CN105717287B - 一种基于蛋白纳米线的3d探针‑磁性微珠复合物及其应用 - Google Patents

一种基于蛋白纳米线的3d探针‑磁性微珠复合物及其应用 Download PDF

Info

Publication number
CN105717287B
CN105717287B CN201610051186.2A CN201610051186A CN105717287B CN 105717287 B CN105717287 B CN 105717287B CN 201610051186 A CN201610051186 A CN 201610051186A CN 105717287 B CN105717287 B CN 105717287B
Authority
CN
China
Prior art keywords
protein
beads
magnetic micro
nano line
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610051186.2A
Other languages
English (en)
Other versions
CN105717287A (zh
Inventor
门冬
张先恩
周娟
张治平
李唯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Virology of CAS
Original Assignee
Wuhan Institute of Virology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Virology of CAS filed Critical Wuhan Institute of Virology of CAS
Priority to CN201610051186.2A priority Critical patent/CN105717287B/zh
Publication of CN105717287A publication Critical patent/CN105717287A/zh
Priority to PCT/CN2016/111261 priority patent/WO2017128888A1/zh
Application granted granted Critical
Publication of CN105717287B publication Critical patent/CN105717287B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • G01N33/5434Magnetic particles using magnetic particle immunoreagent carriers which constitute new materials per se

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明提供一种基于蛋白纳米线的3D探针‑磁性微珠复合物,包括磁性微珠和蛋白纳米线,所述蛋白纳米线表面包括至少一种功能配体和至少一种连接配体,所述蛋白纳米线通过连接配体连接在磁性微珠表面。本发明利用纳米线较大的比表面积,展示在其上的配体形成3D高密度固定,一方面提高配体数量,利用高密度展示形成多价效应,提高特异性配体的结合力;另一方面通过自组装的方式实现抗原或抗体等分子的定向固定,最大程度的保留功能分子活性,减少常规化学交联的损伤,从而提高对样品中待测目标的捕获效率。复合物通过连接配体将蛋白纳米线与磁性微珠相连,利用磁性微珠快速分离的性质,减少检测时间,进而实现快速高通量的病原筛查或疾病检测。

Description

一种基于蛋白纳米线的3D探针-磁性微珠复合物及其应用
技术领域
本发明涉及免疫检测领域,特别涉及一种基于蛋白纳米线的3D探针-磁性微珠复合物及其在免疫检测中的应用。
背景技术
各种传染性疾病大范围的流行传播,对我国的国家安全和人口健康造成严重威胁。发展灵敏、准确的病原分析方法和检测技术对于相关疾病的快速诊断和及时治疗、生物恐怖和突发性公共卫生事件的有效防范和快速处置具有重要意义。经典的微生物分离鉴定麻烦费时,难以应用于致病微生物的现场快速检测;基于病原核酸的检测方法大多具有较高的检测灵敏度,但需要复杂的核酸抽提过程,而且容易出现假阳性;免疫学方法因基于抗体对病原的特异性识别作用而具有较好的特异性,同时操作简单,因此,广泛应用于临床和基础研究的各个领域。
常规的免疫分析方法,如ELISA,其过程主要依赖于抗体的特异性捕获和固相亲和分离等过程,因此有着特异性好,背景信号低,灵敏度高等特点。但随着社会的不断发展,在海关、口岸和CDC等进出口人员、货物密集交通的地方,对现场、快速、高灵敏的病原检测有着非常高的要求,也是国家疾病防控的重要关口。目前,常规的ELISA检测中,固定蛋白探针是通过物理吸附作用,使得蛋白探针随机取向,且吸附作用是在二维平面上的,其固定密度较低,导致捕获检测物的效率降低而限制其灵敏度;在操作过程中,包被、封阻、结合、洗涤需要花费大量时间,限制了对样品的现场检测。而快速免疫分析方法,如试纸条等,虽然能够实现快速检测,但由于该方法通常通过肉眼识别纳米金聚集显色,其灵敏度更是低于ELISA。针对于此,我们亟需开发一种快速、高灵敏的免疫检测方法。
现有提高蛋白探针固定有效方向和密度而调高灵敏度的方法有:亲和作用(Analytical Chemistry,1999,71(17):3846-3852.)、硅纳米线介导(Naturebiotechnology,2005,23(10):1294-1301.)、病毒纳米颗粒介导(Nature nanotechnology,2009,4(4):259-264.)、巨磁阻介导(Nature nanotechnology,2011,6(5):314-320.)等。
亲和作用介导的固定法是通过亲和素-生物素系统,使得探针的固定随机性降低,从而提高有效探针密度;硅纳米线介导的固定法是在硅纳米线表面修饰上醛基,将抗体探针通过氨基与醛基形成化学键而在其表面展示,达到高密度的固定;病毒纳米颗粒介导的固定法是将SPA融合在病毒衣壳蛋白亚基上,通过SPA与抗体的作用而展示抗体,另外通过病毒衣壳蛋白上的His-tag与镍纳米阵列作用,达到高密度的固定;巨磁阻介导的固定法是利用亲和素-生物素系统将抗体结合在磁颗粒上,磁颗粒通过巨磁阻效应固定在界面上,从而达到抗体探针的高密度展示。
上述方法中,提高蛋白探针的固定密度主要通过两种途径来实现:一、通过特异性的固定代替随机的物理吸附;二、提高固定蛋白探针的数量。前者提高探针数量有限,如亲和作用介导的固定只能在一定程度上解决探针随机取向的问题,并不能提高真实探针密度;而病毒纳米颗粒介导的固定法受限于病毒颗粒的大小,固定的探针数量有限,且His-tag与镍的作用不稳定。后者需要通过复杂的化学修饰过程,或者需要复杂的仪器和操作步骤,成本高昂,如纳米材料虽然能够提高比表面积,但其修饰方法随机、复杂,且在修饰过程中会损伤蛋白探针的生物活性,导致捕获能力降低。
发明内容
本发明主要解决的技术问题是提供一种快速、高灵敏的免疫检测产品及方法,实现高效、高密度的在三维(3D)空间上的免疫检测。
为了实现本发明的目的,本发明采用如下技术方案:
本发明一方面提供一种基于蛋白纳米线的3D探针-磁性微珠复合物,包括磁性微珠和蛋白纳米线,所述蛋白纳米线通过成线蛋白自组装形成,且所述蛋白纳米线表面包括至少一种功能配体和至少一种连接配体,所述蛋白纳米线通过连接配体连接在磁性微珠表面。
本发明中,所述磁性微珠是指具有一定磁性及特殊表面结构的纳米或微米尺度的微球,其可由无机磁性物质及各种含活性功能基团的材料组合而成。其中,所述无机磁性材料包括磁性纳米/微米材料或磁性纳米/微米复合材料,优选的,所述磁性纳米/微米材料包括磁性元素(如铁、钴、镍、钕、硼、锆、铬等)掺杂的纳米/微米材料,例如,氧化铁(γ-Fe2O3,γ-Fe3O4)、铁氧体(CoFe2O4,BaFe12O19)、氧化铬(CrO2)、氧化锆(ZrO2)、氮化铁(Fe4N)、金属合金(Fe、Co、Ni、Al)等。所述含活性功能基团的材料包括聚乙二醇、聚乙烯醇、聚乙醇酸、聚丙烯酸、硅烷衍生物等合成高分子材料或纤维素及其衍生物、琼脂糖、明胶、葡聚糖、壳聚糖及其衍生物、透明质酸、海藻酸等天然高分子材料。
本发明中,磁性微珠一方面可在外加磁场的作用下快速定位、导向和分离,另一方面可通过表面改性或化学聚合等赋予磁性微珠表面多种活性功能基团,如羟基、羧基、醛基、氨基等,此外,磁性微珠也可以通过共价键来结合抗体、细胞、DNA等生物活性物质。
在本发明一具体实施方式中,所述成线蛋白为含有能够组装成线性纳米结构自组装结构域的蛋白,例如可为酵母朊蛋白Sup35、淀粉样蛋白Ure2、丝素蛋白等。优选的,成线蛋白为酵母朊蛋白,Sup35的第1-61位氨基酸为自组装结构域。
在本发明一具体实施方式中,所述功能配体和连接配体可相同或不同,并独立的选自以下组中的一种或多种:抗原、具有特异性结合能力的功能化抗体、蛋白A(Protein A,SPA)、蛋白G(Protein G,SPG)、SPL蛋白、本周蛋白(BJP)、β2-巨球蛋白(β2m)、降钙素(CT)、人绒毛膜性腺激素(hCG)、促肾上腺皮质激素(ACTG)、甲状腺激素(PHT)、荧光蛋白、生物素和亲和素等。
本发明中,所述抗原包括与自身免疫缺陷、恶性细胞或癌症相关的抗原、病毒抗原或微生物抗原,包括但不限于,能够引起免疫应答的任何病毒肽、微生物肽、多肽蛋白、糖类、多糖脂质分子,如HIV-p24、HIV-gp41、HIV-gp120、HIV-gp160、HIV-nef、HA1、HAV、HBV、HCV、HDV、HEV、HBsAg、HBcAg、Ebola、EV71、SV40、HTLV-Ⅰ、CBV、EB、SARS、CEA、AFP、PSA、POA、PSCA、PSMA、CA125、CA19-9、CA15-3、CA50、CA242、TNF-α、RSV-F、CD2、CD3、CD4、CD8、CD19、CD20、CD22、CD27、CD28、CD30、CD33、CD37、CD38、CD40、CD56、CD70、CD79、CD79b、CD90、CD125、CD134、CD147、CD152/CTLA-4等。
本发明中,可通过连接配体将蛋白纳米线与磁性微珠相连,蛋白纳米线结合磁性微珠大的比表面积形成3D结构,提高固定密度;通过融合在蛋白纳米线上的功能配体实现与目标分子的特异性结合,提高抗原或抗体等固定取向性,从而进行抗体筛选或病原或疾病检测。
优选的,所述连接配体为生物素。
优选的,所述功能配体选自抗原、SPA、SPG或SPL等,优选自以下组中的一种或多种:HIV-p24、HIV-gp41、HIV-gp120、HIV-gp160、HIV-nef、HA1、HAV、HBV、HCV、HDV、HEV、HBsAg、HBcAg、Ebola、EV71、SV40、HTLV-Ⅰ、CBV、EB、SARS、CEA、AFP、PSA、POA、PSCA、PSMA、CA125、CA19-9、CA15-3、CA50、CA242、SPA、SPG等。
在本发明一具体实施方式中,所述蛋白纳米线通过生物素-亲和素相互作用、化学共价交联(例如表面羧基功能化的磁性微珠与蛋白纳米线上的氨基共价交联,过渡金属离子如Co、Ni、Cu、Zn等离子与特定氨基酸侧链之间的相互作用,如天然组氨酸标签HAT、聚组氨酸标签His tag与NTA-Ni(亚硝基三乙酸-镍)或Co-CMA(钴-羧甲基天冬氨酸)之间的相互作用、GST(谷胱甘肽巯基转移酶)的结构域与蛋白之间的相互作用、纤维素结构域与纤维素之间的相互作用或者其它相互作用多肽)、特异性DNA-蛋白相互作用(例如表面特异性DNA功能化的磁性微珠与特异性蛋白融合的蛋白纳米线相互作用)或其它高亲和力和强特异性结合的方式连接在磁性微珠表面。
优选的,所述蛋白纳米线通过生物素-亲和素相互作用的方法连接在磁性微珠表面。
本发明另一方面提供一种本发明基于蛋白纳米线的3D探针-磁性微珠复合物的制备方法,包括以下步骤:
(1)通过分子克隆将成线蛋白(Linear Protein,LP)的自组装结构域与至少一种功能配体(Ligand,L)融合后形成融合蛋白基因LP-L,经表达纯化后得到融合蛋白LP-L;
(2)通过分子克隆将成线蛋白LP的自组装结构域与至少一种连接配体(Connection Ligand,CL)融合后形成融合蛋白基因LP-CL,经表达纯化后得到融合蛋白LP-CL;或者,
通过分子克隆将成线蛋白LP的自组装结构域与至少一种功能配体L融合后,再与至少一种连接配体CL融合,形成融合蛋白基因LP-L-CL(简称LP-CL),经表达纯化后得到融合蛋白LP-CL;
(3)将步骤(2)得到的融合蛋白LP-CL破碎作为种子,并将所述种子连接在磁性微珠表面,得到种子-磁性微珠复合物;
(4)将步骤(3)得到的种子-磁性微珠复合物表面进行种子诱导自组装,将步骤(1)得到的融合蛋白LP-L组装成蛋白纳米线,得到基于蛋白纳米线的3D探针-磁性微珠复合物。
采用本发明制备方法得到的基于蛋白纳米线的3D探针-磁性微珠复合物,使得功能配体如抗原分子或特异性结合蛋白等高密度的展示在复合物上,通过多价效应使得复合物能够快速的结合目标分子,而达到目标分子的高灵敏、快速的检测。
在本发明中,通过分子克隆形成融合蛋白基因时,可在两个蛋白基因之间融合柔性多肽之后再进行蛋白融合,减少可能存在的位阻的影响。
本发明中,融合蛋白基因的表达、纯化可采用本领域常规用于蛋白表达纯化的方法,例如将融合蛋白基因克隆入表达载体,将表达载体和/或共表达载体转入表达宿主中培养,活化至对数生长期后加入IPTG诱导表达蛋白,经破碎、纯化后得到融合蛋白。其中,本发明对表达载体、共表达载体、表达宿主的种类和类别不作限定,可选用本领域常规用于遗传修饰的载体和宿主,具体的,表达载体可为pET-28、pET-32、pET-15或pET-11的等,共表达载体可为pCDFDuet-1等;表达宿主可选自大肠杆菌、枯草芽孢杆菌、巨大芽孢杆菌、棒状杆菌、酿酒酵母、毕赤酵母或哺乳动物细胞。
本发明中,克隆可通过例如链式酶聚合反应(PCR)完成。
在本发明一具体实施方式中,所述成线蛋白为含有能够组装成线性纳米结构自组装结构域的蛋白,例如可为酵母朊蛋白(Sup35)、淀粉样蛋白Ure2、丝素蛋白等。优选的,成线蛋白为酵母朊蛋白,Sup35的第1-61位氨基酸为自组装结构域。
在本发明一具体实施方式中,至少一种功能配体和至少一种连接配体如本发明前述功能配体和连接配体所定义,在此不作赘述。
优选的,所述连接配体为生物素。
在本发明一具体实施方式中,当生物素作为连接配体时,所述步骤(2)具体包括如下步骤:
通过分子克隆将成线蛋白LP的自组装结构域与生物素接受多肽(biotinaccepted peptide,BAP)融合后形成融合蛋白基因LP-BAP;或者,通过分子克隆将成线蛋白LP的自组装结构域与至少一种功能配体L融合后,再与生物素接受多肽BAP融合,形成融合蛋白基因LP-L-BAP(简称LP-BAP);
将融合蛋白基因LP-BAP克隆入表达载体,将生物素蛋白连接酶(Biotin-proteinligase,BirA)克隆入共表达载体中;
将所述表达载体、共表达载体转入表达宿主中培养,活化至对数生长期后加入IPTG诱导表达蛋白和生物素;
经破碎、纯化后制得生物素化的融合蛋白LP-BAP。
更具体的,本发明中,将生物素蛋白连接酶(BirA)克隆入共表达载体中具体包括:获取BirA基因的核苷酸序列,设计引物,在上、下游引物中分别加入限制性内切酶NcoI和SalI的酶切位点,通过PCR扩增BirA基因;将PCR产物BirA和表达载体pCDFDuet-1进行双酶切反应,收集酶切产物;将收集到的酶切产物BirA和pCDFDuet-1载体按物质的量比以6:1进行连接反应,得到BirA-pCDFDuet-1。
更具体的,本发明中,将所述表达载体、共表达载体转入表达宿主中培养,活化至对数生长期后加入IPTG诱导表达蛋白和生物素具体包括:将表达载体和共表达载体加入含有表达宿主和抗生素的培养基中培养过夜,直至活化至对数生长期,加入IPTG诱导表达蛋白和生物素过夜,进行培养和表达。
优选的,所述功能配体选自以下组中的一种或多种:HIV-p24、HIV-gp41、HIV-gp120、HIV-gp160、HIV-nef、HA1、HAV、HBV、HCV、HDV、HEV、HBsAg、HBcAg、Ebola、EV71、SV40、HTLV-Ⅰ、CBV、EB、SARS、CEA、AFP、PSA、POA、PSCA、PSMA、CA125、CA19-9、CA15-3、CA50、CA242、SPA、SPG、CT、hCG等。
在本发明一具体实施方式中,所述步骤(3)中,将所述种子连接在磁性微珠表面可通过生物素-亲和素相互作用、化学共价交联(例如表面羧基功能化的磁性微珠与蛋白纳米线上的氨基共价结合)、特异性DNA-蛋白相互作用(例如表面特异性DNA功能化的磁性微珠与特异性蛋白融合的蛋白纳米线相互作用)或其它高亲和力和强特异性结合的方式连接。
优选的,将所述种子连接在磁性微珠表面可通过生物素-亲和素相互作用的方式连接,其中生物素作为连接配体,亲和素修饰在磁性微珠表面。
在本发明一具体实施方式中,所述步骤(3)具体包括以下步骤:
将生物素化的融合蛋白LP-BAP置于4℃下孵育一周后,形成纳米线,通过超声将纳米线破碎为纳米线片段,制备生物素化的LP-BAP种子;将亲和素修饰的磁性微珠与过量生物素化的种子LP-BAP在37℃下孵育,通过磁场分离洗涤,得到种子-磁性微珠复合物。
在本发明一具体实施方式中,所述步骤(4)具体包括以下步骤:
将步骤(3)得到的种子-磁性微珠复合物表面进行种子诱导自组装,加入含功能配体的融合蛋白LP-L,在室温下孵育,使蛋白纳米线在磁性微珠表面进行生长,通过磁场分离洗涤,得到本发明所述基于蛋白纳米线的3D探针-磁性微珠复合物。
本发明中亲和素修饰在磁性微珠上的方法为本领域技术人员所公知,也可采用市售亲和素修饰的磁性微珠,在此不作赘述。
本发明采用种子诱导自组装方法,种子可以快速的诱发融合有自组装结构域的融合蛋白组装在其末端,通过控制反应时间来控制种子与融合蛋白的组装比,从而实现对纳米线长度的控制;此外,可通过控制组装的顺序,可控的将含有功能配体的融合蛋白组装至蛋白纳米线的端部,进一步的,可通过控制功能配体在蛋白纳米线中所占的比例,制备得到灵敏度高、非特异性吸附低的用于免疫分析的产品。
本发明还一方面提供一种用于免疫分析的产品,所述产品包括本发明所述的基于蛋白纳米线的3D探针-磁性微珠复合物。
其中,产品的形式可为探针(传感器)、试纸条、芯片、试剂盒等,在使用时,将本发明所述的蛋白纳米线-磁珠复合物与其它现有的商业试剂(如酶标抗体、荧光标记抗体、显色剂、底物等)混合,可用于各种形式的免疫分析,例如抗体检测、抗体筛选、抗原检测、病原检测、蛋白检测、蛋白相互作用筛查、高通量靶标蛋白检测、蛋白-核酸相互作用分析、药物筛选等。
产品以探针(传感器)的形式存在时,所述探针可用于高效、高密度的固定抗原或抗体,从而用于目标分子在三维空间内的高灵敏检测。
产品以试纸条的形式存在时,可将本发明复合物置于检测线,用于捕获目标分子,采用金标纳米粒子等进行检测;进一步的,当复合物融合不同的功能配体时,可实现多种目标分子的同时检测。
产品以芯片的形式存在时,可将本发明复合物置于芯片中,用于现场即时检测(Point-of-Care,POC);进一步的,当复合物融合不同的功能配体时,可将其分别置于芯片的不同通道,可同时实现多种目标分子的高通量检测。
产品以试剂盒的形式存在时,试剂盒中还可包括缓冲液、洗涤液、稀释液或显色剂等。
此外,本发明还提供一种本发明所述的基于蛋白纳米线的3D探针-磁性微珠复合物在免疫分析中的应用。
本发明中,免疫分析可为间接免疫、夹心免疫等方式,可用于各种形式的免疫分析,例如抗体检测、抗体筛选、抗原检测、病原检测、蛋白检测、蛋白相互作用筛查、高通量靶标蛋白检测、蛋白-核酸相互作用分析、药物筛选等。
优选的,本发明基于蛋白纳米线的3D探针-磁性微珠复合物用于溶液相免疫分析。
本领域技术人员知晓,本发明中基于蛋白纳米线的3D探针-磁性微珠复合物可以应用于以治疗为目的或非治疗为目的检测中。
本发明有益效果:
(1)本发明基于蛋白纳米线的3D探针-磁性微珠复合物可高效、高密度的捕获目标分子,达到快速、高灵敏的检测,相对于传统ELISA灵敏度可提高100倍以上。
(2)本发明基于蛋白纳米线的3D探针-磁性微珠复合物制备过程简单、易行,可适用于不同的免疫检测模式,如可用于间接ELISA、夹心ELISA等,尤其适用于液相中的免疫分析,仅仅是替换原有检测方法中的一种试剂,不改变原有操作步骤,不需要额外的设备和仪器。
(3)本发明利用特异性生物相互作用在磁性微珠表面原位生长多功能蛋白纳米线,不仅操作过程简单,反应时间短,而且高亲和力的生物作用可以提高功能分子固定能力和稳定性。
(4)本发明所构建检测系统十分灵活,仅通过简单更换功能融合蛋白单元,即可原位生长得到适用于检测各种预期目标分子的功能蛋白纳米线。
(5)本发明利用蛋白纳米线的3D蛋白展示能力,利用高密度展示带来大比表面积和多价态效应,提高对样品中目标分子的捕获能力(目前常规的ELISA是在二维平面上通过物理吸附作用固定蛋白探针,固定的蛋白探针密度有限,这导致捕获目标分子的效率较低,因而灵敏度较低),此外,利用磁性微珠可以快速分离的性质,将3D展示纳米线与磁性微珠联用,使检测时间大大减小。
附图说明
图1本发明基于蛋白纳米线的3D探针-磁性微珠复合物的制备示意图。
图2基于蛋白纳米线的3D探针-磁性微珠复合物的3D高灵敏间接免疫检测原理示意图。
图3基于蛋白纳米线的3D探针-磁性微珠复合物的3D高灵敏间接免疫检测结果分析图。其中,■为p24蛋白纳米线-磁性微珠(记为p24-NW-MB),本发明基于蛋白纳米线的3D探针-磁性微珠复合物;▲为p24-磁性微珠(记为p24-MB),磁性微珠上直接展示生物素化的p24病原蛋白;◆为商业ELISA试剂,传统方法对照。
图4基于蛋白纳米线的3D探针-磁性微珠复合物的3D高灵敏夹心免疫检测原理示意图。
图5基于蛋白纳米线的3D探针-磁性微珠复合物的3D高灵敏夹心免疫检测结果分析图。
具体实施方式
本发明具体实施方式、实施例中“遗传修饰”指的是通过分子生物学技术对生物体的基因组进行遗传修饰,所得到的基因组成和性状改变。“亲和素”包括但不限于亲和素(Avidin)、链酶亲和素(Streptomyces Avidin)。“生物素接受多肽”(Biotin AcceptedPeptide,BAP)为能够与铁蛋白N端融合且能够连接生物素的多肽。“生物素蛋白连接酶”(Biotin-protein Ligase,BirA)是指能够活化生物素并将生物素连接到生物素受体蛋白上的酶。
本发明具体实施方式、实施例中“线性蛋白”(Linear Protein,LP)指的是含有能够组装成线性纳米结构自组装结构域的蛋白。
本发明具体实施方式、实施例中缩写“LP-L-BAP”与“LP-BAP”可互换使用,并可代表修饰/未修饰生物素的LP-BAP,具体所代表的含义依据上下文理解。
本发明具体实施方式、实施例中缩写“LP-L”、“LP-CL”、“LP-L-CL”、“LP-BAP”、“LP-L-BAP”不用于限定保护范围,仅用于区分相同或不同的融合蛋白基因和/或融合蛋白。
在本发明一具体实施方式中,本发明提供一种基于蛋白纳米线的3D探针-磁性微珠复合物,包括磁性微珠和蛋白纳米线,所述蛋白纳米线通过成线蛋白自组装形成,且所述蛋白纳米线表面包括至少一种功能配体和至少一种连接配体,所述蛋白纳米线通过连接配体连接在磁性微珠表面。
在本发明一具体实施方式中,本发明提供一种基于蛋白纳米线的3D探针-磁性微珠复合物的制备方法,包括以下步骤:
(1)通过分子克隆将成线蛋白LP的自组装结构域与至少一种功能配体L融合后形成融合蛋白基因LP-L,经表达纯化后得到融合蛋白LP-L;
(2)通过分子克隆将成线蛋白LP的自组装结构域与至少一种连接配体CL融合后形成融合蛋白基因LP-CL,经表达纯化后得到融合蛋白LP-CL;或者,
通过分子克隆将成线蛋白LP的自组装结构域与至少一种功能配体L融合后,再与至少一种连接配体CL融合,形成融合蛋白基因LP-L-CL(简称LP-CL),经表达纯化后得到融合蛋白LP-CL;
(3)将步骤(2)得到的融合蛋白LP-CL破碎作为种子,并将所述种子连接在磁性微珠表面,得到种子-磁性微珠复合物;
(4)将步骤(3)得到的种子-磁性微珠复合物表面进行种子诱导自组装,将步骤(1)得到的融合蛋白LP-L组装成蛋白纳米线,得到基于蛋白纳米线的3D探针-磁性微珠复合物。
在本发明一具体实施方式中,本发明提供一种用于免疫分析的产品,所述产品包括本发明所述的基于蛋白纳米线的3D探针-磁性微珠复合物。其中,产品的形式可为探针(传感器)、试纸条、芯片、试剂盒等,在使用时,将本发明所述的蛋白纳米线-磁珠复合物与其它现有的商业试剂(如酶标抗体、荧光标记抗体、显色剂、底物等)混合,可用于各种形式的免疫分析,例如抗体检测、抗体筛选、抗原检测、病原检测、蛋白检测、蛋白相互作用筛查、高通量靶标蛋白检测、蛋白-核酸相互作用分析、药物筛选等。
在本发明一具体实施方式中,本发明提供一种基于蛋白纳米线的3D探针-磁性微珠复合物在免疫分析中的应用。
下面结合具体实施例1-2,以Sup35-p24/Sup35-BAP基于蛋白纳米线的3D探针-磁性微珠复合物(以下简称p24蛋白纳米线-磁性微珠复合物)为例,对本发明基于蛋白纳米线的3D探针-磁性微珠复合物的制备及其在免疫分析中的应用作进一步阐述。
实施例1 p24蛋白纳米线-磁性微珠复合物的制备
A.功能化融合蛋白的制备
(1)功能化蛋白Sup35-p24的克隆:通过分子克隆将酵母朊蛋白Sup35自组装结构域(第1-61位氨基酸)与功能配体HIV-p24(简称p24)通过柔性连接多肽基因融合连接形成融合蛋白Sup35-p24。
(2)功能化蛋白Sup35-BAP的克隆:在融合蛋白Sup35-p24的基础上在其C末端融合生物素接受多肽(biotin accepted peptide,BAP),形成可生物素化融合蛋白Sup35-p24-BAP(简称Sup35-BAP),该融合蛋白中的BAP标签可以在大肠杆菌生物素连接酶(Biotin-protein ligase(EC 6.3.4.15),BirA)的作用下被生物素化。
(3)功能蛋白Sup35-p24表达、纯化:融合蛋白Sup35-p24的基因被克隆入表达载体pET28(该蛋白可在多种表达载体和表达宿主中良好表达,这里仅描述在大肠杆菌中的表达、纯化),将构建的功能蛋白表达载体转化到大肠杆菌BL21表达株中,卡那霉素、链霉素双抗平板挑取阳性克隆。将阳性克隆二次活化到卡那霉素、链霉素双抗LB培养基,37℃、200rpm振荡培养至对数生长期(OD值约为0.5)。向培养物中加入工作终浓度为1mM的IPTG,25℃、120rpm振荡培养诱导蛋白表达8小时。8000rpm离心收集菌体5分钟,超声破碎菌体,10000×g离心30分钟去除细胞碎片,取上清Ni亲和层析纯化目标蛋白,即获得纯化的功能性融合蛋白Sup35-p24。
(4)功能蛋白Sup35-BAP表达、纯化:融合蛋白Sup35-BAP的基因被克隆入表达载体pET28中,得到pET28-Sup35-BAP。同时克隆大肠杆菌生物素蛋白连接酶BirA到共表达载pCDFDuet中,得到pCDFDuet-BirA。将两个载体共转化入大肠杆菌表达菌株BL21,卡那霉素、链霉素双抗平板挑取阳性克隆。将挑取的阳性克隆E.coli BL21(Sup35-BAP/pCDFDuet-BirA)二次活化到卡那霉素、链霉素双抗LB培养基,37℃、200rpm振荡培养至对数生长期(OD值约为0.5)。向培养物中加入工作终浓度为1mM的IPTG和工作中浓度为50μM的生物素,25℃、120rpm振荡培养诱导蛋白表达8小时。8000rpm离心收集菌体5分钟,超声破碎菌体,10000×g离心30分钟去除细胞碎片,取上清Ni亲和层析纯化目标蛋白,即获得纯化的生物素化的融合蛋白Sup35-BAP。
本领域技术人员知晓,本发明上述具体实施方式中蛋白的表达与纯化中具体参数(例如浓度、时间、温度等)数值并不用于限制本发明,本领域技术人员可以依据实际需求作调整。
在一个具体的实施方式中,克隆通过链式酶聚合反应(PCR)完成的。将BirA克隆入pCDFDuet-1具体包括:获取BirA基因的核苷酸序列,设计引物,在上、下游引物中分别加入限制性内切酶NcoI和SalI的酶切位点,通过PCR扩增BirA基因;将PCR产物BirA和表达载体pCDFDuet-1进行双酶切反应,收集酶切产物;将收集到的酶切产物BirA和pCDFDuet-1载体按物质的量比以6:1进行连接反应,得到BirA-pCDFDuet-1。
在一个具体的实施方式中,表达载体可为质粒载体,包括但不限于pET-28、pET-32、pET-15或pET-11质粒载体等;表达宿主还可为枯草芽孢杆菌、巨大芽孢杆菌、棒状杆菌、酿酒酵母、毕赤酵母或哺乳动物细胞等能够进行蛋白表达的宿主。
B.p24蛋白纳米线-磁性微珠复合物的制备
(1)生物素化种子的制备:将生物素化的融合蛋白Sup35-BAP单体置于4℃孵育一周后,通过超声所产生的剪切力将长的纳米线打断成为纳米线片段制备种子,该种子通过生物素结合在亲和素修饰的磁性微珠表面,快速的诱发自组装功能融合蛋白快速生长在其末端。
(2)p24蛋白纳米线-磁性微珠复合物的制备:如附图1所示,将亲和素修饰的磁性微珠与过量制备好的生物素化的种子在37℃孵育,通过磁场分离洗涤,加入功能化的融合蛋白Sup35-p24单体,在室温下孵育,使蛋白纳米线在磁性微珠表面进行生长,通过磁场分离洗涤,即获得Sup35-p24/Sup35-BAP基于蛋白纳米线的3D探针-磁性微珠复合物,复合物表面高密度固定了抗原分子p24。
实施例2基于p24蛋白纳米线-磁性微珠复合物的高灵敏3D免疫检测
本发明一具体实施方式中,将p24蛋白纳米线-磁性微珠应用于高灵敏3D免疫检测,对p24抗体进行快速、高灵敏检测。
抗体检测原理参照附图2,由于蛋白纳米线具有着较大的比表面积,展示其上的亲和分子能够更充分的与溶液中目标分子相结合,从而提高目标分子的捕获效率;配合磁性微珠可以快速分离的性质,可以实现对样品中目标分子的快速、高灵敏检测。
免疫检测的具体步骤如下:
(1)将100μL待测样品与100μL酶标二抗(2μg/mL)进行混合;
(2)将实施例1制备好的p24蛋白纳米线-磁性微珠复合物33.3μg与上述待测样品-酶标二抗在37℃下孵育5-15min;
(3)磁场分离1-2min,用100μL PBS洗涤6次;
(4)加入200μL TMB显色液,显色10min;
(5)加入50μL 2M硫酸终止反应;
(6)在450nm波长下测定吸光度。
本发明还采用常规方法(p24-磁性微珠以及商业ELISA试剂)用于p24抗体检测,将本发明p24蛋白纳米线-磁性微珠复合物替换为p24抗原-磁性微珠复合物和商业ELISA试剂,其余步骤和参数与本发明相通同。
检测结果如附图3所示,由附图3可知,采用本发明所述的基于蛋白纳米线的3D探针-磁性微珠的检测方法的检测灵敏度相对于常规的ELISA方法提高了100倍以上,而整个检测的时间大大减少至半个小时以内。当配合化学发光检测体系,或者新型的信号放大系统,检测灵敏度将能提高至更高的水平。
本领域技术人员知晓,本发明p24蛋白纳米线-磁性微珠复合物,可根据实际需求,将功能配体替换为其它捕获抗原,可实现对不同目标分子(抗体)的捕获和检测。例如功能配体可为感染性病原体的抗原(比如HIV、HBV、HCV、Ebola、EV71、各种病毒和细菌乃至寄生虫等),可以检测血液中的抗体,从而得知人体是否感染或感染过这类型的疾病。
下面结合具体实施例3-4,以Sup35-SPG/Sup35-BAP基于蛋白纳米线的3D探针-磁性微珠复合物(以下简称SPG蛋白纳米线-磁性微珠复合物)为例,对本发明基于蛋白纳米线的3D探针-磁性微珠复合物的制备及其在免疫分析中的应用作进一步阐述。
实施例3 SPG蛋白纳米线-磁性微珠复合物的制备
A.功能化融合蛋白的制备
(1)功能化蛋白Sup35-SPG的克隆:通过分子克隆将酵母朊蛋白Sup35自组装结构域(第1-61位氨基酸)与功能配体蛋白G(Protein G,简称SPG)通过柔性连接多肽基因融合连接形成融合蛋白Sup35-SPG。
(2)功能化蛋白Sup35-BAP的克隆:在线性蛋白Sup35的基础上在其C末端融合BAP,形成可生物素化融合蛋白Sup35-BAP,该融合蛋白中的BAP标签可以在大肠杆菌生物素连接酶(Biotin-protein ligase(EC 6.3.4.15),BirA)的作用下被生物素化。
(3)功能蛋白Sup35-SPG表达、纯化:融合蛋白Sup35-SPG的基因被克隆入表达载体pET28(该蛋白可在多种表达载体和表达宿主中良好表达,这里仅描述在大肠杆菌中的表达、纯化),将构建的功能蛋白表达载体转化到大肠杆菌BL21表达株中,卡那霉素、链霉素双抗平板挑取阳性克隆。将阳性克隆二次活化到卡那霉素、链霉素双抗LB培养基,37℃、200rpm振荡培养至对数生长期(OD值约为0.5)。向培养物中加入工作终浓度为1mM的IPTG,25℃、120rpm振荡培养诱导蛋白表达8小时。8000rpm离心收集菌体5分钟,超声破碎菌体,10000×g离心30分钟去除细胞碎片,取上清Ni亲和层析纯化目标蛋白,即获得纯化的功能性融合蛋白Sup35-SPG。
(4)功能蛋白Sup35-BAP表达、纯化:融合蛋白Sup35-BAP的基因被克隆入表达载体pET28中,得到pET28-Sup35-BAP。同时克隆大肠杆菌生物素蛋白连接酶BirA到共表达载pCDFDuet中,得到pCDFDuet-BirA。将两个载体共转化入大肠杆菌表达菌株BL21,卡那霉素、链霉素双抗平板挑取阳性克隆。将挑取的阳性克隆E.coli BL21(Sup35-BAP/pCDFDuet-BirA)二次活化到卡那霉素、链霉素双抗LB培养基,37℃、200rpm振荡培养至对数生长期(OD值约为0.5)。向培养物中加入工作终浓度为1mM的IPTG和工作中浓度为50μM的生物素,25℃、120rpm振荡培养诱导蛋白表达8小时。8000rpm离心收集菌体5分钟,超声破碎菌体,10000×g离心30分钟去除细胞碎片,取上清Ni亲和层析纯化目标蛋白,即获得纯化的生物素化的融合蛋白Sup35-BAP。
本领域技术人员知晓,本发明上述具体实施方式中蛋白的表达与纯化中具体参数(例如浓度、时间、温度等)数值并不用于限制本发明,本领域技术人员可以依据实际需求作调整。
在一个具体的实施方式中,克隆通过链式酶聚合反应(PCR)完成的。将BirA克隆入pCDFDuet-1具体包括:获取BirA基因的核苷酸序列,设计引物,在上、下游引物中分别加入限制性内切酶NcoI和SalI的酶切位点,通过PCR扩增BirA基因;将PCR产物BirA和表达载体pCDFDuet-1进行双酶切反应,收集酶切产物;将收集到的酶切产物BirA和pCDFDuet-1载体按物质的量比以6:1进行连接反应,得到BirA-pCDFDuet-1。
在一个具体的实施方式中,表达载体可为质粒载体,包括但不限于pET-28、pET-32、pET-15或pET-11质粒载体等;表达宿主还可为枯草芽孢杆菌、巨大芽孢杆菌、棒状杆菌、酿酒酵母、毕赤酵母或哺乳动物细胞等能够进行蛋白表达的宿主。
B.SPG蛋白纳米线-磁性微珠复合物的制备
(1)生物素化种子的制备:将生物素化的融合蛋白Sup35-BAP单体置于4℃孵育一周后,通过超声所产生的剪切力将长的纳米线打断成为纳米线片段制备种子,该种子通过生物素结合在亲和素修饰的磁性微珠表面,快速的诱发自组装功能融合蛋白快速生长在其末端。
(2)SPG蛋白纳米线-磁性微珠复合物的制备:如附图4所示,将亲和素修饰的磁性微珠与过量制备好的生物素化的种子在37℃孵育,通过磁场分离洗涤,加入功能化的融合蛋白Sup35-SPG单体,在室温下孵育,使蛋白纳米线在磁性微珠表面进行生长,通过磁场分离洗涤,即获得Sup35-SPG/Sup35-BAP基于蛋白纳米线的3D探针-磁性微珠复合物,复合物表面高密度固定了用于特异性固定抗体的SPG。
实施例4基于SPG蛋白纳米线-磁性微珠复合物的高灵敏3D免疫检测
本发明一具体实施方式中,将SPG蛋白纳米线-磁性微珠应用于高灵敏3D夹心免疫检测,对目标抗原(p24)进行快速、高灵敏检测。
抗体检测原理参照附图4,由于蛋白纳米线具有着较大的比表面积,展示其上的亲和分子SPG能够更充分的与溶液中固定抗体相结合,从而提高目标分子p24的捕获效率;配合磁性微珠可以快速分离的性质,可以实现对样品中目标分子的快速、高灵敏检测。
夹心免疫检测的具体步骤如下:
(1)将100μL待测样品与等体积的酶标一抗进行混合;
(2)将实施例3制备好的SPG蛋白纳米线-磁性微珠复合物33.3μg与上述步骤(1)所得的待测样品-酶标抗体混合,在37℃下孵育5-15min;
(3)磁场分离1-2min,用100μL PBS洗涤6次;
(4)加入200μL TMB显色液,显色10min;
(5)加入50μL 2M硫酸终止反应;
(6)在450nm波长下测定吸光度。
检测结果如附图5所示,由附图5可知,采用本发明复合物对于目标分子p24的检测浓度可低至0.01ng/mL。
本领域技术人员知晓,功能配体SPG也可采用其它对抗体具有特异性结合能力的蛋白如SPA、SPL等,采用夹心免疫的方法,当结合不同的捕获抗体时,可对与捕获抗体发生特异性结合的相应目标分子(例如巨球蛋白、降钙素、癌症相关抗原等)进行检测。

Claims (12)

1.一种基于蛋白纳米线的3D探针-磁性微珠复合物的制备方法,包括以下步骤:
(1)通过分子克隆将成线蛋白的自组装结构域与至少一种功能配体融合后形成融合蛋白基因LP-L,经表达纯化后得到融合蛋白LP-L;
(2)通过分子克隆将成线蛋白的自组装结构域与至少一种连接配体融合后形成融合蛋白基因LP-CL,经表达纯化后得到融合蛋白LP-CL;或者,
通过分子克隆将成线蛋白的自组装结构域与至少一种功能配体融合后,再与至少一种连接配体融合,形成融合蛋白基因LP-CL,经表达纯化后得到融合蛋白LP-CL;
(3)将步骤(2)得到的融合蛋白LP-CL破碎作为种子,并将所述种子连接在磁性微珠表面,得到种子-磁性微珠复合物;
(4)将步骤(3)得到的种子-磁性微珠复合物表面进行种子诱导自组装,将步骤(1)得到的融合蛋白LP-L组装成蛋白纳米线,得到所述基于蛋白纳米线的3D探针-磁性微珠复合物:
其中,所述蛋白纳米线的3D探针-磁性微珠复合物,包括磁性微珠和蛋白纳米线,所述蛋白纳米线通过成线蛋白自组装形成,且所述蛋白纳米线表面包括至少一种功能配体和至少一种连接配体,所述蛋白纳米线通过连接配体连接在磁性微珠表面。
2.一种基于蛋白纳米线的3D探针-磁性微珠复合物的制备方法,其特征在于:具体包括如下步骤:
(1)通过分子克隆将成线蛋白的自组装结构域与至少一种功能配体融合后形成融合蛋白基因LP-L,经表达纯化后得到融合蛋白LP-L;
(2)通过分子克隆将成线蛋白的自组装结构域与生物素接受多肽融合后形成融合蛋白基因LP-BAP;或者,通过分子克隆将成线蛋白的自组装结构域与至少一种功能配体融合后,再与生物素接受多肽融合,形成融合蛋白基因LP-BAP;
将融合蛋白基因LP-BAP克隆入表达载体,将生物素蛋白连接酶克隆入共表达载体中;
将所述表达载体、共表达载体转入表达宿主中培养,活化至对数生长期后加入IPTG和生物素,所述IPTG用于诱导表达蛋白;
经破碎、纯化后制得生物素化的融合蛋白LP-BAP;
(3)将步骤(2)得到的融合蛋白LP-BAP破碎作为种子,并将所述种子连接在磁性微珠表面,得到种子-磁性微珠复合物;
(4)将步骤(3)得到的种子-磁性微珠复合物表面进行种子诱导自组装,将步骤(1)得到的融合蛋白LP-L组装成蛋白纳米线,得到所述基于蛋白纳米线的3D探针-磁性微珠复合物:
其中,所述蛋白纳米线的3D探针-磁性微珠复合物,包括磁性微珠和蛋白纳米线,所述蛋白纳米线通过成线蛋白自组装形成,且所述蛋白纳米线表面包括至少一种功能配体和至少一种连接配体,所述蛋白纳米线通过连接配体连接在磁性微珠表面,所述连接配体为生物素。
3.如权利要求2所述的制备方法,其特征在于:所述步骤(3)具体包括以下步骤:
将生物素化的融合蛋白LP-BAP置于4℃下孵育一周后,形成纳米线,通过超声将纳米线破碎为纳米线片段,制备生物素化的LP-BAP种子;将亲和素修饰的磁性微珠与过量生物素化的种子LP-BAP在37℃下孵育,通过磁场分离洗涤,得到种子-磁性微珠复合物。
4.如权利要求1-3中任一项所述的制备方法,其特征在于:所述步骤(4)具体包括以下步骤:
将步骤(3)得到的种子-磁性微珠复合物表面进行种子诱导自组装,加入含功能配体的融合蛋白LP-L,在室温下孵育,使蛋白纳米线在磁性微珠表面进行生长,通过磁场分离洗涤,得到所述基于蛋白纳米线的3D探针-磁性微珠复合物。
5.如权利要求1-3中任一项所述的制备方法,其特征在于:所述成线蛋白为酵母朊蛋白Sup35、淀粉样蛋白Ure2、丝素蛋白。
6.如权利要求5所述的制备方法,其特征在于,所述成线蛋白为酵母朊蛋白Sup35。
7.如权利要求1-3中任一项所述的制备方法,其特征在于:所述功能配体选自抗原、具有特异性结合能力的功能化抗体。
8.如权利要求1-3中任一项所述的制备方法,其特征在于:所述功能配体选自HIV-p24或SPG。
9.如权利要求1所述的制备方法,其特征在于:所述蛋白纳米线通过生物素-亲和素相互作用、化学共价交联或特异性DNA-蛋白相互作用的方式连接在磁性微珠表面。
10.如权利要求2所述的制备方法,其特征在于,所述蛋白纳米线通过生物素-亲和素相互作用的方式连接在磁性微珠表面。
11.一种用于免疫分析的产品,其特征在于:所述产品包括如权利要求1-10任一项所述制备方法制得的基于蛋白纳米线的3D探针-磁性微珠复合物。
12.一种如权利要求1-7、9-10任一项所述制备方法制得的基于蛋白纳米线的3D探针-磁性微珠复合物在免疫分析中的应用。
CN201610051186.2A 2016-01-26 2016-01-26 一种基于蛋白纳米线的3d探针‑磁性微珠复合物及其应用 Active CN105717287B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610051186.2A CN105717287B (zh) 2016-01-26 2016-01-26 一种基于蛋白纳米线的3d探针‑磁性微珠复合物及其应用
PCT/CN2016/111261 WO2017128888A1 (zh) 2016-01-26 2016-12-21 一种基于蛋白纳米线的3d探针-磁性微珠复合物及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610051186.2A CN105717287B (zh) 2016-01-26 2016-01-26 一种基于蛋白纳米线的3d探针‑磁性微珠复合物及其应用

Publications (2)

Publication Number Publication Date
CN105717287A CN105717287A (zh) 2016-06-29
CN105717287B true CN105717287B (zh) 2017-11-14

Family

ID=56154467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610051186.2A Active CN105717287B (zh) 2016-01-26 2016-01-26 一种基于蛋白纳米线的3d探针‑磁性微珠复合物及其应用

Country Status (2)

Country Link
CN (1) CN105717287B (zh)
WO (1) WO2017128888A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717287B (zh) * 2016-01-26 2017-11-14 中国科学院武汉病毒研究所 一种基于蛋白纳米线的3d探针‑磁性微珠复合物及其应用
CN108802366B (zh) * 2017-05-04 2020-01-21 中国科学院微生物研究所 一种检测待测样本中目标蛋白的含量的方法
CN109115741A (zh) * 2018-08-23 2019-01-01 海南大学 一种多色荧光磁性化学鼻传感器快速检测病原微生物
CN111748089B (zh) * 2019-03-28 2023-07-18 成都先导药物开发股份有限公司 一种生物素标记化合物以及确定化合物结合靶标蛋白的方法
WO2021160688A1 (en) 2020-02-10 2021-08-19 Instituto de Medicina Molecular João Lobo Antunes Biomaterials
CN114324526B (zh) * 2021-12-27 2023-06-27 青岛农业大学 一种检测人血清中的前列腺特异性抗原的生物传感器及其制备方法和应用
CN115876997A (zh) * 2022-12-05 2023-03-31 中国丝绸博物馆 一种快速检测文物中痕量蛋白的免疫磁珠试纸条的制备方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624568A (zh) * 2009-08-07 2010-01-13 中国科学院武汉病毒研究所 一种纳米分子生物传感器及制备方法和用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013033456A2 (en) * 2011-09-02 2013-03-07 Board Of Trustees Of Michigan State University Microbial nanowires and methods of making and using
US9493513B2 (en) * 2011-10-24 2016-11-15 University Of Washington Through Its Center For Commercialization Polypeptides and their use
US20140134601A1 (en) * 2012-11-09 2014-05-15 Korea University Research And Business Foundation Use of protein nanoparticle based hydrogel
CN104655833A (zh) * 2015-03-05 2015-05-27 中国科学院武汉病毒研究所 一种酶纳米复合物及其可控自组装方法和在免疫分析中的应用
CN105652015A (zh) * 2016-01-26 2016-06-08 中国科学院武汉病毒研究所 多功能荧光蛋白纳米线及其介导的免疫分析方法
CN105717287B (zh) * 2016-01-26 2017-11-14 中国科学院武汉病毒研究所 一种基于蛋白纳米线的3d探针‑磁性微珠复合物及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624568A (zh) * 2009-08-07 2010-01-13 中国科学院武汉病毒研究所 一种纳米分子生物传感器及制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
An auto-biotinylated bifunctional protein nanowire for ultra-sensitive molecular biosensing;Dong Men 等;《Biosensors and Bioelectronics》;20100801;第26卷;第1137-1141页,Supplementary information *

Also Published As

Publication number Publication date
CN105717287A (zh) 2016-06-29
WO2017128888A1 (zh) 2017-08-03

Similar Documents

Publication Publication Date Title
CN105717287B (zh) 一种基于蛋白纳米线的3d探针‑磁性微珠复合物及其应用
JP4111984B2 (ja) 標的物質の検出方法
Wang et al. Advances in epitope molecularly imprinted polymers for protein detection: a review
JP3143477B2 (ja) 生物学的サンプル中における生物学的分子の検出のためのバクテリオファージの使用に基づく方法
JP5200003B2 (ja) 磁場を用いた試料中の標的分子の検出
JP2010096677A (ja) 抗体/抗原結合能を有する高感度免疫学測定用ナノ粒子
KR101104417B1 (ko) 단백질 g 변형체를 이용한 항체의 특이적 공유결합 커플링방법
CN107614458A (zh) 稳定的纳米磁性颗粒分散体
CN116355092B (zh) 抗人血清白蛋白的纳米抗体及其应用
JP5647599B2 (ja) 生物学的試料中の物質を検出する方法
EP0175761A1 (en) Bacteriophages as recognition and identification agents
JP2007510165A (ja) 結合アッセイ成分
WO2014031984A1 (en) Immunological detection methods and compositions
JPH02253162A (ja) 特異的結合能を有する物質と結合したエクオリンを用いる検出法
JP2008058285A (ja) 生体関連物質の検出方法
WO2005095968A1 (ja) センシングツール
WO2021179892A1 (en) Methods of detection of compound, antibody or protein using recombinant endospores or bacteria as sensing element
CN108780092A (zh) 抗p53抗体的检测
KR102098030B1 (ko) 결핵진단용 조성물 및 광학적 특성 변화에 기반한 결핵 진단방법
CN116284424B (zh) 抗鼠抗体可结晶段的纳米抗体及其应用
US20130066046A1 (en) General Method for Generating Ultra-High Affinity Binding Proteins
CN110437341B (zh) 一种具有红色荧光活性的检测蛋白及其应用
Xia et al. Protein self-assembly via Zr4+ ions on spore-based microspheres for immunoassays
Gong et al. Diagnosis of nasopharyngeal carcinoma using an ultrasensitive immunoassay method based on nanoparticles
US10107805B2 (en) Virus-microbead complex and use thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant