CN105833889A - 一种基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂及其制备方法 - Google Patents

一种基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂及其制备方法 Download PDF

Info

Publication number
CN105833889A
CN105833889A CN201610161041.8A CN201610161041A CN105833889A CN 105833889 A CN105833889 A CN 105833889A CN 201610161041 A CN201610161041 A CN 201610161041A CN 105833889 A CN105833889 A CN 105833889A
Authority
CN
China
Prior art keywords
porous graphene
nano
platinum catalyst
carrier
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610161041.8A
Other languages
English (en)
Other versions
CN105833889B (zh
Inventor
木士春
孙镕慧
刘小波
寇宗魁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201610161041.8A priority Critical patent/CN105833889B/zh
Publication of CN105833889A publication Critical patent/CN105833889A/zh
Application granted granted Critical
Publication of CN105833889B publication Critical patent/CN105833889B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂及其制备方法。其包括具有三明治结构的多孔石墨烯/纳米陶瓷载体和均匀地沉积在载体表面的纳米铂颗粒;所述具有三明治结构的多孔石墨烯/纳米陶瓷载体由多孔石墨烯作为面层,以纳米陶瓷作为芯材插入到多孔石墨烯片层间形成。其中的多孔石墨烯中的纳米孔有利于水和反应气体的轴向运输和电子、质子的传导,提高催化剂组分利用率,从而降低铂的用量;多孔石墨烯/纳米陶瓷三明治结构有效地提供了载铂的位点,限制了铂纳米颗粒在载体表面的迁移团聚,提高了催化剂的稳定性。

Description

一种基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂及 其制备方法
技术领域
本发明属于催化剂制备技术领域,具体涉及一种基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂及其制备方法。
技术背景
铂(Pt)基催化剂因其优良的氧还原催化活性、高选择性和良好的电化学稳定性,而被广泛应用于燃料电池电极催化剂、石油化工中的催化重整以及各种精细化学品的催化合成等领域。但Pt的成本较高,导致Pt基催化剂造价高,且在长期的催化过程中催化剂的活性和稳定性会降低,这些都与载体的比表面积、电导率和电化学稳定性相关。目前应用最广泛的载体是传统的Vulcan XC-72,但由于这种碳材料在工作环境下容易被腐蚀,使金属粒子很容易发生迁移、脱落和团聚的现象,导致催化剂活性明显下降。而增强载体与活性粒子之间的结合力和载体稳定性,可以有效防止金属粒子的迁移,因此对载体材料进行改进是保持催化剂活性和提高其稳定性的重要途径之一。
目前载体材料的改进工作主要集中在以下三个方面:一是选用新型纳米碳材料,比如碳纳米管、富勒烯、碳纳米纤维以及石墨烯材料。它们具有比表面积大、导电性好以及催化效率高等优点,有利于降低铂的载量。石墨化的纳米碳材料既可以克服碳黑载体本身不稳定以及表面微孔发达的问题,也使催化剂的稳定性与活性都得到一定程度的增加。但由于石墨化惰性表面,限制了Pt纳米颗粒的均匀分散。而石墨烯作为载体不仅利于电子转移、可用表面积最大化、并能减少Pt颗粒团聚。但石墨烯晶体表面呈石墨化惰性状态,并且石墨片层之间因为存在π-π键,而具有较强的范德华力,容易产生堆叠和团聚。
二是选用抗化学腐蚀性能好的陶瓷材料,纳米陶瓷由于其优异的热稳定性、出色的抗氧化、耐酸腐蚀和独特的机械性能,作为载体材料能够在一定程度提高催化剂的稳定性。本发明人所在课题组分别采用导电陶瓷TiB2[J.Power Sources,2011,96:7931-7936]、SiC[Appl.Catal.B,2010,100:190-196]制备出稳定性显著提高的燃料电池催化剂。但陶瓷材料的导电性不高,特别是在常温下其大部分为半导体材料,而且它们在比表面积方面还不太理想,均低于现有的载体材料。
三是制备复合载体材料,Zhang等[Zhang Q,Zhao M,Liu Y,et.al.Adv.Mater.,2009,21:2876-2880]在石墨烯片层间植入用于碳纳米管生长的催化剂,再利用气相沉积的方法制备出石墨烯/碳纳米管复合材料。石墨烯片层间插入的碳纳米管能够很好的阻止石墨烯片层的团聚。然而,这种方法操作起来比较复杂,制备成本也过于昂贵。
发明内容
本发明所要解决的技术问题是针对现有技术的不足提供一种基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂及其制备方法。
基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂,包括具有三明治结构的多孔石墨烯/纳米陶瓷载体和均匀地沉积在载体表面的纳米铂颗粒;所述具有三明治结构的多孔石墨烯/纳米陶瓷载体由多孔石墨烯作为面层,以纳米陶瓷作为芯材插入到多孔石墨烯片层间形成。
按上述方案,所述具有三明治结构的多孔石墨烯/纳米陶瓷载体是将多孔石墨烯加入到去离子水中超声,使其均匀分散;然后加入纳米陶瓷颗粒,充分混合搅拌,冷冻干燥而得。
按上述步骤,所述纳米铂颗粒采用原子层沉积方法沉积而得,所述的原子层沉积方法是以三甲基(甲基环戊二烯基)铂(IV)和氧气为前驱体,将气相前驱体脉冲交替地通入反应室的反应腔体中,并控制原子层沉积的循环次数获得沉积铂纳米颗粒。
按上述步骤,所述铂纳米颗粒的沉积过程中,沉积反应温度为250-275℃,沉积循环次数100-120次。
按上述方案,整个原子沉积反应过程中持续通入高纯氮作为载气,反应腔体内的压强控制在4mbar以下。
按上述方案,所述多孔石墨烯中的纳米孔由微孔、大孔、介孔组成,尺寸大小为1-100nm。
按上述方案,所述的多孔石墨烯为将氧化石墨烯水溶液经浓硝酸超声刻蚀后,600-800℃加热还原制得。
按上述方案,其中:氧化石墨烯水溶液为0.05-0.1wt.%;氧化石墨烯水溶液与浓硝酸的体积比为1:7.5-1:12.5。
按上述方案,超声功率为100-200W,超声刻蚀时间1-2h,还原时间为1-2h。
按上述方案,所述纳米陶瓷颗粒选自金属碳化物、金属氧化物、金属氮化物、金属硼化物,优选为SiC、WC、B4C、Mo2C、TiC、TiO2、SiO2、WO3、CeO2、ZrO2、TiN、ZrN、VN、ZrB2、TiB2中的一种或多种。
按上述方案,所述纳米陶瓷颗粒尺寸为10-100nm,优选为10-50nm;所述的铂纳米颗粒尺寸为1-5nm,优选为2-3nm。
基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂的制备方法,其特征在于:包括以下步骤:将多孔石墨烯加入到去离子水中超声,使其均匀分散;加入纳米陶瓷颗粒,充分混合搅拌,冷冻干燥后得到三明治结构的多孔石墨烯/纳米陶瓷载体;使用原子层沉积方法在载体表面沉积铂纳米颗粒,形成载铂催化剂。
按上述步骤,所述多孔石墨烯与纳米陶瓷颗粒的质量比为0.1-10:1,优选为1-5:1。
按上述步骤,所述超声分散频率为100-150W,超声时间为30-90min。
按上述步骤,所述混合搅拌温度为60-80℃,搅拌时间为4-6h。
本发明的有益效果:
石墨烯具有很高的理论比表面积,但由于π-π电子的作用,石墨烯容易产生团聚,这种团聚不仅降低比表面积,还会阻碍其它物质如电解质离子进入到石墨烯片层。本发明中采用的多孔石墨烯不仅保留了石墨烯优良的性质,而且由于石墨烯内不同尺寸孔的引入,避免了团聚造成的不利影响;与惰性的石墨烯表面相比,介孔和大孔可以促进物质的渗透和轴向运输,如水和反应气体的轴向运输和电子、质子的传导,起到筛分不同尺寸的离子、分子的作用,最大化提高催化剂活性,降低铂载量,而微孔则有利于比表面积的提高。同时多孔石墨烯表面上的孔隙可以增强石墨烯和锚定的铂团簇之间的相互作用,一定程度上提高催化剂稳定性。另外多孔石墨烯与石墨烯相比,孔的引入可引起石墨烯表面电学性质的改变,削弱石墨烯片层间引起石墨烯团聚的π-π电子的作用,因此多孔石墨烯不易团聚,更易被纳米陶瓷颗粒插层形成三明治结构,同时三明治结构的形成有效地提供了载铂的位点,且纳米陶瓷颗粒具有良好的抗电化学腐蚀、化学腐蚀性能,而且限制了铂纳米颗粒在载体表面的迁移团聚,提高了催化剂的稳定性。
在合成方法方面,本发明基于多孔石墨烯的特性采用简单的液相混合方法在多孔石墨烯片层之间引入纳米陶瓷颗粒,即可合成出具有纳米三明治结构的多孔石墨烯/纳米陶瓷三维复合材料。然后采用原子层沉积方法在载体表面沉积铂纳米颗粒可在保证多孔石墨烯/纳米陶瓷载体的插层结构不被破坏的同时,因其工艺的非连续性以及自身反应的自限制性,控制铂颗粒纳米粒径和均匀性,获得在载体上粒径均一,沉积均匀的铂纳米颗粒。
附图说明
图1为多孔石墨烯/碳化硅载铂催化剂的扫描电子显微镜图(SEM)。
图2为图1中黄色方框部分表示的多孔石墨烯/碳化硅载铂催化剂中多孔石墨烯的扫描电子显微镜图(SEM)。
图3为多孔石墨烯/碳化硅载铂催化剂的X射线衍射图(XRD)。其中a Pt-RGO;b Pt-PG/SiC。
图4为多孔石墨烯/碳化硅载铂催化剂的氧化还原性能图,其中a Pt/C;b Pt-PG/SiC。
具体实施方式
为了更好地理解本发明的内容,以下将结合具体实例来进一步说明。但是应该指出,本发明的实施并不限于以下几种实施方式。
实施例1多孔石墨烯/碳化硅载铂催化剂的制备
(1)称取0.25g多孔石墨烯(PG),加入100mL去离子水中,在150W下,超声分散30min;加入0.25g碳化硅(SiC,40nm),在60℃下充分混合搅拌4h后,冷冻干燥后得到三明治结构的多孔石墨烯/碳化硅载体;
(2)将(1)中的载体放入原子层沉积设备中,使用三甲基(甲基环戊二烯基)铂(IV)作为铂源和氧气在载体表面沉积铂纳米颗粒。整个原子沉积反应过程中持续通入高纯氮作为载气,腔体内的压强控制在4mbar以下。原子层沉积反应温度为250℃。为保证足够的蒸汽压,将铂源加热到65℃,为防止管路冷凝,管路被加热到100℃,铂前驱体脉冲时间为1s,氧气前驱体脉冲时间为1s,氮气清洗时间为20s。重复100次循环,即获得多孔石墨烯/碳化硅载铂催化剂。
图1为本发明实施例1中步骤(2)所制备的多孔石墨烯/碳化硅载铂催化剂的扫描电子显微镜图(SEM),从图中可看出陶瓷插入多孔石墨烯片层间。图2为本发明实施例1中步骤(2)所述的多孔石墨烯/碳化硅载铂催化剂中多孔石墨烯的扫描电子显微镜图(SEM)。如图2所示,制备得到的多孔石墨烯中孔分布比较均匀。图3为多孔石墨烯/碳化硅载铂(Pt-PG/SiC)催化剂的X射线衍射图(XRD),从中可以看出石墨烯、碳化硅和铂催化剂物相的存在,并且通过与石墨烯载铂(Pt-RGO)催化剂进行对比,可看出Pt-PG/SiC与Pt-RGO相比石墨材料C(002)特征峰明显向一个低角度偏移,这表明SiC的插入导致片层间距增大。图4为多孔石墨烯/碳化硅载铂催化剂的氧化还原性能图,从图中可看出多孔石墨烯/碳化硅载铂催化剂(Pt-PG/SiC)半波电势为0.89V,明显高于商业Pt/C(Pt含量30%,E-TEK公司)的半波电势0.79V。
实施例2多孔石墨烯/碳化钨载铂催化剂的制备
(1)称取0.25g多孔石墨烯(PG),加入100mL去离子水中,在100W下,超声分散90min;加入0.05g碳化钨(WC,50nm),在80℃下充分混合搅拌6h后,冷冻干燥后得到三明治结构的多孔石墨烯/碳化钨载体;
(2)将(1)中的载体放入原子层沉积设备中,整个原子沉积反应过程与实施例1中步骤(2)相同,不同之处在于原子层沉积反应温度为275℃,重复120次循环,即获得多孔石墨烯/碳化钨载铂催化剂。
实施例3多孔石墨烯/碳化硼载铂催化剂的制备
(1)称取0.25g多孔石墨烯(PG),加入100mL去离子水中,在120W下,超声分散60min;加入0.1g碳化硼(B4C,50nm),在80℃下充分混合搅拌6h后,冷冻干燥后得到三明治结构的多孔石墨烯/碳化硼载体;
(2)将(1)中的载体放入原子层沉积设备中,整个原子沉积反应过程与实施例1中步骤(2)相同,不同之处在于原子层沉积反应温度为260℃,重复110次循环,即获得多孔石墨烯/碳化硼载铂催化剂。
实施例4多孔石墨烯/碳化钼载铂催化剂的制备
(1)称取0.25g多孔石墨烯(PG),加入100mL去离子水中,在150W下,超声分散30min;加入0.05g碳化硼(Mo2C,50nm),在80℃下充分混合搅拌6h后,冷冻干燥后得到三明治结构的多孔石墨烯/碳化钼载体;
(2)将(1)中的载体放入原子层沉积设备中,整个原子沉积反应过程与实施例1中步骤(2)相同,不同之处在于原子层沉积反应温度为250℃,重复100次循环,即获得多孔石墨烯/碳化钼载铂催化剂。
实施例5多孔石墨烯/碳化钛载铂催化剂的制备
(1)称取0.25g多孔石墨烯(PG),加入100mL去离子水中,在120W下,超声分散60min;加入0.05g碳化钛(TiC,50nm),在80℃下充分混合搅拌5h后,冷冻干燥后得到三明治结构的多孔石墨烯/碳化钛载体;
(2)将(1)中的载体放入原子层沉积设备中,整个原子沉积反应过程与实施例1中步骤(2)相同,不同之处在于原子层沉积反应温度为275℃,重复110次循环,即获得多孔石墨烯/碳化钛载铂催化剂。
实施例6多孔石墨烯/二氧化硅载铂催化剂的制备
(1)称取0.25g多孔石墨烯(PG),加入100mL去离子水中,在150W下,超声分散30min;加入0.05g二氧化硅(SiO2,30nm),在60℃下充分混合搅拌6h后,冷冻干燥后得到三明治结构的多孔石墨烯/二氧化硅载体;
(2)将(1)中的载体放入原子层沉积设备中,整个原子沉积反应过程与实施例1中步骤(2)相同,不同之处在于原子层沉积反应温度为250℃,重复100次循环,即获得多孔石墨烯/二氧化硅载铂催化剂。
实施例7多孔石墨烯/二氧化钛载铂催化剂的制备
(1)称取0.25g多孔石墨烯(PG),加入100mL去离子水中,在150W下,超声分散30min;加入0.25g二氧化钛(TiO2,10nm),在80℃下充分混合搅拌4h后,冷冻干燥后得到三明治结构的多孔石墨烯/二氧化钛载体;
(2)将(1)中的载体放入原子层沉积设备中,整个原子沉积反应过程与实施例1中步骤(2)相同,不同之处在于原子层沉积反应温度为275℃,重复120次循环,即获得多孔石墨烯/二氧化钛载铂催化剂。
实施例8多孔石墨烯/三氧化钨载铂催化剂的制备
(1)称取0.25g多孔石墨烯(PG),加入100mL去离子水中,在120W下,超声分散60min;加入0.1g三氧化钨(WO3,40nm),在80℃下充分混合搅拌5h后,冷冻干燥后得到三明治结构的多孔石墨烯/三氧化钨载体;
(2)将(1)中的载体放入原子层沉积设备中,整个原子沉积反应过程与实施例1中步骤(2)相同,不同之处在于原子层沉积反应温度为250℃,重复100次循环,即获得多孔石墨烯/三氧化钨载铂催化剂。
实施例9多孔石墨烯/氧化铈载铂催化剂的制备
(1)称取0.25g多孔石墨烯(PG),加入100mL去离子水中,在120W下,超声分散60min;加入0.25g氧化铈(CeO2,20nm),在80℃下充分混合搅拌4h后,冷冻干燥后得到三明治结构的多孔石墨烯/氧化铈载体;
(2)将(1)中的载体放入原子层沉积设备中,整个原子沉积反应过程与实施例1中步骤(2)相同,不同之处在于原子层沉积反应温度为275℃,重复110次循环,即获得多孔石墨烯/氧化铈载铂催化剂。
实施例10多孔石墨烯/氧化锆载铂催化剂的制备
(1)称取0.25g多孔石墨烯(PG),加入100mL去离子水中,在150W下,超声分散30min;加入0.1g氧化锆(ZrO2,10nm),在60℃下充分混合搅拌4h后,冷冻干燥后得到三明治结构的多孔石墨烯/氧化锆载体;
(2)将(1)中的载体放入原子层沉积设备中,整个原子沉积反应过程与实施例1中步骤(2)相同,不同之处在于原子层沉积反应温度为275℃,重复110次循环,即获得多孔石墨烯/氧化锆载铂催化剂。
实施例11多孔石墨烯/氮化钛载铂催化剂的制备
(1)称取0.25g多孔石墨烯(PG),加入100mL去离子水中,在100W下,超声分散90min;加入0.05g氮化钛(TiN,20nm),在60℃下充分混合搅拌6h后,冷冻干燥后得到三明治结构的多孔石墨烯/氮化钛载体;
(2)将(1)中的载体放入原子层沉积设备中,整个原子沉积反应过程与实施例1中步骤(2)相同,不同之处在于原子层沉积反应温度为250℃,重复120次循环,即获得多孔石墨烯/氮化钛载铂催化剂。
实施例12多孔石墨烯/氮化锆载铂催化剂的制备
(1)称取0.25g多孔石墨烯(PG),加入100mL去离子水中,在120W下,超声分散60min;加入0.05g氮化锆(ZrN,50nm),在80℃下充分混合搅拌6h后,冷冻干燥后得到三明治结构的多孔石墨烯/氮化锆载体;
(2)将(1)中的载体放入原子层沉积设备中,整个原子沉积反应过程与实施例1中步骤(2)相同,不同之处在于原子层沉积反应温度为275℃,重复100次循环,即获得多孔石墨烯/氮化锆载铂催化剂。
实施例13多孔石墨烯/氮化钒载铂催化剂的制备
(1)称取0.25g多孔石墨烯(PG),加入100mL去离子水中,在100W下,超声分散90min;加入0.1g氮化钒(VN,40nm),在80℃下充分混合搅拌5h后,冷冻干燥后得到三明治结构的多孔石墨烯/氮化钒载体;
(2)将(1)中的载体放入原子层沉积设备中,整个原子沉积反应过程与实施例1中步骤(2)相同,不同之处在于原子层沉积反应温度为250℃,重复120次循环,即获得多孔石墨烯/氮化钒载铂催化剂。
实施例14多孔石墨烯/硼化锆载铂催化剂的制备
(1)称取0.25g多孔石墨烯(PG),加入100mL去离子水中,在150W下,超声分散30min;加入0.05g硼化锆(ZrB2,45nm),在80℃下充分混合搅拌6h后,冷冻干燥后得到三明治结构的多孔石墨烯/硼化锆载体;
(2)将(1)中的载体放入原子层沉积设备中,整个原子沉积反应过程与实施例1中步骤(2)相同,不同之处在于原子层沉积反应温度为275℃,重复110次循环,即获得多孔石墨烯/硼化锆载铂催化剂。
实施例15多孔石墨烯/硼化钛载铂催化剂的制备
(1)称取0.25g多孔石墨烯(PG),加入100mL去离子水中,在120W下,超声分散60min;加入0.05g硼化钛(TiB2,50nm),在80℃下充分混合搅拌6h后,冷冻干燥后得到三明治结构的多孔石墨烯/硼化钛载体;
(2)将(1)中的载体放入原子层沉积设备中,整个原子沉积反应过程与实施例1中步骤(2)相同,不同之处在于原子层沉积反应温度为250℃,重复100次循环,即获得多孔石墨烯/硼化钛载铂催化剂。
本发明中使用的原子层沉积设备为美国Cambridge Nano Tech公司生产,型号为Savannah-100。上述的多孔石墨烯可将氧化石墨烯水溶液与浓硝酸以一定比例混合后;超声刻蚀,超声后的混合物进行过滤,过滤产物真空干燥;最后在还原气氛中升温还原,即得多孔石墨烯(PG)。
其中:氧化石墨烯水溶液为0.05-0.1wt.%;氧化石墨烯水溶液与浓硝酸的体积比为1:7.5-1:12.5;超声功率为100-200W,超声刻蚀时间1-2h;采用阳极膜过滤,真空干燥温度为60-80℃,时间8-12h;还原气氛:5%氢气/95%氮气混合气,以3-8℃/min升温至600-800℃后保温1-2h。

Claims (10)

1.一种基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂,其特征在于:包括具有三明治结构的多孔石墨烯/纳米陶瓷载体和均匀地沉积在载体表面的纳米铂颗粒;所述具有三明治结构的多孔石墨烯/纳米陶瓷载体由多孔石墨烯作为面层,以纳米陶瓷作为芯材插入到多孔石墨烯片层间形成。
2.根据权利要求1所述的基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂,其特征在于:所述具有三明治结构的多孔石墨烯/纳米陶瓷载体是将多孔石墨烯加入到去离子水中超声,使其均匀分散;然后加入纳米陶瓷颗粒,充分混合搅拌,冷冻干燥而得;
所述纳米铂颗粒采用原子层沉积方法沉积而得,所述的原子层沉积方法是以三甲基(甲基环戊二烯基)铂(IV)和氧气为前驱体,将气相前驱体脉冲交替地通入反应室的反应腔体中,并控制原子层沉积的循环次数获得沉积铂纳米颗粒。
3.根据权利要求1所述的基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂,其特征在于:所述铂纳米颗粒的沉积过程中,沉积反应温度为250-275℃,沉积循环次数100-120次。
4.根据权利要求1所述的基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂,其特征在于:所述多孔石墨烯中的纳米孔由微孔、大孔、介孔组成,尺寸大小为1-100nm;所述纳米陶瓷颗粒尺寸为10-100nm;所述的铂纳米颗粒尺寸为1-5nm。
5.根据权利要求1所述的基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂,其特征在于:所述的多孔石墨烯为将氧化石墨烯水溶液经浓硝酸超声刻蚀后,600-800℃加热还原制得。
6.根据权利要求1所述的基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂,其特征在于:所述纳米陶瓷颗粒选自金属碳化物、金属氧化物、金属氮化物、金属硼化物,优选为SiC、WC、B4C、Mo2C、TiC、TiO2、SiO2、WO3、CeO2、ZrO2、TiN、ZrN、VN、ZrB2、TiB2中的一种或多种。
7.权利要求1所述的基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂的制备方法,其特征在于:包括以下步骤:将多孔石墨烯加入到去离子水中超声,使其均匀分散;加入纳米陶瓷颗粒,充分混合搅拌,冷冻干燥后得到三明治结构的多孔石墨烯/纳米陶瓷载体;使用原子层沉积方法在载体表面沉积铂纳米颗粒,形成载铂催化剂。
8.根据权利要求7所述的基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂的制备方法,其特征在于:所述多孔石墨烯与纳米陶瓷颗粒的质量比为0.1-10:1。
9.根据权利要求7所述的基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂的制备方法,其特征在于:所述超声分散频率为100-150W,超声时间为30-90min。
10.根据权利要求7所述的基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂的制备方法,其特征在于:所述混合搅拌温度为60-80℃,搅拌时间为4-6h。
CN201610161041.8A 2016-03-21 2016-03-21 一种基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂及其制备方法 Expired - Fee Related CN105833889B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610161041.8A CN105833889B (zh) 2016-03-21 2016-03-21 一种基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610161041.8A CN105833889B (zh) 2016-03-21 2016-03-21 一种基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN105833889A true CN105833889A (zh) 2016-08-10
CN105833889B CN105833889B (zh) 2019-07-23

Family

ID=56588420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610161041.8A Expired - Fee Related CN105833889B (zh) 2016-03-21 2016-03-21 一种基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN105833889B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106395997A (zh) * 2016-09-21 2017-02-15 见嘉环境科技(苏州)有限公司 多功能流动式电化学反应器
CN108404920A (zh) * 2018-01-16 2018-08-17 天津大学 一种降解VOCs的催化剂的制备方法
CN108607587A (zh) * 2018-03-22 2018-10-02 江苏金聚合金材料有限公司 一种大孔碳化硅/石墨烯混合载体负载钯催化剂的制备
CN108627557A (zh) * 2018-05-14 2018-10-09 济南大学 纳米ZrB2/碳纳米管复合糊电极传感器的制备方法
CN108645901A (zh) * 2018-05-14 2018-10-12 济南大学 一种纳米ZrN /石墨复合糊电极传感器的制备方法
CN109433190A (zh) * 2018-09-19 2019-03-08 苏州大学 负载铂纳米粒子的介孔氧化锆纳米管复合材料及其制备方法与在持续处理有机废气中的应用
CN110029324A (zh) * 2019-05-30 2019-07-19 邱越 一种贵金属纳米复合材料的制备方法
CN110114134A (zh) * 2016-09-08 2019-08-09 里兰斯坦福初级大学理事会 电化学催化剂的原子层沉积
CN111841569A (zh) * 2020-07-22 2020-10-30 江苏万贤环境工程有限公司 一种负载镍网的石墨烯-TiO2复合纳米材料的制备方法
CN111899985A (zh) * 2020-05-29 2020-11-06 中山大学 氮化钛/石墨烯复合材料的制备方法与应用
CN112717980A (zh) * 2020-12-31 2021-04-30 上海电气集团股份有限公司 一种复合催化剂及其制备方法和应用
CN113782796A (zh) * 2021-08-19 2021-12-10 广西大学 一种基于石墨烯多孔膜制备超低铂燃料电池膜电极的方法
CN114068949A (zh) * 2021-11-19 2022-02-18 四川大学 一种高性能钛基低铂催化剂及其制备方法和在燃料电池中的应用
US11834741B2 (en) 2016-09-08 2023-12-05 The Board Of Trustees Of The Leland Stanford Junior University Atomic layer deposition with passivation treatment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082279A (zh) * 2011-01-04 2011-06-01 武汉理工大学 一种以碳包覆导电陶瓷为担体的燃料电池催化剂及其制备方法
US20140197353A1 (en) * 2011-07-29 2014-07-17 Korea Advanced Institute of Sceince and Technology Graphene/ceramic nanocomposite powder and a production method therefor
CN105032385A (zh) * 2015-07-08 2015-11-11 华中科技大学 一种金属氧化物/铂纳米颗粒复合催化剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082279A (zh) * 2011-01-04 2011-06-01 武汉理工大学 一种以碳包覆导电陶瓷为担体的燃料电池催化剂及其制备方法
US20140197353A1 (en) * 2011-07-29 2014-07-17 Korea Advanced Institute of Sceince and Technology Graphene/ceramic nanocomposite powder and a production method therefor
CN105032385A (zh) * 2015-07-08 2015-11-11 华中科技大学 一种金属氧化物/铂纳米颗粒复合催化剂的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KUN CHENG, ET AL: "Porous grapheme supported Pt catalysts for proton exchange membrane fuel cells", 《ELECTROCHIMICA ACTA》 *
PENG WU, ET AL: "Nanoconductive ceramic wedged grapheme composites as highly efficient metal supports for oxygen reduction", 《SCIENTIFIC REPORTS》 *
XU CHEN, ET AL: "Platinized graphene/ceramics nano-sandwiched architectures and electrodes with outstanding performance for PEM fuel cells", 《SCIENTIFIC REPORTS》 *
刘小波,等: "多孔石墨烯材料", 《化学进展》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110114134B (zh) * 2016-09-08 2022-05-13 里兰斯坦福初级大学理事会 电化学催化剂的原子层沉积
CN110114134A (zh) * 2016-09-08 2019-08-09 里兰斯坦福初级大学理事会 电化学催化剂的原子层沉积
US11834741B2 (en) 2016-09-08 2023-12-05 The Board Of Trustees Of The Leland Stanford Junior University Atomic layer deposition with passivation treatment
CN106395997A (zh) * 2016-09-21 2017-02-15 见嘉环境科技(苏州)有限公司 多功能流动式电化学反应器
CN108404920A (zh) * 2018-01-16 2018-08-17 天津大学 一种降解VOCs的催化剂的制备方法
CN108607587A (zh) * 2018-03-22 2018-10-02 江苏金聚合金材料有限公司 一种大孔碳化硅/石墨烯混合载体负载钯催化剂的制备
CN108627557A (zh) * 2018-05-14 2018-10-09 济南大学 纳米ZrB2/碳纳米管复合糊电极传感器的制备方法
CN108645901A (zh) * 2018-05-14 2018-10-12 济南大学 一种纳米ZrN /石墨复合糊电极传感器的制备方法
CN109433190A (zh) * 2018-09-19 2019-03-08 苏州大学 负载铂纳米粒子的介孔氧化锆纳米管复合材料及其制备方法与在持续处理有机废气中的应用
CN110029324A (zh) * 2019-05-30 2019-07-19 邱越 一种贵金属纳米复合材料的制备方法
CN111899985A (zh) * 2020-05-29 2020-11-06 中山大学 氮化钛/石墨烯复合材料的制备方法与应用
CN111841569A (zh) * 2020-07-22 2020-10-30 江苏万贤环境工程有限公司 一种负载镍网的石墨烯-TiO2复合纳米材料的制备方法
CN112717980B (zh) * 2020-12-31 2023-09-15 上海电气集团股份有限公司 一种复合催化剂及其制备方法和应用
CN112717980A (zh) * 2020-12-31 2021-04-30 上海电气集团股份有限公司 一种复合催化剂及其制备方法和应用
CN113782796A (zh) * 2021-08-19 2021-12-10 广西大学 一种基于石墨烯多孔膜制备超低铂燃料电池膜电极的方法
CN114068949A (zh) * 2021-11-19 2022-02-18 四川大学 一种高性能钛基低铂催化剂及其制备方法和在燃料电池中的应用

Also Published As

Publication number Publication date
CN105833889B (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
CN105833889B (zh) 一种基于多孔石墨烯/纳米陶瓷三明治结构的载铂催化剂及其制备方法
Gao et al. Structural design and electronic modulation of transition‐metal‐carbide electrocatalysts toward efficient hydrogen evolution
Tian et al. Graphene quantum dot engineered nickel-cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting
Zan et al. Nitrogen and phosphorus co-doped hierarchically porous carbons derived from cattle bones as efficient metal-free electrocatalysts for the oxygen reduction reaction
Wang et al. Molybdenum carbide nanoparticles embedded in nitrogen-doped porous carbon nanofibers as a dual catalyst for hydrogen evolution and oxygen reduction reactions
Hua et al. Efficient Pt-free electrocatalyst for oxygen reduction reaction: Highly ordered mesoporous N and S co-doped carbon with saccharin as single-source molecular precursor
Zhang et al. Nitrogen-doped carbon nanotubes for high-performance platinum-based catalysts in methanol oxidation reaction
Zhang et al. Fe, Co, N-functionalized carbon nanotubes in situ grown on 3D porous N-doped carbon foams as a noble metal-free catalyst for oxygen reduction
Wang et al. Co-gelation synthesis of porous graphitic carbons with high surface area and their applications
JP5368323B2 (ja) 電極を含むカーボンナノチューブの製造方法
Xie et al. CNT–Ni/SiC hierarchical nanostructures: preparation and their application in electrocatalytic oxidation of methanol
TWI448423B (zh) 碳化物/奈米碳管複合物及金屬催化劑的製備方法
CN104860306B (zh) 一种高度有序介孔石墨烯材料的制备方法
Li et al. PMo 12-functionalized Graphene nanosheet-supported PtRu nanocatalysts for methanol electro-oxidation
Guo et al. Atomically thin SiC nanoparticles obtained via ultrasonic treatment to realize enhanced catalytic activity for the oxygen reduction reaction in both alkaline and acidic media
CN110148760B (zh) 一种多孔碳-碳纳米管复合材料及其制备方法和应用
Sahoo et al. Platinum-decorated chemically modified reduced graphene oxide–multiwalled carbon nanotube sandwich composite as cathode catalyst for a proton exchange membrane fuel cell
Kong et al. Platinum catalyst on ordered mesoporous carbon with controlled morphology for methanol electrochemical oxidation
Huang et al. Preparation of nitrogen-doped carbon materials based on polyaniline fiber and their oxygen reduction properties
Meng et al. Synthesis and electrocatalytic performance of nitrogen-doped macroporous carbons
Wang et al. Ni-enhanced molybdenum carbide loaded N-doped graphitized carbon as bifunctional electrocatalyst for overall water splitting
Sahoo et al. Platinum decorated on partially exfoliated multiwalled carbon nanotubes as high performance cathode catalyst for PEMFC
CN101491777A (zh) 氯化镍辅助合成燃料电池催化剂载体有序介孔碳的方法
CN105789645A (zh) 一种Pt/WO3-RGO催化剂
Sun et al. Electrospun iron and nitrogen co-containing porous carbon nanofibers as high-efficiency electrocatalysts for oxygen reduction reaction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190723

Termination date: 20200321