CN105679686B - 半导体装置的制造方法及接合组装装置 - Google Patents

半导体装置的制造方法及接合组装装置 Download PDF

Info

Publication number
CN105679686B
CN105679686B CN201510762725.9A CN201510762725A CN105679686B CN 105679686 B CN105679686 B CN 105679686B CN 201510762725 A CN201510762725 A CN 201510762725A CN 105679686 B CN105679686 B CN 105679686B
Authority
CN
China
Prior art keywords
vacuum furnace
metal wire
gas
vacuum
engagement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510762725.9A
Other languages
English (en)
Other versions
CN105679686A (zh
Inventor
斋藤俊介
渡边裕彦
大西永
大西一永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of CN105679686A publication Critical patent/CN105679686A/zh
Application granted granted Critical
Publication of CN105679686B publication Critical patent/CN105679686B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting

Abstract

一种半导体装置的制造方法,包括:准备工序,将包含至少一个被接合构件和焊锡材料的层叠体投入减压炉内;一次减压工序,对减压炉内进行真空排气;热射线式加热工序,将减压炉内设为低压的氢气氛,对与减压炉之间隔着能开闭的分隔壁地设置于减压炉外的金属线进行加热,或对与输送台、冷却板以及热板之间隔着能开闭的分隔壁地设置于减压炉内的金属线进行加热,产生原子态氢;隔离工序,在将金属线保持在低压气氛下的状态下,利用所述分隔壁自减压炉内气氛隔离开所述金属线;加热工序,将减压炉内设为正压的氢气氛并加热至接合温度使焊锡材料熔融;及气泡去除工序,在保持为接合温度的状态下将减压炉内再次设为真空气氛而去除焊锡熔体中的气泡。

Description

半导体装置的制造方法及接合组装装置
技术领域
本发明涉及半导体装置的制造方法及其使用的接合组装装置。本发明特别涉及能够制造具有比以往高品质且可靠性高的焊锡接合层的半导体装置的半导体装置的制造方法以及该方法所使用的、维护性优异的接合组装装置。
背景技术
以往,作为制造电力用半导体装置的方法,主要实施了以下三个方法。在第一方法中,首先使用还原气氛的连续炉(管道炉),进行预先沾锡(日文:予備はんだ),在硅片的背面电极上设置焊锡。接着,借助该焊锡在绝缘基板上锡焊硅片。之后,进行引线接合。然后,在大气中使用焊剂(flux)将在绝缘基板上锡焊了硅片后的构件焊接在由铜等形成的金属基座上。在第二方法中,使用还原气氛的连续炉,锡焊硅片和绝缘基板。之后,进行引线接合。然后,使用还原气氛的连续炉将在绝缘基板上锡焊了硅片后的构件锡焊在金属基座上。在第三方法中,使用非活性气氛的减压炉,利用加入了焊剂的焊锡对硅片、绝缘基板以及金属基座进行锡焊。之后,进行引线接合。
可是,在电源组件等电力用半导体装置中,由于流有大电流,因此硅片的发热量达数十~数千瓦特,非常大。因此,在电力用半导体装置中,要求优异的散热特性。但是,若硅片与绝缘基板之间的焊锡接合层、绝缘基板与金属基座之间的焊锡接合层存在气泡(空隙),则这些气泡妨碍了散热,因此带来了散热特性的明显降低,成为导致半导体装置破坏的原因。因而,使焊锡接合层中尽可能地不存在气泡是很重要的。
作为在焊锡接合层中产生气泡的原因,可列举构成层叠体的金属构件表面的残留氧化物和焊锡材料中的二氧化碳气体等溶存气体在焊锡熔融时作为气泡而残留。另外,在锡焊时,焊锡、绝缘基板等被接合构件的表面所吸附的吸附物或者氧化锡、氧化铜、氧化镍被还原,由此产生的H2O气化而作为气泡残留的情况也被作为原因列举出来。另外,由于锡焊时使用的焊剂的气化而产生的气体、焊剂本身残留于焊锡接合层中的情况也是原因之一。
因而,为了减少焊锡接合层中的气泡,一般来说,采取了防止被接合构件表面氧化并将其表面保持洁净、或者使用没有溶存气体的焊锡材料、润湿性较好的焊锡材料等对策。另外,采取了使锡焊分布最优化、或者控制被接合构件的变形、或者在减压气氛中进行锡焊等对策。
也提出了许多关于锡焊方法的方案。例如,公知有一种方法,其通过使用锡焊装置,并利用加热部件对电路板进行加热,控制处理容器内的气氛的压力,从而进行焊锡连接,该锡焊装置包括处理容器、通过利用真空排气和高纯度气体导入生成低氧浓度气氛来控制处理容器内的气氛及其压力的部件以及设于处理容器内的加热部件(例如,参照专利文献1)。
另外,也公知有一种半导体装置的制造方法,其特征在于,将包括金属基座、焊锡板、绝缘基板、焊锡板以及硅片的层叠体设置在减压炉内,在对炉内进行了真空排气之后,将炉内设为正压的氢气氛而对层叠体的各个构件的表面进行还原,之后使焊锡加热熔融(例如,参照专利文献2)。
此外,也公知有一种锡焊方法,其在氢与氮的混合气体气氛下加压的状态下加热至焊锡的熔融温度以上的高熔融温度,接着减压至真空,在氮气气氛下再次进行加压,之后使温度降低直至小于焊锡的熔融温度使焊锡凝固(例如,参照专利文献3)。
而且,也公知有如下技术:使用热射线法用的反应装置,利用包括钨丝的催化物将气体分解,从而生成氢自由基等活性种,还原去除硅等基材表面的污染物(例如,参照专利文献4)。
现有技术文献
专利文献
专利文献1:日本特开平8-242069号公报
专利文献2:日本特开2003-297860号公报
专利文献3:日本特开2009-253157号公报
专利文献4:日本特开2010-50252号公报
发明内容
发明要解决的问题
但是,例如,在专利文献1的方法中,在搭载元件的固定中使用了液体,但是需要在投入锡焊装置之前利用另外的设备进行预处理(液体的涂布),存在操作工序增加以及产生操作时间这样的不利之处。另外,在专利文献2的方法中,在大约300℃以上时有效地发挥了氢的还原能力,但是在该温度以下的温度范围,被接合构件和焊锡的还原不足,有时接合性恶化。为了提高氢气的还原能力,也存在使加热温度进一步高温化的方法,但是会担心硅片的热损伤。
即使在专利文献3所公开的发明中,除了需要设为300℃以上的高温条件以外,还在接合部中残存有利用氢气的还原能力处理不完的被接合构件、焊锡的氧化物,存在接合性恶化的担心,无法获得充分的空隙产生的抑制效果。
另外,专利文献4所公开的方法主要公开了在硅表面上形成氮化硅膜的技术,但其只不过记载了高浓度的氢自由基的产生反而成为不利之处,对于接合中的氢自由基的作用却没有任何公开。
要求一种改良以往技术以及专利文献1~专利文献4所公开的技术中的不足之处且能够获得更高品质且可靠性高的焊锡接合层的半导体装置的制造方法。
用于解决问题的方案
本发明是鉴于上述问题点而做成的。即,本发明的一种实施方式提供一种半导体装置的制造方法,其包括:准备工序,将包含至少一个被接合构件和至少一个焊锡材料的层叠体投入减压炉内;一次减压工序,在所述准备工序之后,对所述减压炉内进行真空排气;热射线式加热工序,在所述一次减压工序之后,使所述减压炉内成为低压的氢气氛,对与所述减压炉之间隔着能够开闭的分隔壁地设置于所述减压炉外的金属线进行加热,或者对与所述输送台、冷却板以及热板之间隔着能够开闭的分隔壁地设置于所述减压炉内的金属线进行加热,产生原子态氢;隔离工序,在所述热射线式加热工序之后,在将所述金属线保持在低压气氛下的状态下,利用所述分隔壁自所述减压炉内气氛隔开所述金属线;加热工序,在所述隔离工序之后,将所述减压炉内设为正压的氢气氛,加热至接合温度而使所述焊锡材料熔融;以及,气泡去除工序,在所述加热工序之后,在保持为接合温度的状态下使所述减压炉内再次成为真空气氛而去除焊锡熔体中的气泡。
在所述半导体装置的制造方法中,优选的是,在所述热射线式加热工序之前,所述金属线被保持在低压气氛下,并自所述减压炉内气氛隔离开。
优选的是,在所述半导体装置的制造方法的所述热射线式加热工序中,将金属线加热到1500℃~2000℃。
优选的是,所述半导体装置的制造方法的所述热射线式加热工序中的所述低压的氢气氛是1Pa~500Pa的氢气氛。
优选的是,在所述半导体装置的制造方法的所述气泡去除工序中,实施一次以上的热射线式加热工序,在该热射线式加热工序中,打开所述分隔壁并对所述金属线进行加热,以产生原子态氢。
优选的是,在所述半导体装置的制造方法的所述热射线式加热工序中,在焊锡熔融温度以下对所述至少一个被接合构件和/或所述至少一个焊锡材料的氧化物进行还原。
本发明的另一实施方式提供一种接合组装装置,其中,该接合组装装置在减压炉内包括:输送台,其用于支承包含至少一个被接合构件和至少一个焊锡材料而成的层叠体,该输送台能够沿水平方向和铅垂方向进行移动;冷却板和热板,其在水平方向上隔开地设置,该冷却板能够介由所述输送台对所述层叠体进行冷却,该热板能够介由所述输送台对所述层叠体进行加热;氢分子气体导入管;非活性气体导入管;以及排气口;并且该接合组装装置包括:活性种产生装置,其包括与所述减压炉之间隔着能够开闭的分隔壁地设于所述减压炉外的至少金属线和活性种生成气体导入管,或者包括与所述输送台、冷却板以及热板之间隔着能够开闭的分隔壁地设于所述减压炉内的至少金属线和活性种生成气体导入管;以及加热部件,其用于对所述金属线进行加热。
在所述接合组装装置中,优选的是,所述活性种产生装置以能够拆卸的方式设于所述减压炉外。
在所述接合组装装置中,优选的是,所述能够开闭的分隔壁是活门机构。
在所述接合组装装置中,优选的是,所述活性种产生装置设于所述减压炉外的侧壁。
在所述接合组装装置中,优选的是,所述金属线是从钨、钼、铂、镍、铼中选择的金属或者包括这些金属中的一种以上的金属的合金,通过加热到1000℃以上,将活性种生成气体加热分解而生成活性种。
发明的效果
根据本发明的半导体装置的制造方法,利用通过金属线的加热而产生的活性种的高氧化物还原效果,能够提高层叠体的接合特性,并且能够利用能够开闭的分隔壁来控制金属线的气氛,防止金属线的氧化劣化,能够同时实现产品特性的提高和制造方法中的效率性。而且,由于能够开闭的分隔壁的存在,能够防止来自金属线的金属粒子附着于层叠体,能够防止所获得的半导体装置的接合不良等,而且,也有金属线的加热对减压炉内温度的影响较小这样的优点。根据本发明的方法,去除了焊锡中的气泡,而且迅速地去除了通过不同种材料的接合而产生的金属基座的翘曲,因此能够在开始后十几分钟以内就获得具有比以往高品质且可靠性高的焊锡接合层且散热性优异的半导体装置。与以往相比,在较低的温度范围、例如300℃以下就有还原效果,而且氢气、非活性气体的使用量较少即可,而且不必使用焊剂。因此,能够获得处理时间缩短且高接合品质、运转成本的降低效果、环境负荷降低这样的效果,能够消除批量生产的多个产品之间的偏差,能够使品质稳定化。
另外,根据本发明的一实施方式的接合组装装置,能够将金属线保持在自减压炉内气氛隔离开的气氛中,因此能够防止由金属线的氧化劣化引起的寿命降低,而且,能够防止来自金属线的金属粒子对被接合构件和减压炉内造成污染。而且,能够大幅度降低内置有金属线的活性种产生装置的维护频率(cycle)。而且,在将活性种产生装置以能够拆卸的方式构成于减压炉外的实施方式中,能够与减压炉相独立地单独处理活性种产生装置,不用使减压炉停止,金属线的更换、装置内的清洗等维护变容易。
附图说明
图1是概略说明本发明的一实施方式的接合组装装置的图。
图2是示意性表示在本发明的一实施方式的接合组装装置中、进行锡焊的、包括被接合构件和焊锡的层叠体的结构的图。
图3是表示本发明的一实施方式的半导体装置的制造方法中的、温度曲线、腔室内气氛和压力、金属线通电、活门打开以及处理动作的一例的图表。
附图标记说明
1金属基座;2绝缘基板;3绝缘基板-金属基座接合用焊锡材料;4硅片;5硅片-绝缘基板接合用焊锡材料;10层叠体;11减压炉;110炉主体;111盖体;112密封件;113排气口;114开口部;13输送台;14输送轨道;15冷却板;16热板;17氢分子气体导入管(活性种生成气体导入管);18非活性气体导入管;20原子态氢产生装置(活性种产生装置);201金属线;202氢分子气体导入管(活性种生成气体导入管);203电源连接端子;204观察窗;205大气打开阀;30活门机构;301驱动部;302轴;303活门(分隔壁);40电源装置;50减压装置;60冷却器;a氢分子气体;b氮气;c排气;d冷却水。
具体实施方式
以下,参照附图,说明本发明的实施方式。但是,本发明并不由以下说明的实施方式限定。
作为本发明的第一实施方式,参照附图说明在至少包括热射线式加热工序的半导体装置的制造方法中适当地使用的接合组装装置,所述热射线式加热工序是对隔着能够开闭的分隔壁地设于减压炉外或减压炉内的金属线进行加热的工序。
图1中表示本发明的一实施方式的接合组装装置的概略图。接合组装装置在减压炉11内主要具备输送台13、冷却板15、热板16、还原性气体导入管17以及非活性气体导入管18,还具备与所述减压炉11之间隔着能够开闭的分隔壁303地设于减压炉11外的活性种产生装置20,所述活性种产生装置20至少具备金属线201以及活性种生成气体导入管202。本说明书中,还原性气体是指在减压下相对于构成半导体装置的焊锡和被接合构件具有高还原性的气体。活性种生成气体是指被金属线201催化分解(接触分解)、具有高还原性且能够生成具有不成对电子的元素的气体,例如,可列举氨、四氟化碳、六氟化硫等含卤气体等,但是并不限定于此。还原性气体和活性种生成气体并不限定于特定的气体,但是在以下本实施方式的说明中,作为还原性气体和活性种生成气体的一例,使用氢分子气体进行说明,而且作为活性种生成装置的一例,说明原子态氢产生装置。另外,还原性气体和活性种生成气体典型地说是同一种气体,但是只要两者在后述的半导体装置的制造方法中的温度、压力条件下不发生反应,还原性气体和活性种生成气体就可以不同。
减压炉11主要包括炉主体110和借助密封件112覆盖炉主体110并将炉内部保持为气密状态的盖体111。在减压炉11上设有用于向炉内供给氢分子气体a的氢分子气体导入管17、用于向炉内供给氮气b等非活性气体的非活性气体导入管18以及排气口113。在炉主体110的底部隔开地设置有热板16和冷却板15。输送台13以能够利用输送轨道14在热板16与冷却板15之间往返的方式构成。而且,输送台13构成为也能够利用未图示的其他机构沿铅垂方向上下移动。
在构成减压炉11的盖体111的一部分的侧壁部设有作为与原子态氢产生装置20之间的连接口的开口部114。而且,从减压炉11的内侧安装有作为相对于该开口部114能够开闭的分隔壁的活门机构30。活门机构30实质上包括驱动机构301、活门303以及连结驱动机构301与活门303的轴302。而且,通过利用驱动机构301使活门303上下移动,从而能够进行覆盖开口部114的分隔壁的开闭。在图示的“活门打开”状态下,开口部114暴露,在与位于炉外的原子态氢产生装置20之间,能够实现含有气体的物质的连通。在“活门关闭”状态下,活门303覆盖开口部114,减压炉11与原子态氢产生装置20之间被隔开。另外,在本发明中,能够开闭的分隔壁并不限定于上下驱动的活门机构,可以是不会使原子态氢的流路实质上变窄的各种方式。
原子态氢产生装置20在一端具有开口部的大致圆筒形的主体内收纳金属线201,主体上有氢分子气体导入管202、电源连接端子203、观察窗204以及大气打开阀205。在开口部设有凸缘,成为与减压炉11之间的连接部206。
氢分子气体导入管202设于原子态氢产生装置20主体的、与开口部不同的一端,以自氢分子气体导入管202形成朝向减压炉11的气体的流路的方式构成。而且,在图示的实施方式中,与气体的流动大致平行地安装有两根螺旋状的金属线201。金属线201只要以其表面能够充分地接触从氢分子气体导入管202导入的氢分子气体的方式进行安装即可,而且,由于金属线201能够因热量、氧化而劣化,因此优选的是,金属线201以能够更换的方式安装于原子态氢产生装置20。
金属线201是能够利用借助电源连接端子203相连接的、直流或交流电源装置40被加热到1000℃以上、优选1500℃以上、进一步优选1600℃以上,且优选2000℃以下的线状的金属构件,是利用氢分子气体的催化分解反应而能够生成还原性的原子态氢(氢原子)的构件。金属线201能够反复使用多次,例如能够反复使用大约1000次左右,但是反复使用的次数并不限定于特定的次数。在本说明书中,氢分子气体是指气体状的氢分子,与通过金属线的加热而生成的原子态氢相区别进行使用。构成金属线的材料例如是钨、钽、钼、钒、铂、钍、锆、钇、铪、钯、镍、铼或者以这些金属中的一种以上为主要成分的合金较好,优选的是使用钨,但是只要是具有上述功能的材料,就不限定于特定的金属。金属线201能够使用直径例如为0.1mm~1.0mm、优选为0.3mm~0.8mm的金属线,但是并不限定于这种直径。金属线201既可以是单股线,也可以是组合两根以上的金属线而形成多股线的金属线。
另外,图示的金属线201的配置只是一个例子,并不限定于特定的方式。既可以设置1根或3根以上的形成为单股线或多股线的金属线201,也可以将其垂直于气体的流路进行配置。另外,也可以将这样的、形成为单股线或多股线的金属线201设为例如锯齿形状(Z字形状、U字形状)、螺旋状(漩涡状)、网眼状、格子状或者适当地组合了这些形状后的形状。只要是金属线201的表面积变大并且与氢分子气体之间有效地产生催化分解反应的方式即可。这是为了通过增大氢分子气体与金属线201之间的接触面积而生成更多的还原性的原子态氢。
原子态氢产生装置20的内部壁面以确保耐压性、耐热性以及绝缘性的方式构成。这是因为,原子态氢产生装置20的内部通常保持为减压状态。而且是因为,金属线201的周围为非常高的温度,并且施加有电流、电压。
也可以为了从原子态氢产生装置20的外部监视金属线的通电状态以及金属线的直径的减少、断线这样的氧化劣化状态等而任选地设置观察窗204。另外,大气打开阀205是为了将处于减压状态的原子态氢产生装置20的压力恢复为常压而设置的。
原子态氢产生装置20能够利用连接部206与减压炉11之间保持气密状态地进行连接,而且,能够利用简单的机构进行卸下。特别是在利用活门机构30封闭了减压炉11的开口部114的状态下,能够不对减压炉11的内部带来影响地卸下原子态氢产生装置20。因而,不用停止减压炉11就能够进行原子态氢产生装置20的维护、例如金属线的更换、装置内的清洗。
原子态氢产生装置20的形状、内部结构、金属线201的位置、与减压炉11相连接的开口部的位置、以及相对于减压炉11的安装的方式并不限定于图示的实施方式,但是并不优选的是,相对于金属线,在重力方向下方存在有与减压炉11相连接的开口部。这是为了防止发热而蒸发的金属线的一部分固体化而成为微粒子、向减压炉扩散而附着于作为被接合体的层叠体。金属微粒子向层叠体的附着存在带来层叠体的绝缘特性降低的隐患,特别是若在金属线的重力方向下方没有遮挡物地存在有层叠体,则金属微粒子易于附着于层叠体。在本实施方式中,金属线201配置在距减压炉11至少隔着分隔壁的程度的距离,在金属线201的重力方向下方未存在有层叠体,因此能够大幅度降低来自金属线的金属微粒子的飞散及向层叠体的附着。优选的是,原子态氢产生装置20为在直至由金属线生成的原子态氢到达减压炉11的流路中未存在有障壁的结构、例如狭窄部、弯曲部较少的结构,更优选的是,如图所示地从金属线201的位置直至到达减压炉的气体的流路的截面积实质上未发生变化,而且流路呈直线状。这是为了防止原子态氢因撞击的冲击而减少、不能到达还原对象物。
优选的是,如图所示,原子态氢产生装置20以能够拆卸的方式设于减压炉11的侧壁的外部,即设于构成与热板16相面对的盖体111的侧壁的外部。向减压炉11内流入的原子态氢朝向排气口113流动,因此能够利用与排气口113和层叠体10之间的相对的位置关系来确定原子态氢产生装置20的设置位置,并设置减压炉11的开口部114,以使得层叠体10位于原子态氢的流路上,且位于活门302的附近。后面说明原子态氢产生装置的其他安装方式。
冷却板15只要是包括至少具有冷却面且能够调节冷却温度和速度的任意的冷却机构的构件即可,可以是在典型的锡焊装置中通常使用的冷却板。作为一例,冷却板15也可以连接于炉外的、使冷却板15的冷却水d循环的冷却器60。在该情况下,在炉主体110的、优选底部且是冷却板15的下方,也可以设有用于冷却水的循环的未图示的出入口。另外,冷却板15也可以是利用其他机构对层叠体进行冷却的构件。另外,热板16只要是包括至少具有加热面且能够调节加热温度和速度的任意的加热机构的构件,可以是在典型的锡焊装置中通常使用的热板。例如,作为热板16,也可以是能够隔着输送台13在常温~400℃的范围内对层叠体10进行加热的加热器等。
冷却板15和热板16在减压炉11的底部隔开地设置。优选的是,冷却板15和热板16例如隔开10mm~50mm左右的距离进行设置。另外,优选的是,冷却板15的冷却面和热板16的加热面设置在距离减压炉11内的底部为大致相同的高度的位置。另外,优选的是,冷却板15的冷却面和热板16的加热面具有大致相同的面积。另外,在图示的实施方式中,冷却板15、热板16分别离开减压炉11内的底部地设置。这是为了避免从冷却板15、热板16向炉主体的热量移动,进行高效的冷却或加热。但是,也可以配置适当的隔热材料并将冷却板15、热板16接触设置于减压炉11内的底部来取代这种设置方式。
作为未图示的任意选择的结构,也可以在冷却板15与热板16之间设置作为隔热壁发挥作用的分隔板。另外,也可以在热板16的外周设置隔热壁。利用该结构,能够消除热板16与冷却板15相接近的区域中的温度的不均匀部分。利用该结构,能够起到保温效果。
输送台13保持层叠体10,并作为层叠体10的移动部件发挥作用。输送台13及其驱动机构是在典型的锡焊装置中通常使用的机构较好。输送台13以能够利用输送轨道14在热板16与冷却板15之间沿水平方向进行移动的方式构成。即,能够沿图1中的左右方向进行移动,而且,构成为也能够利用未图示的机构沿铅垂方向进行移动,能够在位置A、B、C、D之间进行移动。优选的是,输送台13的铅垂方向的可动范围设为0mm~50mm。优选的是,输送台13在其上具有能够拆装的均热板(未图示)。均热板只要是能够保持作为接合对象的层叠体10并用于均热化的构件即可,例如,能够使用由2mm~3mm的碳板形成的均热板。
氢分子气体导入管17和非活性气体导入管18安装于减压炉主体111。氢分子气体导入管17连接于减压炉外的未图示的氢分子气体供给源,非活性气体导入管18连接于减压炉外的未图示的非活性气体供给源,分别向减压炉11内供给氢分子气体和非活性气体。另外,氢分子气体导入管17不仅导入氢分子气体、而且有时还发挥将上述其他活性种生成气体单独导入或将上述其他活性种生成气体与氢分子气体一起导入的功能。或者,也可以设有用于将其他活性种生成气体导入减压炉11内的、未图示的其他另外的管。另外,非活性气体导入管18典型地是氮气导入管,也可以是导入其他非活性气体的非活性气体导入管。
氢分子气体导入管17的、向炉内的喷出口设为能够使氢分子气体被热板16加热从而使构成层叠体10的焊锡还原并从排气口113向炉外排出的位置。优选的是,只要是更靠近热板16而不是更靠近冷却板15的区域,即图1中的纸面右侧区域即可,可以是侧壁的下方、中段、上方、顶部中的任意区域。另一方面,非活性气体导入管18只要以能够向减压炉11内大致均匀地导入氮气等非活性气体并置换炉内气氛的方式构成即可,并不限定于特定的方式。
减压炉11只要是内部能够耐受真空且能够保持气密性的炉体即可,其容量等并不受到限定。优选的是,内部由难以因原子态氢或其他活性种而劣化的材料构成,例如可以由SUS304、SUS316等不锈钢、实施了表面处理的不锈钢以及铝合金构成。减压炉11的排气口113除了用于将炉内抽真空以外,也是在炉内作为层叠体10的构成构件的还原结果而生成的、含氧化合物、含有硫化物、氯化物等的含氢化合物等的排出口。在排气口113连接有真空泵等减压装置50。
在减压炉11内,还可以具有未图示的压力测量装置和/或温度测量装置。通过使用压力测量装置来监视炉内的全压以及任选的氢分压,和/或通过使用温度测量装置来监视构成层叠体10的构件的温度,能够进行减压炉11内部的反应的调节。
另外,虽未图示,但是作为原子态氢产生装置20的其他设置方式,也能够设置在相当于减压炉11的顶部的盖体111的外部。在该情况下,例如,原子态氢产生装置20自身的结构与图1所示的结构相同,能够利用不使原子态氢流路变窄地连接的弯曲管等来连接原子态氢产生装置20与减压炉11之间。或者,原子态氢产生装置20也能够以能够拆卸的方式设置于减压炉11的内部,例如设置于图1所示的减压炉11内部的热板的上方。在该情况下,例如,活门机构不是设于减压炉的侧壁、顶部,而是设于原子态氢产生装置20的开口部。或者,也能够在减压炉11内部的热板的上方设置由壁面包围的空间并在内部设置金属线,在开口部安装能够开闭的活门机构。通过如此构成,金属线能够构成为即使位于减压炉11的内部也还是能够与减压炉11的内部气氛隔离开,无论哪种方式,通过将开口部设为不直接与热板相面对的角度,从而使来自金属线的金属微粒子不会污染位于热板上的层叠体。
本实施方式的接合组装装置在后述的半导体装置的制造方法中适当地用于层叠体的接合,能够接合的对象是至少一个被接合构件和至少一个焊锡材料的层叠体,特别是在至少两个被接合构件之间夹设有焊锡材料的任意的层叠体。但是,该装置的接合的对象的层叠体并不限定于半导体装置,可列举电力转换器、通电电路、印刷电路板等。
以下,说明本发明的半导体装置的制造方法。本发明的半导体装置的制造方法主要包括层叠体的准备工序、一次减压工序、热射线式加热工序、金属线隔离工序、焊锡材料的熔融加热工序、气泡去除工序、再还原工序、冷却工序、二次减压工序以及减压炉释放工序。
在本发明的半导体装置的制造方法中,作为制造对象的半导体装置的一例,可列举IGBT组件、IPM等电源组件。特别是包括至少一个被接合构件和至少一个焊锡材料的接合体而成的半导体装置较好,典型地包括在至少两个被接合构件之间夹设有焊锡材料的层叠结构体而成的半导体装置较好,更典型地包括将在具有金属电路板的陶瓷等绝缘基板上焊锡了硅片等元件后的构件焊锡在金属基座上而成的层叠结构体而成的半导体装置。
参照图2,典型地,构成半导体装置的层叠体10是在金属基座1上借助绝缘基板-金属基座接合用焊锡材料3层叠绝缘基板2、进而在其上借助硅片-绝缘基板接合用焊锡材料5层叠硅片4而成的。在图2中,作为半导体元件的一例,列举硅片进行了说明,但是在本发明中能够成为接合对象的半导体元件并不限定于硅片,可列举SiC芯片、GaN芯片,但是并不限定于此。在以下说明中,将图2所示的层叠体10作为被接合构件及焊锡材料的一例进行说明,但是本发明中的作为制造对象的层叠体的结构并不限定于此。
作为构成半导体元件的集电极面、金属基座以及绝缘基板的表面的典型的被接合构件(接合母材),可列举金(Au)、铜(Cu)、银(Ag)、镍(Ni)和/或以这些金属中的一种以上金属为主要成分的合金,但是并不限定于此。
作为典型的焊锡材料,能够使用无铅焊锡、优选熔点约为190℃~290℃的无铅焊锡,更优选的是,能够使用熔点约为210℃~290℃的无铅焊锡。作为优选的实施方式,使用熔点约为190℃~290℃的无铅的含Sn焊锡。含Sn无铅焊锡包括Sn焊锡、Sn-Ag系焊锡、Sn-Cu系焊锡、Sn-Sb系焊锡(熔点:约190℃~290℃)、Sn-Bi系(熔点:约270℃)等。更优选为Sn-Ag系焊锡。Sn-Ag系焊锡包括Sn-Ag、Sn-Ag-Cu、Sn-Ag-Bi、Sn-Ag-Cu-Bi、Sn-Ag-Cu-In、Sn-Ag-Cu-S以及Sn-Ag-Cu-Ni-Ge等。更优选为Sn-3.5Ag-0.5Cu-0.1Ni-0.05Ge焊锡或Sn-3.5Ag-0.5Cu焊锡。同样地,Sn-Sb系焊锡也被广泛用于功率器件的芯片接合。Sn-Sb系焊锡包括Sn-Sb、Sn-Sb-Ag、Sn-Sb-Ag-Cu、Sn-Sb-Ag-Cu-Ni等。优选为Sn-5Sb、Sn-8Sb、Sn-13Sb、Sn-8Sb-3Ag、Sn-8Sb-3Ag-0.5Cu、Sn-8Sb-3Ag-0.5Cu-Ni0.03wt.%~0.07wt.%等。另外,焊锡材料既可以是焊锡板,也可以是膏状焊锡,其形态并不受到限定。
接着,参照图3说明本发明的半导体装置的制造方法中的各个工序。图3是表示本发明的半导体装置的制造方法中的、温度曲线、减压炉内气氛和压力、金属线通电、活门打开的状态以及处理动作的一例的图表。
作为准备工序,如图2所示,层叠多个被接合构件和焊锡材料,形成层叠体10。接着,将该层叠体10载置在减压炉11内的输送台13上。层叠体10向输送台13的载置既能够利用合适的装置来进行,也能够手动进行。在上述间歇式接合组装装置中,利用一次操作接合的层叠体10既可以如图所示为一个,也可以为多个。
在输送台13上载置层叠体10,按照图3所示的图表开始锡焊。在准备工序之后,在对所述减压炉内进行真空排气的一次减压工序(时刻T0~时刻T1)中,首先将减压炉11密封,开始炉内的减压(时刻T0)。在其脱气处理时,输送台13处于与热板16和冷却板15均离开的待机状态的、图1的位置A。在时刻T0~时刻T8的全部工序中,优选的是,减压装置50总是设为工作的状态,持续进行减压炉11内的排气。
在准备工序和一次减压工序中,减压炉11与金属线201被作为分隔壁发挥作用的活门303隔开。金属线201从开始本发明的方法之前就被保持在例如1Pa~500Pa左右的低压的氢气氛下或非活性气体气氛下,优选为真空状态下,在优选的实施方式中,位于与减压炉11隔开的原子态氢产生装置20内。
在所述一次减压工序之后,进行将所述减压炉内设为低压的氢气氛并对金属线进行加热而产生原子态氢的热射线式加热工序(时刻T1~时刻T2)。而且,该工序也能够称作利用原子态氢对被接合构件和焊锡材料进行还原的一次还原工序。在此,低压的氢气氛是指1Pa~500Pa左右的氢气氛。向减压炉内导入的氢分子气体的流量例如利用质量流量控制器等进行控制。
在热射线式加热工序中,输送台13向热板16的上方且是被热板16加热的位置移动,即向图1的位置C移动,开始层叠体10的加热。另外,若减压炉11内的真空度达到1Pa~10Pa、例如5.73Pa,则从氢分子气体导入管17向减压炉11内开始氢分子气体a的导入(时刻T1)。另外,若减压炉11内的压力为1Pa~500Pa、优选为10Pa~300Pa,则作为分隔壁的活门303打开。接着,氢分子气体导入管17关闭,切换为自原子态氢产生装置20的氢分子气体导入管202导入氢分子气体a。然后,大致同时,金属线201因通电而被加热。另外,向金属线201通电的时刻既可以在活门303打开之前也可以在活门303打开之后,既可以在自氢分子气体导入管202导入氢分子气体a之前也可以在自氢分子气体导入管202导入氢分子气体a之后,但是自氢分子气体导入管202导入氢分子气体a需要在活门303打开之后。这是为了不使原子态氢产生装置20内的压力上升。在图3的图表中,将向金属线201通电的时刻或可以通电的时刻表示为“金属线通电”。若金属线201的温度达到例如1600℃,则被导入到原子态氢产生装置20内的氢分子气体a分解,成为具有高还原能力的原子态氢的状态。
另外,在其他实施方式中,也可以是,在时刻T1,输送台向热板16的上方且是作为未被热板16直接加热的位置的图1的位置B移动,不被热板16加热地进行向金属线的通电。另外,也可以是在恒定时间内同时进行氢分子气体自氢分子气体导入管17和氢分子气体导入管202的导入的状态,取代氢分子气体导入管17关闭并切换为氢分子气体a自氢分子气体导入管202的导入的状态。这是为了能够获得通过利用两个系统导入氢分子气体从而氢分子气体流量增多并能够较快地形成期望的氢压力的优点。
金属线201的优选的加热温度因构成金属线201的金属材料或合金材料而不同,例如在使用钨作为金属线的情况下,能够设为1600℃~1800℃。构成层叠体10的各个构件表面的还原处理所需的金属线201的持续加热时间(时刻T1~时刻T2的时间)例如能够设为10秒~5分钟,优选的是能够设为30秒~120秒。金属线201的优选的加热时间也因构成金属线201的金属材料或合金材料而不同,例如在使用钨作为金属线的情况下,能够设为30秒~120秒。
自氢分子气体导入管202导入的氢分子气体a与被加热的金属线201相接触,生成原子态氢(氢原子)。期间,为了将减压炉11和原子态氢产生装置20内的压力保持为例如1Pa~500Pa、优选10Pa~300Pa,一边控制来自氢分子气体导入管202的氢分子气体a的流量,一边使减压装置50工作,从而持续进行减压炉11内的减压(排气)。由此,原子态氢从原子态氢产生装置20向减压炉11流入,有助于构成层叠体10的各个构件表面的还原处理。原子态氢的还原反应的结果是,所生成且向减压炉内的气氛放出的物质、例如水、属于氢化合物的硫化氢、氯化氢等作为排气c被排出到减压炉11外。另外,在金属线201被通电的期间,同时利用热板16对构成层叠体10的各个构件进行加热,构成层叠体10的焊锡材料3、5的温度依赖于构件,但是约为100℃~200℃。这样,在热射线式加热工序中,能够以比以往的氢分子气体的还原所需的温度低的温度实现还原的效果。另外,在热射线式加热工序中,也能够取代作为原子态氢源向原子态氢产生装置20导入的氢分子气体或者在氢分子气体的基础上,使用氨气、四氟化碳、六氟化硫等含卤气体。
在时刻T2,向金属线201的通电以及来自氢分子气体导入管202的氢分子气体a的供给停止。之后,氢被排出,减压炉11和原子态氢产生装置20内处于例如1Pa~100Pa、优选1Pa~50Pa以下的状态(在图3中未表示)下,关闭活门303。该操作相当于关闭分隔壁并使金属线201在减压状态下自减压炉11内的气氛隔离开的隔离工序。利用该隔离工序,能够防止由于接下来减压炉11所暴露的各种气氛、特别是减压炉向大气打开时的大气曝露引起的金属线201的氧化劣化及寿命的缩短。
另外,在时刻T2输送台13位于位置B时则向位置C移动。在隔离工序之后,实施将所述减压炉内设为正压的氢气氛并加热至接合温度而使所述焊锡材料熔融的加热工序(时刻T2~时刻T3)。而且,该工序也被称作在热射线式加热工序之后将所述减压炉内设为正压的氢气氛并对所述层叠体的各个构件的至少被接合表面进行还原的二次还原工序。在本说明书中,正压是指比101.3×103Pa大的压力。在加热工序中,再次从氢分子气体导入管17向减压炉11内导入氢分子气体a,将炉内设为正压的氢气氛。层叠体10隔着位于位置C的输送台13被加热,直至达到目标接合温度都保持该状态。图3中的时刻T3~时刻T5的恒定温度表示接合温度。升温速度能够设为每秒约1℃~30℃,优选设为约5℃~10℃。
在此,优选的是,热板16的温度为比构成层叠体的焊锡的液相线温度高约25℃左右以上的温度。例如,在作为硅片-绝缘基板接合用焊锡材料5使用液相线温度为221℃的Sn-3.5Ag焊锡而且作为绝缘基板-金属基座接合用焊锡材料3使用液相线温度为243℃的Sn-8Sb焊锡的情况下,热板16的温度考虑到热板16的面内的偏差而能够设为270℃~280℃。另外,例如,在作为硅片-绝缘基板接合用焊锡材料5使用液相线温度为221℃的Sn-Ag系焊锡而且作为绝缘基板-金属基座接合用焊锡材料3使用液相线温度为219℃的Sn-3.0Ag-0.5Cu焊锡的情况下,如果按照上述记载,则热板16的温度为245℃~250℃。但是,鉴于在250℃以上时能够明显地发挥氢分子的还原力的效果,则用于充分地发挥还原力的热板16的加热温度优选为290℃~350℃。另外,在半导体元件为SiC芯片的情况下,热板16的加热温度例如为290℃~500℃左右较好,但是并不限定于特定的加热温度。
在直至到达目标接合温度的升温过程(时刻T2~时刻T3)中,由于减压炉11内的压力为正压,因此氢分子气体易于向层叠体10的各个构件的间隙内浸透,也进行氢分子气体的还原作用。因而,促进了绝缘基板-金属基座接合用焊锡材料3、硅片-绝缘基板接合用焊锡材料5、绝缘基板2以及金属基座1的各个表面的还原,确保了被接合表面、例如进行引线接合的表面等的润湿性。另外,各个焊锡材料3、5熔融,此时产生的气泡内填充氢分子气体,由此气泡活性化。即,处于气泡中的气体成分被替换为氢,利用之后的时刻T3~时刻T5的气泡去除工序和再还原工序充分地活性化。在焊锡材料3、5熔融的期间,减压炉11内的氧浓度例如为30ppm以下,优选的是保持为10ppm以下,而且露点为-30℃以下,优选的是保持为-50℃以下。
在所述加热工序之后,若层叠体10的构成构件达到目标接合温度,则实施在保持为接合温度的状态下将所述减压炉内再次设为真空气氛并去除焊锡熔体中的气泡的气泡去除工序(时刻T3~时刻T4)。在气泡去除工序中,再次开始减压炉11内的减压(时刻T3)。然后,在减压炉11内的真空度达到例如10Pa之后,进一步持续进行减压例如30秒~1分钟。由此,减压炉11内的真空度达到大致1Pa。通过该减压的持续,基本上去除了因焊锡材料与被接合构件之间的润湿不足而产生的气泡、以及因焊锡材料中所含有的溶存气体而产生的气泡这两者。在此,将减压的持续时间(T3~T4)设为30秒~1分钟是因为,在进行急剧的减压等的情况下,当液体中产生的气泡急剧向外部排出时,存在焊锡与泡裂开的作用同样地发生飞散,在焊锡球、外周部发生焊锡的飞散的担心,而且,即使持续比1分钟长的减压也无法获得进一步的气泡去除效果。
在时刻T3~时刻T4的期间,也可以不用进行来自氢分子气体导入管17的氢分子气体a的供给,而在关闭了活门303的状态下单纯仅进行减压。或者,也可以在时刻T3开始减压之后,暂时将真空度设为例如1Pa~10Pa左右,之后在直到时刻T4的期间,再次打开活门303,开始来自氢分子气体导入管202的氢分子气体a的供给,对金属线201进行加热,实施一次以上的热射线式加热工序。具体地说,从氢分子气体导入管202向原子态氢产生装置20内供给氢分子气体,在将减压炉11和原子态氢产生装置20内的压力设为1Pa~500Pa、优选10Pa~300Pa之后,向金属线201通电,产生原子态氢,并使其向减压炉流入,能够进行还原处理。此时,在时刻T3~时刻T4的期间,活门打开、来自氢分子气体导入管202的氢分子气体a的供给、金属线的通电、氢分子气体a的供给停止、通电的停止、活门关闭这一系列操作既可以仅实施一次,也可以将这一系列操作设为一套,将其重复实施多套。或者,当在短时间内重复多次金属线的通电与停止时,活门也可以是打开的状态。另外,通电的时间如上所述能够设为10秒~5分钟,停止通电的时间优选设为30秒~120秒。在重复向金属线201的通电和通电的停止的情况下,重复次数优选设为2次~5次,但是并不限定于特定的次数。另外,在图3中,在时刻T3~时刻T4设为“金属线通电”并不是指必须在该区间内持续进行通电,而是表示可以在该区间内通电。
在所述气泡去除工序之后,实施在保持为接合温度的状态下再次将所述减压炉内设为正压的氢气氛的再还原工序(时刻T4~时刻T5)。该工序是紧接着时刻T1~时刻T2的原子态氢的一次还原工序、时刻T2~时刻T3的氢分子气体的二次还原工序的还原工序,也称作三次还原工序。在三次还原工序中,首先,再次从氢分子气体导入管17向减压炉11内导入氢分子气体(时刻T4)。在减压炉11内的压力达到了正压之后,进一步持续30秒~1分钟以上氢分子气体的导入(T4~T5)。但是,该时间因对象的加热的层叠体的大小而发生改变,因此并不限定于该时间。持续进行氢分子气体的导入的理由是为了在持续上述1分钟的减压时,利用氢分子气体的还原作用堵塞在将焊锡材料3、5中的气泡去除到焊锡材料3、5之外时残留于焊锡材料3、5中的隧道状的孔(气泡通过的痕迹)。即,由于在焊锡材料3、5中的气泡内充满了氧化成分的气体,因此该气泡通过时接触到的焊锡部分被氧化。因此,气泡的通过部分的焊锡未被润湿,有时隧道状的开放气泡残留。通过在时刻T4~时刻T5实施再还原工序,从而在该开放气泡中充满了氢分子气体,从而氧化了的内表面被还原,焊锡的润湿性变好,开放气泡埋于焊锡中。期间,活门303关闭,金属线201是自减压炉11内气氛隔离开的状态。
另外,持续进行氢分子气体向减压炉11内的导入的另一个理由是为了利用氢分子气体的还原和热板16的加热保持,使焊锡材料5的表面张力降低,由此使焊锡角焊缝形状稳定化,使焊锡龟裂产生寿命提高。若不持续进行氢分子气体的导入,并在炉内减压之后立即开始冷却使焊锡材料凝固,则由于焊锡材料的表面张力较大,因此焊锡角缝焊形状变得不均匀,有时由温度周期等引起焊锡龟裂产生寿命变短。为了减小焊锡材料5的表面张力,只要在时刻T4~时刻T5以接合温度加热保持焊锡材料5、或者延长使焊锡材料5暴露于氢分子气体中的时间、或者将这些方法进行组合即可。但是,即使持续进行比1分钟长的氢分子气体的导入,填埋气泡所通过的痕迹的孔的效果、焊锡角缝焊形状的稳定化效果也看不出有什么不同,因此优选的是,将氢分子气体导入的持续时间设为30秒~1分钟。
在本发明的某一实施方式中,也可以重复包含多次所述热射线式加热工序~加热工序(T1~T3)。即,将该时刻T1~时刻T3的操作作为一个循环,也可以重复多个循环、例如2个~5个循环的T1~T3。通过重复多个循环的T1~T3,能够在焊锡熔融之前有效地使金属表面改性。
或者,也可以不重复上述时刻T1~时刻T3的操作地或者与重复T1~T3的操作一起重复多次时刻T3~时刻T5的气泡去除工序和再还原工序。作为一例,在接合大面积基板的情况、气泡难以溜走的情况下,也可以为将T3~T5的气泡去除工序和再还原工序的操作作为一个循环并重复多个循环的形态,例如为重复2个~5个循环的T1~T3的形态。这是因为,通过如此重复减压与加压,从而熔融中的焊锡产生摆动,气泡易于溜走,因此能够获得气泡去除效果。但是,气泡去除工序的重复次数在5次以内随着次数的增加而使气泡率变小,但是多数情况是即使重复6个循环以上也无法获得进一步的效果。也可以在这些重复操作的基础上设为重复多次T1~T5的形态。
在再还原工序之后,实施在将减压炉11内设为正压的氢气氛的状态下使层叠体10骤冷的冷却工序(时刻T5~时刻T6)。在冷却工序中,输送台13在轨道14上移动,并从热板16向冷却板15移动(位置D)。由此,开始层叠体10的冷却(时刻T5)。层叠体10例如以每分钟300℃的速度进行冷却。此时,在炉内,维持正压的氢气氛。
冷却板15的温度和冷却时间考虑到焊锡的冷却速度(凝固速度)进行选定。即,在本实施方式中,由于热膨胀系数不同的硅片4、绝缘基板2以及金属基座1被同时锡焊,因此在锡焊完成的状态下,有时热膨胀系数最大的金属基座1以朝向绝缘基板2侧呈凸状的方式翘曲。在其影响下,借助焊锡接合层接合的层叠体10能够产生最大0.3mm左右的翘曲。该翘曲若留待至下一引线接合工序,则成为电特性不良的产生原因,因此必须在引线接合之前去除翘曲。为此,只要使绝缘基板2与金属基座1之间的焊锡接合层在短时间内蠕裂(creep)即可。
为了加快蠕裂速度,优选的是,将冷却速度设为每分钟250℃以上、例如每分钟300℃。在本申请人申请的、日本特开2003-297860号公报中公开了只要冷却速度为每分钟250℃以上,则在24小间以内金属基座1的翘曲会收纳在0mm~-0.1mm的范围内(“-”表示向绝缘基板2侧凸起),能够消除对引线接合的不良影响。换言之,当冷却速度小于每分钟250℃,无法使金属基座1的翘曲充分地恢复,存在对引线接合带来不良影响的隐患。另外,如果加快焊锡的蠕裂并尽可能地在前一工序中去除接合后的层叠体10的残留应力,则能够使金属基座1的变形稳定化。因而,冷却板15的温度和冷却时间被选定为使得焊锡的冷却速度为每分钟250℃以上。
然后,在所述冷却工序之后,实施对所述减压炉内进行真空排气的二次减压工序(时刻T6~时刻T7)。在二次减压工序中,如果层叠体10的温度成为例如50℃~60℃,则开始减压炉11内的氢的排气(时刻T6)。
在所述二次减压工序之后,实施在将所述减压炉内设为正压的氮气氛之后打开所述减压炉的工序(时刻T7~时刻T8)。在该工序中,如果通过氢的排气使减压炉11内的真空度为例如1Pa~10Pa,则向减压炉11内导入氮气(时刻T7)。然后,减压炉11内被氮气置换,在炉内的氢浓度达到爆炸极限以下之后,减压炉11向大气开放(时刻T8)。在热射线式加热工序(T1~T2)后的隔离工序或者在任选的气泡去除工序(T3~T4)中并列进行的进一步的热射线式加热工序后的隔离工序中,活门303在设为关闭状态之后,保持关闭的状态。然后,原子态氢产生装置20内部在实施后续的工序(时刻T2~时刻T8或T4~T8)的期间也保持为低压的氢气氛状态、优选为真空状态。
图3的时刻T0~时刻T8的一系列的操作依赖于重复工序的次数,但是能够在大致15分钟以内完成。而且,利用包括该工序的半导体装置的制造方法,能够获得具有没有气泡的高品质的焊锡接合层的半导体装置。另外,在此,将氮气氛作为一例进行了说明,但是并不限定于氮,能够使用任意的非活性气体,并设为非活性气体气氛。
产业上的可利用性
本发明的半导体装置的制造方法及接合组装装置能够在IGBT组件、IPM等电源组件的制造中适当地进行使用。

Claims (11)

1.一种半导体装置的制造方法,其中,该半导体装置的制造方法包括:
准备工序,将包含至少一个被接合构件和至少一个焊锡材料的层叠体投入减压炉内;
一次减压工序,在所述准备工序之后,对所述减压炉内进行真空排气;
热射线式加热工序,在所述一次减压工序之后,使所述减压炉内成为低压的氢气氛,对与所述减压炉之间隔着能够开闭的分隔壁地设置于所述减压炉外的金属线进行加热,或者对与输送台、冷却板以及热板之间隔着能够开闭的分隔壁地设置于所述减压炉内的金属线进行加热,产生原子态氢,并使所述原子态氢流向所述层叠体,以有助于构成所述层叠体的各个构件表面的还原处理;
隔离工序,在所述热射线式加热工序之后,在将所述金属线保持在低压气氛下的状态下,利用所述分隔壁自所述减压炉内气氛隔离开所述金属线;
加热工序,在所述隔离工序之后,使所述减压炉内成为正压的氢气氛,加热至接合温度而使所述焊锡材料熔融;以及
气泡去除工序,在所述加热工序之后,在保持为接合温度的状态下使所述减压炉内再次成为真空气氛而去除焊锡熔体中的气泡,
其中,在所述热射线式加热工序中,在100℃~200℃的温度下对所述至少一个被接合构件和/或所述至少一个焊锡材料的氧化物进行还原。
2.根据权利要求1所述的半导体装置的制造方法,其中,
在所述热射线式加热工序之前,所述金属线被保持在低压气氛下,并自所述减压炉内气氛隔离开。
3.根据权利要求1或2所述的半导体装置的制造方法,其中,
在所述热射线式加热工序中,将金属线加热到1500℃~2000℃。
4.根据权利要求1所述的半导体装置的制造方法,其中,
所述热射线式加热工序中的所述低压的氢气氛是1Pa~500Pa的氢气氛。
5.根据权利要求1所述的半导体装置的制造方法,其中,
在所述气泡去除工序中,实施一次以上的热射线式加热工序,在该热射线式加热工序中,打开所述分隔壁并对所述金属线进行加热,以产生原子态氢。
6.根据权利要求1所述的半导体装置的制造方法,其中,
在所述热射线式加热工序中,在焊锡熔融温度以下对所述至少一个被接合构件和/或所述至少一个焊锡材料的氧化物进行还原。
7.一种接合组装装置,其中,该接合组装装置在减压炉内包括:
输送台,其用于支承包含至少一个被接合构件和至少一个焊锡材料而成的层叠体,该输送台能够沿水平方向和铅垂方向进行移动;
冷却板和热板,其在水平方向上隔开地设置,该冷却板能够介由所述输送台对所述层叠体进行冷却,该热板能够介由所述输送台对所述层叠体进行加热;
氢分子气体导入管;
非活性气体导入管;以及
排气口;并且
该接合组装装置包括:
活性种产生装置,其包括与所述减压炉之间隔着能够开闭的分隔壁地设于所述减压炉外的至少金属线和活性种生成气体导入管,或者包括与所述输送台、冷却板以及热板之间隔着能够开闭的分隔壁地设于所述减压炉内的至少金属线和活性种生成气体导入管;以及
加热部件,其用于对所述金属线进行加热以将活性种生成气体加热分解而生成活性种,从而有助于构成所述层叠体的各个构件表面的还原处理,
其中,在100℃~200℃的温度下利用所述活性种对所述至少一个被接合构件和/或所述至少一个焊锡材料的氧化物进行还原。
8.根据权利要求7所述的接合组装装置,其中,
所述活性种产生装置以能够拆卸的方式设于所述减压炉外。
9.根据权利要求7或8所述的接合组装装置,其中,
所述能够开闭的分隔壁是活门机构。
10.根据权利要求7所述的接合组装装置,其中,
所述活性种产生装置设于所述减压炉外的侧壁。
11.根据权利要求7所述的接合组装装置,其中,
所述金属线是从钨、钼、铂、镍、铼中选择的金属或者包含这些金属中的一种以上的金属的合金,通过加热到1000℃以上,将活性种生成气体加热分解而生成活性种。
CN201510762725.9A 2014-12-03 2015-11-10 半导体装置的制造方法及接合组装装置 Active CN105679686B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-244783 2014-12-03
JP2014244783A JP6554788B2 (ja) 2014-12-03 2014-12-03 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
CN105679686A CN105679686A (zh) 2016-06-15
CN105679686B true CN105679686B (zh) 2018-10-23

Family

ID=56122218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510762725.9A Active CN105679686B (zh) 2014-12-03 2015-11-10 半导体装置的制造方法及接合组装装置

Country Status (2)

Country Link
JP (1) JP6554788B2 (zh)
CN (1) CN105679686B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10606180B2 (en) * 2017-03-08 2020-03-31 Asml Netherlands B.V. EUV cleaning systems and methods thereof for an extreme ultraviolet light source
CN108987265A (zh) * 2018-06-26 2018-12-11 武汉华星光电半导体显示技术有限公司 显示器件制造方法及装置
CN111805038A (zh) * 2019-04-10 2020-10-23 薛星海 一种离线正压焊接炉系统及其操作方法
CN111805039B (zh) * 2019-04-11 2022-02-08 中科同帜半导体(江苏)有限公司 一种在线正压焊接炉系统及其操作方法
TWI738490B (zh) * 2020-07-27 2021-09-01 劉劭祺 材料處理設備及其操作方法
CN117086429A (zh) * 2023-10-18 2023-11-21 苏州申翰智能机器人有限公司 一种基于半导体基材的回流焊装置及其操作工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409543A (en) * 1992-12-22 1995-04-25 Sandia Corporation Dry soldering with hot filament produced atomic hydrogen
CN1449005A (zh) * 2002-03-29 2003-10-15 富士电机株式会社 半导体器件的制造方法
US20090236236A1 (en) * 2003-04-28 2009-09-24 Air Products And Chemicals, Inc. Removal of Surface Oxides by Electron Attachment
US20140179110A1 (en) * 2012-12-21 2014-06-26 Applied Materials, Inc. Methods and apparatus for processing germanium containing material, a iii-v compound containing material, or a ii-vi compound containing material disposed on a substrate using a hot wire source

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4032899B2 (ja) * 2002-09-18 2008-01-16 トヨタ自動車株式会社 電子部品の製造方法及び該方法に用いるハンダ付け装置
JP4203673B2 (ja) * 2006-07-04 2009-01-07 パナソニック株式会社 原子状水素発生器
SG10201405421WA (en) * 2009-09-16 2014-10-30 Hitachi Chemical Co Ltd Printing ink, metal nanoparticles used in the same, wiring, circuit board, and semiconductor package

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409543A (en) * 1992-12-22 1995-04-25 Sandia Corporation Dry soldering with hot filament produced atomic hydrogen
CN1449005A (zh) * 2002-03-29 2003-10-15 富士电机株式会社 半导体器件的制造方法
US20090236236A1 (en) * 2003-04-28 2009-09-24 Air Products And Chemicals, Inc. Removal of Surface Oxides by Electron Attachment
US20140179110A1 (en) * 2012-12-21 2014-06-26 Applied Materials, Inc. Methods and apparatus for processing germanium containing material, a iii-v compound containing material, or a ii-vi compound containing material disposed on a substrate using a hot wire source

Also Published As

Publication number Publication date
JP6554788B2 (ja) 2019-08-07
JP2016111078A (ja) 2016-06-20
CN105679686A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
CN105679686B (zh) 半导体装置的制造方法及接合组装装置
JP6365919B2 (ja) 半導体装置の製造方法
US6905063B2 (en) Method of manufacturing semiconductor device
TWI492347B (zh) 加熱熔融處理裝置以及加熱熔融處理方法
JP5343566B2 (ja) 接合方法及びリフロー装置
CN104517860B (zh) 接合组装装置
TW201332027A (zh) 黏晶機裝置,及黏晶方法
JP2005230830A (ja) はんだ付け方法
JP5687755B1 (ja) 半田付け装置及び接合部材の製造方法
JP6879482B1 (ja) 酸化物除去済部材の製造方法及び酸化物除去装置
TWI733536B (zh) 電子零部件的燒結裝置
JP6666071B2 (ja) 局所半田付け方法
JP2015100841A (ja) 半田付け方法及び半田付け装置
JP5066964B2 (ja) はんだ付け方法およびそれに用いる装置
JP6675622B1 (ja) 電子部品のシンタリング装置および方法
CN102574237A (zh) 使用等离子、活性或还原气体的气氛来清洁铜引线的系统和方法
JP2014075406A (ja) ダイボンダ装置、及びダイボンド方法
JP5376303B2 (ja) 溶融金属の供給部材、それを用いた溶融金属の塗布装置及び被接合材の接合装置並びに被接合材の接合方法
CN114786859B (zh) 焊接基板的制造方法以及焊接装置
JP4522752B2 (ja) 半田付けによる端子接合方法
JPH10202362A (ja) はんだ付方法及びはんだ付装置
JP2017084796A (ja) 加工装置に電力及び不活性ガスを供給可能な発電装置及び加工システム
WO2015064166A1 (ja) 分解機構を備える半田付け装置および分解方法
JP2013173157A (ja) ハンダ実装装置及びハンダ実装方法
JP2003209347A (ja) リフローはんだ付方法および装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant