层的方法
CN108550518B (zh) * 2018-05-10 2020-03-24 南京大学 采用分子束外延技术生长用于缓解/消除铝镓氮薄膜表面裂纹的超晶格插入层的方法
CN109065449A (zh) * 2018-08-16 2018-12-21 苏州汉骅半导体有限公司 外延结构的减薄方法
WO2020221222A1 (zh) * 2019-04-30 2020-11-05 大连理工大学 一种高阈值电压常关型高电子迁移率晶体管及其制备方法
CN110459472A (zh) * 2019-08-05 2019-11-15 中国电子科技集团公司第十三研究所 增强型GaN场效应晶体管及其制造方法
CN110459472B (zh) * 2019-08-05 2022-12-09 中国电子科技集团公司第十三研究所 增强型GaN场效应晶体管及其制造方法
WO2021196602A1 (zh) * 2020-03-30 2021-10-07 苏州晶湛半导体有限公司 半导体结构
CN112582880A (zh) * 2020-12-11 2021-03-30 睿创微纳(无锡)技术有限公司 一种红外探测器

Also Published As

Publication number Publication date
CN105895526B (zh) 2019-02-01
US20170309736A1 (en) 2017-10-26
US10062775B2 (en) 2018-08-28

Similar Documents

Publication Publication Date Title
CN105895526B (zh) 一种GaN基功率电子器件及其制备方法
CN105355555A (zh) 一种GaN基增强型功率电子器件及其制备方法
CN102292801B (zh) 场效应晶体管及其制造方法
US9117890B2 (en) High-electron mobility transistor and method of manufacturing the same
US9087704B2 (en) Semiconductor devices and methods of manufacturing the semiconductor device
Fu et al. Vertical GaN power devices: Device principles and fabrication technologies—Part II
US20150123139A1 (en) High electron mobility transistor and method of manufacturing the same
CN104813479B (zh) 具有部分凹陷阳极的GaN基肖特基二极管
CN113380623A (zh) 通过p型钝化实现增强型HEMT的方法
CN108447907A (zh) 晶体管及其制备方法
CN106783945A (zh) 一种GaN基增强型电子器件的材料结构
JP2017183703A (ja) 改良された電子ガス閉込めヘテロ接合トランジスタ
CN106298903A (zh) 二次外延p型ⅲ族氮化物实现增强型hemt的方法及增强型hemt
CN111900203A (zh) 一种GaN基高空穴迁移率晶体管及其制备方法
CN109950323B (zh) 极化超结的ⅲ族氮化物二极管器件及其制作方法
CN109888013A (zh) 镁掺杂制备的增强型GaN基HEMT器件及其制备方法
US20210399125A1 (en) GaN-BASED SUPERJUNCTION VERTICAL POWER TRANSISTOR AND MANUFACTURING METHOD THEREOF
CN113555429A (zh) 高击穿电压和低导通电阻的常开hfet器件及其制备方法
CN218123416U (zh) 一种高电子迁移率晶体管器件
CN213635994U (zh) 增强型半导体结构
Zhou et al. Threshold voltage modulation by interface charge engineering for high performance normally-off GaN MOSFETs with high faulty turn-on immunity
CN205303470U (zh) 一种增强型GaN器件
CN103681831A (zh) 高电子迁移率晶体管及其制造方法
CN109148575B (zh) 一种含有混合漏电极的氮化镓hemt器件
CN105428242A (zh) 一种调制ⅲ族氮化物半导体增强型器件阈值电压的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant