CN105870194A - 一种沟槽型CoolMOS及其制作方法 - Google Patents

一种沟槽型CoolMOS及其制作方法 Download PDF

Info

Publication number
CN105870194A
CN105870194A CN201610375244.7A CN201610375244A CN105870194A CN 105870194 A CN105870194 A CN 105870194A CN 201610375244 A CN201610375244 A CN 201610375244A CN 105870194 A CN105870194 A CN 105870194A
Authority
CN
China
Prior art keywords
layer
groove
coolmos
source region
gate trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610375244.7A
Other languages
English (en)
Inventor
周炳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU TONGGUAN MICROELECTRONICS Co Ltd
Original Assignee
SUZHOU TONGGUAN MICROELECTRONICS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU TONGGUAN MICROELECTRONICS Co Ltd filed Critical SUZHOU TONGGUAN MICROELECTRONICS Co Ltd
Priority to CN201610375244.7A priority Critical patent/CN105870194A/zh
Publication of CN105870194A publication Critical patent/CN105870194A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明属于半导体器件技术领域,一种沟槽型CoolMOS,由下到上依次包括背面金属层、N+衬底、N‑外延层、P‑阱区、n+源区、绝缘层和正面金属层;N+衬底上设置有贯通N+衬底的若干超结沟槽,超结沟槽一端延伸至N‑外延层,超结沟槽内填充有P型硅;P‑阱区设置有贯通P‑阱区和n+源区的若干栅极沟槽,栅极沟槽一端延伸至N‑外延层,栅极沟槽内填充有多晶硅,多晶硅与栅极沟槽之间通过栅氧间隔设置;n+源区设置有贯通n+源区和绝缘层的若干接触孔,接触孔一端延伸至P‑阱区,接触孔内填充有导电金属,且导电金属与正面金属层接触。正面采用栅极沟槽结构,背面挖槽,填充P型硅,达到多次注入扩散P型离子的效果。

Description

一种沟槽型CoolMOS及其制作方法
技术领域
本发明属于半导体器件技术领域,尤其涉及一种沟槽CoolMOS及其制作方法。
背景技术
如图1所示为传统CoolMOS结构,CoolMOS又叫超结MOS,由于采用新的耐压层结构,它的电场分布是矩形结构,在保持功率MOSFET优点的同时,又有着极低的导通损耗,具有导通电阻低,耐高压,发热量低的特点。
CoolMOS的超结结构是一梳状结构,需要靠多次离子注入再加上二次高温扩散形成,使工艺步骤大大增多,增加了生产成本。
发明内容
本发明的目的是克服现有技术存在的CoolMOS制作工艺复杂的缺陷,提供一种沟槽型CoolMOS及其制备方法,采用背面挖槽,填充P型硅的工艺,达到多次注入扩散P型离子的效果;正面采用沟槽栅结构,减少工艺步骤,缩小芯片面积,节约设备和生产成本,提高器件的电学性能。
本发明解决其技术问题所采用的技术方案是:一种沟槽型CoolMOS,由下到上依次包括背面金属层、N+衬底、N-外延层、P-阱区、n+源区、绝缘层和正面金属层;
所述N+衬底上设置有贯通所述N+衬底的若干超结沟槽,所述超结沟槽一端延伸至所述N-外延层,所述超结沟槽内填充有P型硅;
所述的P-阱区设置有贯通所述P-阱区和n+源区的若干栅极沟槽,所述栅极沟槽一端延伸至N-外延层,所述栅极沟槽内填充有多晶硅,所述多晶硅与栅极沟槽之间通过栅氧间隔设置;
所述n+源区设置有贯通所述n+源区和所述绝缘层的若干接触孔,所述接触孔一端延伸至P-阱区,所述的接触孔内填充有导电金属,且所述导电金属与所述正面金属层接触。
作为优选,所述正面金属层和导电金属为金属铝。
进一步地,所述的接触孔和所述栅极沟槽间隔设置。
作为优选,所述的栅极沟槽与超结沟槽之间垂直距离大于0。
具体地,所述的背面金属层包括由上至下依次设置的Ti层、Ni层和Ag层。
上述的CoolMOS的制作方法,包括如下步骤:
(1)N+衬底上生长N-外延层,在N-外延层表面扩散或注入硼离子,形成P-阱区;
(2)在硅片表面沉积氧化层,通过涂胶、曝光、显影、刻蚀的工艺,形成栅极沟槽;
(3)在栅极沟槽内生长栅氧,再在栅极沟槽内填充多晶硅,去除表面多余的多晶硅,注入磷或砷离子,形成n+源区;
(4)在n+源区表面沉积绝缘层,通过涂胶、曝光、显影、刻蚀的工艺,形成接触孔;
(5)在接触孔内及绝缘层表面溅射导电金属和正面金属层,形成电极;
(6)背面减薄,在N+衬底背面挖设超结沟槽,并在沟槽内填充P型硅;
(7)溅射或蒸发背面金属层。
作为优选,所述的N-外延层厚度为50μm~55μm。
作为优选,所述P-阱区厚度为3~7μm,所述氧化层厚度为0.2μm~1.5μm。
作为优选,所述的背面金属层包括由上至下依次设置的Ti层、Ni层和Ag层,Ti层厚度为Ni层厚度为Ag层厚度为
作为优选,所述的超结沟槽与栅极沟槽之间垂直距离为5μm~10μm。
有益效果:本发明采用正面采用栅极沟槽结构,背面挖槽,填充P型硅的工艺,达到多次注入扩散P型离子的效果,正面采用栅极沟槽结构,提高器件的耐压,减小电阻率,减小外延厚度,降低器件的开关损耗。减少注入次数,减少制作步骤,缩小芯片面积,节约了设备和生产成本。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1是传统CoolMOS的结构示意图;
图2~图12为本发明沟槽型CoolMOS制作过程结构图。
其中:1.N+衬底,2.N-外延层,3.P-阱区,31.氧化层,4.栅极沟槽,5.栅氧,6.多晶硅,7.n+源区,8.绝缘层,9.接触孔,10.正面金属层,11.超结沟槽,12.P型硅,13.背面金属层。
具体实施方式
实施例1
如图12所示,一种沟槽型CoolMOS,由下到上依次包括背面金属层13、N+衬底1、N-外延层2、P-阱区3、n+源区7、绝缘层8和正面金属层10;
所述N+衬底1上设置有贯通所述N+衬底1的若干超结沟槽11,所述超结沟槽11一端延伸至所述N-外延层2,所述超结沟槽11内填充有P型硅12;
所述的P-阱区3设置有贯通所述P-阱区3和n+源区7的若干栅极沟槽4(栅极沟槽4将P-阱区3相互隔开,n+源区7位于栅极沟槽4之间),所述栅极沟槽4一端延伸至N-外延层2,所述栅极沟槽4内填充有多晶硅6,所述多晶硅6与栅极沟槽4之间通过栅氧5间隔设置;所述的栅极沟槽4与超结沟槽11之间垂直距离大于0。
所述n+源区7设置有贯通所述n+源区7和所述绝缘层8的若干接触孔9(接触孔9将n+源区7相互隔开),所述接触孔9一端延伸至P-阱区3,所述的接触孔9内填充有导电金属,且所述导电金属与所述正面金属层10接触,所述正面金属层10和导电金属均为金属铝。所述的接触孔9和所述栅极沟槽4间隔设置。所述的背面金属层13包括由上至下依次设置的Ti层、Ni层和Ag层,Ti层厚度为Ni层厚度为Ag层厚度为
上述的CoolMOS的制作方法,包括如下步骤:
(1)如图2所示,硅片清洗,在N+衬底1上生长N-外延层2,N-外延层2厚度范围为50μm-55μm;
(2)如图3所示,采用扩散或注入工艺掺杂硼离子,在N-外延层2内形成P-阱区3,结深范围为3μm-7μm,然后在硅片表面沉积氧化层31,厚度范围为0.2μm-1.5μm;
(3)通过涂胶、曝光、显影、刻蚀等工艺,对氧化层31和硅片进行刻蚀,形成栅极沟槽4,栅极沟槽4的深度范围为4μm-8μm;
(4)如图5所示,生长栅氧5,栅氧5厚度范围为
(5)如图6所示,在栅极沟槽4内填充多晶硅6,然后去除硅片表面多余的多晶硅6和氧化层31;
(6)如图7所示,在硅片表面注入磷或砷离子,能量范围为100Kev-200Kev,剂量范围为1E14/cm2-9E15/cm2,在P-阱区3内形成n+源区7,pn结深在0.2μm-0.5μm范围内,在硅片表面沉积绝缘层8,厚度范围为0.2μm-1.5μm;
(7)如图8所示,通过涂胶、曝光、显影、刻蚀等工艺,刻蚀掉绝缘层8和Si,形成接触孔9,接触孔9的深度在0.3μm-1μm范围内;
(8)如图9所示,采用溅射工艺,溅射金属铝层,形成电极,铝层厚度范围为3μm-5μm;
(9)采用背面减薄工艺,减薄硅片厚度范围至90μm-150μm;
(10)如图10所示,在硅片背面挖设超结沟槽11,超结沟槽11穿通N+衬底1至N-外延层2,超结沟槽11深度范围为40μm-45μm,超结沟槽11与栅极沟槽4未连通,相距一定距离,距离范围为5μm-10μm;
(11)如图11所示,在超结沟槽11内填充P型硅12;
(12)如图12所示,采用溅射或蒸发工艺,在硅片背面溅射或蒸发背面金属层,所述背面金属层13包括由上至下依次设置的Ti层、Ni层和Ag层,Ti层厚度为Ni层厚度为Ag层厚度为
应当理解,以上所描述的具体实施例仅用于解释本发明,并不用于限定本发明。由本发明的精神所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (10)

1.一种沟槽型CoolMOS,其特征在于:由下到上依次包括背面金属层(13)、N+衬底(1)、N-外延层(2)、P-阱区(3)、n+源区(7)、绝缘层(8)和正面金属层(10);
所述N+衬底(1)上设置有贯通所述N+衬底(1)的若干超结沟槽(11),所述超结沟槽(11)一端延伸至所述N-外延层(2),所述超结沟槽(11)内填充有P型硅(12);
所述的P-阱区(3)设置有贯通所述P-阱区(3)和n+源区(7)的若干栅极沟槽(4),所述栅极沟槽(4)一端延伸至N-外延层(2),所述栅极沟槽(4)内填充有多晶硅(6),所述多晶硅(6)与栅极沟槽(4)之间通过栅氧(5)间隔设置;
所述n+源区(7)设置有贯通所述n+源区(7)和所述绝缘层(8)的若干接触孔(9),所述接触孔(9)一端延伸至P-阱区(3),所述的接触孔(9)内填充有导电金属,且所述导电金属与所述正面金属层(10)接触。
2.根据权利要求1所述的沟槽型CoolMOS,其特征在于:所述正面金属层(10)和导电金属为金属铝。
3.根据权利要求1所述的沟槽型CoolMOS,其特征在于:所述的接触孔(9)和所述栅极沟槽(4)间隔设置。
4.根据权利要求1所述的沟槽型CoolMOS,其特征在于:所述的栅极沟槽(4)与超结沟槽(11)之间垂直距离大于0。
5.根据权利要求1所述的沟槽型CoolMOS,其特征在于:所述的背面金属层(13)包括由上至下依次设置的Ti层、Ni层和Ag层。
6.根据权利要求1~5任一项所述的沟槽型CoolMOS的制作方法,其特征在于:包括如下步骤:
(1)N+衬底(1)上生长N-外延层(2),在N-外延层(2)表面扩散或注入硼离子,形成P-阱区(3);
(2)在硅片表面沉积氧化层(31),通过涂胶、曝光、显影、刻蚀的工艺,形成栅极沟槽(4);
(3)在栅极沟槽(4)内生长栅氧(5),再在栅极沟槽(4)内填充多晶硅(6),去除表面多余的多晶硅(6),注入磷或砷离子,形成n+源区(7);
(4)在n+源区(7)表面沉积绝缘层(8),通过涂胶、曝光、显影、刻蚀的工艺,形成接触孔(9);
(5)在接触孔(9)内及绝缘层(8)表面溅射导电金属和正面金属层(10),形成电极;
(6)背面减薄,在N+衬底(1)背面挖设超结沟槽(11),并在沟槽内填充P型硅(12);
(7)溅射或蒸发背面金属层(13)。
7.根据权利要求6所述的沟槽型CoolMOS的制作方法,其特征在于:所述的N-外延层(2)厚度为50μm~55μm。
8.根据权利要求6所述的沟槽型CoolMOS的制作方法,其特征在于:所述P-阱区(3)厚度为3~7μm,所述氧化层(31)厚度为0.2μm~1.5μm。
9.根据权利要求6所述的沟槽型CoolMOS的制作方法,其特征在于:所述的背面金属层(13)包括由上至下依次设置的Ti层、Ni层和Ag层,Ti层厚度为Ni层厚度为Ag层厚度为
10.根据权利要求6所述的沟槽型CoolMOS的制作方法,其特征在于:所述的超结沟槽(11)与栅极沟槽(4)之间垂直距离为5μm~10μm。
CN201610375244.7A 2016-05-31 2016-05-31 一种沟槽型CoolMOS及其制作方法 Pending CN105870194A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610375244.7A CN105870194A (zh) 2016-05-31 2016-05-31 一种沟槽型CoolMOS及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610375244.7A CN105870194A (zh) 2016-05-31 2016-05-31 一种沟槽型CoolMOS及其制作方法

Publications (1)

Publication Number Publication Date
CN105870194A true CN105870194A (zh) 2016-08-17

Family

ID=56643181

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610375244.7A Pending CN105870194A (zh) 2016-05-31 2016-05-31 一种沟槽型CoolMOS及其制作方法

Country Status (1)

Country Link
CN (1) CN105870194A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449419A (zh) * 2016-12-08 2017-02-22 西安电子科技大学 基于Ga2O3材料的U型栅MOSFET及其制备方法
CN107665924A (zh) * 2017-09-19 2018-02-06 中航(重庆)微电子有限公司 一种中低压沟槽型mos器件及其制备方法
CN107994076A (zh) * 2016-10-26 2018-05-04 深圳尚阳通科技有限公司 沟槽栅超结器件的制造方法
CN109411346A (zh) * 2018-12-10 2019-03-01 泉州臻美智能科技有限公司 肖特基二极管及其制造方法
CN112397380A (zh) * 2019-08-16 2021-02-23 珠海格力电器股份有限公司 功率半导体器件及其制作工艺
CN113394097A (zh) * 2020-03-11 2021-09-14 上海新微技术研发中心有限公司 半导体器件结构的制备方法
CN113707549A (zh) * 2021-08-18 2021-11-26 深圳市美浦森半导体有限公司 一种降低mosfet衬底电阻的制作方法及其器件
CN114005802A (zh) * 2021-12-31 2022-02-01 北京世纪金光半导体有限公司 一种功率器件及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080135870A1 (en) * 2006-11-02 2008-06-12 Sanyo Electric Co., Ltd. Semiconductor Device and Method of Manufacturing the Same
US20090206365A1 (en) * 2008-02-15 2009-08-20 Kabushiki Kaisha Toshiba Semiconductor device
CN102569354A (zh) * 2010-12-16 2012-07-11 三菱电机株式会社 绝缘栅型双极晶体管及其制造方法
CN205828394U (zh) * 2016-05-31 2016-12-21 苏州同冠微电子有限公司 一种沟槽型CoolMOS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080135870A1 (en) * 2006-11-02 2008-06-12 Sanyo Electric Co., Ltd. Semiconductor Device and Method of Manufacturing the Same
US20090206365A1 (en) * 2008-02-15 2009-08-20 Kabushiki Kaisha Toshiba Semiconductor device
CN102569354A (zh) * 2010-12-16 2012-07-11 三菱电机株式会社 绝缘栅型双极晶体管及其制造方法
CN205828394U (zh) * 2016-05-31 2016-12-21 苏州同冠微电子有限公司 一种沟槽型CoolMOS

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994076A (zh) * 2016-10-26 2018-05-04 深圳尚阳通科技有限公司 沟槽栅超结器件的制造方法
CN106449419A (zh) * 2016-12-08 2017-02-22 西安电子科技大学 基于Ga2O3材料的U型栅MOSFET及其制备方法
CN107665924A (zh) * 2017-09-19 2018-02-06 中航(重庆)微电子有限公司 一种中低压沟槽型mos器件及其制备方法
CN109411346A (zh) * 2018-12-10 2019-03-01 泉州臻美智能科技有限公司 肖特基二极管及其制造方法
CN112397380A (zh) * 2019-08-16 2021-02-23 珠海格力电器股份有限公司 功率半导体器件及其制作工艺
CN113394097A (zh) * 2020-03-11 2021-09-14 上海新微技术研发中心有限公司 半导体器件结构的制备方法
CN113394097B (zh) * 2020-03-11 2022-09-09 上海新微技术研发中心有限公司 半导体器件结构的制备方法
CN113707549A (zh) * 2021-08-18 2021-11-26 深圳市美浦森半导体有限公司 一种降低mosfet衬底电阻的制作方法及其器件
CN114005802A (zh) * 2021-12-31 2022-02-01 北京世纪金光半导体有限公司 一种功率器件及其制作方法

Similar Documents

Publication Publication Date Title
CN105870194A (zh) 一种沟槽型CoolMOS及其制作方法
CN105679667A (zh) 一种沟槽igbt器件的终端结构制造方法
CN108172563A (zh) 一种带有自对准接触孔的沟槽形器件及其制造方法
CN108292682A (zh) 半导体装置以及半导体装置的制造方法
CN102237406A (zh) 射频ldmos器件及其制造方法
CN103378171B (zh) 一种沟槽肖特基半导体装置及其制备方法
CN103545381B (zh) 一种水平结构沟槽肖特基半导体装置及其制备方法
CN103199119A (zh) 一种具有超结结构的沟槽肖特基半导体装置及其制备方法
CN205828394U (zh) 一种沟槽型CoolMOS
CN106449774A (zh) 优化表面电场的沟槽式势垒肖特基结构及其制作方法
CN103247694A (zh) 一种沟槽肖特基半导体装置及其制备方法
CN105280493A (zh) 一种沟槽igbt器件的制造方法
CN205282480U (zh) 一种具有双缓冲层的fs型igbt器件
CN209461470U (zh) Mosfet 终端结构
CN103378178B (zh) 一种具有沟槽结构肖特基半导体装置及其制备方法
CN101930977B (zh) 接触孔中具有钨间隔层的功率mosfet器件及其制造方法
CN103367462A (zh) 一种具有绝缘层隔离超结结构肖特基半导体装置及其制备方法
CN103378177B (zh) 一种具有沟槽肖特基半导体装置及其制备方法
CN102903743B (zh) 采用金属硅化物的功率半导体器件结构及制备方法
CN103137711A (zh) 一种具有绝缘层隔离结构肖特基半导体装置及其制备方法
CN103515450A (zh) 一种沟槽电荷补偿肖特基半导体装置及其制造方法
CN103165669A (zh) 沟槽功率mos器件及其制造方法
CN107731933A (zh) 一种沟槽终端肖特基器件
CN105938798A (zh) 一种沟槽igbt器件结构的制作方法
CN106935498B (zh) 绝缘栅双极晶体管的背面场栏的低温氧化层制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160817