CN105648413A - 一种金属/氧化物复合表面增强拉曼活性基底的制备方法 - Google Patents
一种金属/氧化物复合表面增强拉曼活性基底的制备方法 Download PDFInfo
- Publication number
- CN105648413A CN105648413A CN201610044492.3A CN201610044492A CN105648413A CN 105648413 A CN105648413 A CN 105648413A CN 201610044492 A CN201610044492 A CN 201610044492A CN 105648413 A CN105648413 A CN 105648413A
- Authority
- CN
- China
- Prior art keywords
- metal
- substrate
- raman active
- preparation
- active substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/081—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/083—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/10—Glass or silica
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/20—Metallic material, boron or silicon on organic substrates
- C23C14/205—Metallic material, boron or silicon on organic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
- C23C28/3455—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N21/658—Raman scattering enhancement Raman, e.g. surface plasmons
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Ceramic Engineering (AREA)
- Laminated Bodies (AREA)
Abstract
本发明提供了一种金属/氧化物复合表面增强拉曼活性基底的制备方法,解决了目前的技术方案很难制备出具有多层膜结构的种金属/氧化物复合基底的问题,同时本发明可适用于多种金属和氧化物的复合,适用范围广泛。本发明方法首先利用自组装技术制备二维有序聚苯乙烯胶体阵列。然后,利用等离子刻蚀技术对二维有序聚苯乙烯胶体阵列进行刻蚀。第三步、以经过第二步处理的聚苯乙烯胶体阵列为衬底,在保护气氛或真空条件下通过磁控溅射方法在衬底表面依次生长金属/氧化物复合多层膜。最后在保护气氛下进行热处理,经过特殊的热处理得到的金属/氧化物复合表面增强拉曼活性基底的表面增强拉曼活性得到了明显的增强。
Description
技术领域
本发明属于超高灵敏度检测技术领域,具体涉及一种表面增强拉曼(SERS)活性基底的制备方法。
背景技术
表面增强拉曼散射(SERS)效应是指在特殊制备的一些重金属表面或溶液中,在激发区域内,由于样品表面或近表面的电磁场增强导致吸附分子的拉曼散射信号强度比普通拉曼散射信号显著增强的现象。表面增强拉曼散射作为一种高灵敏度检测手段,制备出热点丰富、活性强、稳定性好、可重复使用的基底是关键环节,对于应用和基础研究都具有重要意义。Ag是目前应用于拉曼信号增强效应最普遍的金属材料,但因为Ag表面易于氧化且存在生物毒性,限制了它的使用。而SiO2是一种理想的绝缘材料具有很好的透光性,生物相容性和抗氧化性,能够降低或阻塞金属产生的等离子体的传播,降低传导的对称性,致使等离子耦合模式发生改变。将Ag与SiO2相结合,有望制备出高质量的SERS活性基底;但采用现有技术手段在制备金属/氧化物复合表面增强拉曼活性基底时很难制备出具有多层复合结构的膜,与多层复合结构相比,单层复合结构的表面增强拉曼散射效应也较低。造成多层复合结构制备困难的原因一方面是现有的制备方法在制备具有多层复合结构十分复杂,合成条件也较苛刻,另一方面现有的制备方法适用的范围也较小,一种制备方法仅能针对一种复合结构的合成。
发明内容
为了解决现有技术所存在的上述问题,本发明提供了一种金属/氧化物复合表面增强拉曼活性基底的制备方法,具体方法如下:
步骤一、利用自组装技术制备二维有序聚苯乙烯胶体阵列,其中,胶体粒子尺寸为100~500nm。
步骤二、利用等离子刻蚀技术对二维有序聚苯乙烯胶体阵列进行刻蚀,使胶体粒子之间相距10~30nm。
步骤三、以经过步骤二处理的聚苯乙烯胶体阵列为衬底,在保护气氛或真空条件下通过磁控溅射方法在衬底表面依次生长金属/氧化物复合多层膜,其中复合层数大于一层,且层数为四层时效果最佳;其中,金属每层厚度为10~50nm,氧化物每层厚度为1~10nm;所述金属为Au、Ag、Pt或Pd,优选为Ag;所述氧化物为SiO2、Al2O3或TiO2,优选为SiO2。当金属选择Ag时,厚度优选为30nm;当氧化物为SiO2时,厚度优选为5nm。
步骤四、在保护气氛下进行热处理,所述的热处理方法如下:以5~2℃/分钟的升温速度由室温升高到580~650℃,升温速率逐渐降低;在580~650℃温度下保温1小时以上后;自然冷却至室温。终温优选600℃。
步骤三中所述的磁控溅射方法具体的优选如下参数:
A、靶材和基底之间的距离为20厘米。
B、在共溅射期间基底被旋转并且真空室的本底气压为2.4×10-4Pa。
C、金属靶和氧化物靶的溅射功率分别是20瓦和72瓦。
D、在薄膜沉积的时期,工作气压为0.6Pa并且金属和氧化物的溅射速率分别为0.06纳米每秒和0.01纳米每秒。
步骤四中所述热处理方法优选如下方案:
1)在室温~100℃过程中,加热升温的速度为5℃/分钟;
2)在100~300℃过程中,加热升温的速度为4℃/分钟;
3)在300~600℃过程中,加热升温的速度为2℃/分钟;
4)在600℃条件下保温1小时。
本发明的有益效果:
1、方法简单易行,价格低廉;
2、热点阵列排列有序,热点数目巨大。
3、本发明方法可以应用于多种材料的制备,如:金属为Pd、Pt、Au、Ag等,氧化物为SiO2、Al2O3、TiO2等。
4、经过特殊的热处理得到的金属/氧化物复合表面增强拉曼活性基底的表面增强拉曼活性得到了明显的增强。
附图说明
图1a是生长于200nm聚苯乙烯胶体阵列上[Ag30nm/SiO25nm]4多层膜样品的示意图;
图1b是600℃热处理之后单个[Ag30nm/SiO25nm]4多层膜样品的剖面示意图。
图2a是生长于二维200nm聚苯乙烯胶体阵列上[Ag30nm/SiO25nm]4多层膜样品扫描电镜图;
图2b是该层膜样品600℃热处理之后的扫描电镜图。
图3中a曲线是吸附在[Ag30nm/SiO25nm]4多层膜样品上4-巯基苯甲酸的SERS图,b曲线是吸附在600℃热处理之后[Ag30nm/SiO25nm]4多层膜样品上4-巯基苯甲酸的SERS图。
具体实施方式
下面以实施例的方式对本发明技术方案做进一步解释和说明,作为优选方式以下实施例仅以Ag/SiO2复合结构为例进行说明,在实际应用中金属选择Pd、Pt、Au或Ag,氧化物选择SiO2、Al2O3和TiO2均可在本发明公开的范围内实现相同的效果。
本发明实施例中所使用试剂如下:
单分散的聚苯乙烯胶体球10wt%胶体粒子尺寸为200nm(±10%)杜克公司
靶材:Ag(99.99%)、SiO2北京合纵天琦新材料科技有限公司
本发明中所使用的仪器如下:
ATC1800-F,USAAJA高真空多靶溅射仪
2000型共焦显微拉曼光谱仪英国雷尼绍公司
实施例1
1、利用自组装技术制备二维有序聚苯乙烯胶体阵列,胶体粒子尺寸为200nm。
2、利用等离子刻蚀技术进行刻蚀30s,所用气体为氧气的体积含量为20%,氩气的体积含量为80%。
3、通过溅射Ag和SiO2靶材制备复合型纳米图纹结构缝隙阵列基底,采用直流溅射制备金属薄膜,采用交流溅射制备氧化物薄膜;在共溅射期间基底被旋转并且真空室的本底气压为2.4×10-4Pa。Ag靶和SiO2靶的溅射功率分别是20瓦和72瓦。在薄膜沉积的时期,工作气压为0.6Pa并且Ag和SiO2的溅射速率分别为0.06纳米每秒和0.01纳米每秒,所得产物如图1a所示。
4、在氩气保护下进行热处理。系统升温速度为:室温~100℃间,5℃/分钟,100℃~300℃,4℃/分钟;300℃~600℃,2℃/分钟。600℃温度下保温1小时,断电,自然冷却到室温。得到目标产物,样品剖面如图1b所示。
结构表征:
如图2a所示,为生长于二维200nm聚苯乙烯胶体阵列上[Ag30nm/SiO25nm]4多层膜样品的扫描电子显微镜照片,从图上可以看出,结构单元呈密堆排列,单元间彼此分离,图2b为经过热处理之后样品的扫描电子显微镜照片,从图上可以看出阵列的周期结构依然完好,但薄膜的粗糙度增加。
SERS性能测试:
SERS性能测试前先对基底进行探针分子的吸附:乙醇被用作探针分子的溶剂并且将探针分子配成浓度为10-3mol/L的酒精溶液。将制备的基底浸泡在配制好的4-巯基苯甲酸(MBA)探针分子溶液中30分钟,然后用酒精溶液彻底冲洗三遍将没有吸附的探针分子移除。最后用氮气将样品吹干。分别选择[Ag30nm/SiO25nm]4多层膜样品和热处理后的[Ag30nm/SiO25nm]4多层膜样品进行测试。测试结果如图3所示,通过本发明方法制备得到的[Ag30nm/SiO25nm]4具有很好的表面增强拉曼活性,经热处理后表面增强拉曼活性得到了明显的增强。
实施例2
自组装技术制备二维有序聚苯乙烯胶体阵列时胶体粒子尺寸可选择的范围为100~500nm;通过蚀刻使胶体粒子之间相距10~30nm即可作为磁控溅射衬底使用。实施例1中磁控溅射步骤中所采用的条件和设定的参数为本领域常用的条件和参数,因此该条件参数仅作为实施本发明的优选方案,除实施例1中所使用的条件外,本领域技术人员在保证所使用的为保护气氛条件或者真空条件时也可达到相同的效果。
Claims (9)
1.一种金属/氧化物复合表面增强拉曼活性基底的制备方法,具体方法如下:
步骤一、利用自组装技术制备二维有序聚苯乙烯胶体阵列,其中,胶体粒子尺寸为100~500nm;
步骤二、利用等离子刻蚀技术对二维有序聚苯乙烯胶体阵列进行刻蚀,使胶体粒子之间相距10~30nm;
步骤三、以经过步骤二处理的聚苯乙烯胶体阵列为衬底,在保护气氛或真空条件下通过磁控溅射方法在衬底表面依次生长金属/氧化物复合多层膜,其中复合多层膜的层数大于一层;其中,金属每层厚度为10~50nm,氧化物每层厚度为1~10nm;所述金属为Au、Ag、Pt或Pd;所述氧化物为SiO2、Al2O3或TiO2;
步骤四、在保护气氛下进行热处理,所述的热处理方法如下:以5~2℃/分钟的升温速度由室温升高到580~650℃,升温速率逐渐降低;在580~650℃温度下保温1小时以上后;自然冷却至室温。
2.根据权利要求1所述的金属/氧化物复合表面增强拉曼活性基底的制备方法,其特征在于,所述的复合多层膜的层数为四层。
3.根据权利要求1所述的金属/氧化物复合表面增强拉曼活性基底的制备方法,其特征在于,所述金属为Ag。
4.根据权利要求1所述的金属/氧化物复合表面增强拉曼活性基底的制备方法,其特征在于,所述氧化物为SiO2。
5.根据权利要求3所述的金属/氧化物复合表面增强拉曼活性基底的制备方法,其特征在于,Ag层厚度为30nm;
6.根据权利要求4所述的金属/氧化物复合表面增强拉曼活性基底的制备方法,其特征在于,SiO2层厚度优选为5nm。
7.根据权利要求1所述的金属/氧化物复合表面增强拉曼活性基底的制备方法,其特征在于,步骤三中所述的磁控溅射方法具体的条件和设定的参数为:
A、靶材和基底之间的距离为20厘米。
B、在共溅射期间基底被旋转并且真空室的本底气压为2.4×10-4Pa。
C、金属靶和氧化物靶的溅射功率分别是20瓦和72瓦。
D、在薄膜沉积的时期,工作气压为0.6Pa并且金属和氧化物的溅射速率分别为0.06纳米每秒和0.01纳米每秒。
8.根据权利要求1所述的金属/氧化物复合表面增强拉曼活性基底的制备方法,其特征在于,步骤四中所述热处理方法中以5~2℃/分钟的升温速度由室温升高到600℃,升温速率逐渐降低;然后在600℃温度下保温1小时,自然冷却至室温。
9.根据权利要求8所述的金属/氧化物复合表面增强拉曼活性基底的制备方法,其特征在于,所述的5~2℃/分钟的升温速度由室温升高到600℃,升温速率逐渐降低的过程具体如下:
1)在室温~100℃过程中,加热升温的速度为5℃/分钟;
2)在100~300℃过程中,加热升温的速度为4℃/分钟;
3)在300~600℃过程中,加热升温的速度为2℃/分钟。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610044492.3A CN105648413A (zh) | 2016-01-22 | 2016-01-22 | 一种金属/氧化物复合表面增强拉曼活性基底的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610044492.3A CN105648413A (zh) | 2016-01-22 | 2016-01-22 | 一种金属/氧化物复合表面增强拉曼活性基底的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105648413A true CN105648413A (zh) | 2016-06-08 |
Family
ID=56486414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610044492.3A Pending CN105648413A (zh) | 2016-01-22 | 2016-01-22 | 一种金属/氧化物复合表面增强拉曼活性基底的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105648413A (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107101988A (zh) * | 2017-03-16 | 2017-08-29 | 中国科学院合肥物质科学研究院 | 一种金膜覆盖的高密度纳米针尖阵列及其应用 |
CN107916407A (zh) * | 2017-11-14 | 2018-04-17 | 辽宁大学 | 一种表面颗粒均匀银基底的制备方法 |
TWI651530B (zh) * | 2016-07-22 | 2019-02-21 | 美商惠普發展公司有限責任合夥企業 | 可致動式表面增強拉曼光譜感測器級台 |
CN110592545A (zh) * | 2019-09-16 | 2019-12-20 | 吉林师范大学 | 一种桥联型SERS活性Ag/SiO2纳米球壳阵列结构复合材料及其制备方法 |
CN110668396A (zh) * | 2019-09-16 | 2020-01-10 | 吉林师范大学 | 一种周期波浪状纳米孔结构阵列的制备方法 |
CN111693502A (zh) * | 2019-03-12 | 2020-09-22 | 武汉大学 | 一种结合空腔增强与表面增强的液相拉曼增强光谱衬底 |
CN113249698A (zh) * | 2021-04-23 | 2021-08-13 | 杭州电子科技大学 | 一种多层纳米帽-星耦合周期性阵列及其制备方法 |
CN113385680A (zh) * | 2021-05-19 | 2021-09-14 | 杭州电子科技大学 | 一种金属纳米片的制备方法 |
CN113652689A (zh) * | 2021-08-03 | 2021-11-16 | 杭州电子科技大学 | 一种曲面蜂巢阵列的构筑方法及其曲面蜂巢阵列的应用 |
CN114486845A (zh) * | 2021-12-31 | 2022-05-13 | 杭州电子科技大学 | 一种制备纳米球形蜂窝结构的方法 |
CN116174735A (zh) * | 2022-09-22 | 2023-05-30 | 之江实验室 | 一种定点生长有序金属纳米粒子阵列的制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102285629A (zh) * | 2011-05-05 | 2011-12-21 | 厦门大学 | 一种表面增强拉曼光谱活性基底的制备方法 |
CN102628808A (zh) * | 2012-04-13 | 2012-08-08 | 中国科学院光电技术研究所 | 高灵敏度、高稳定性表面增强拉曼芯片的制备方法及应用方法 |
CN103398997A (zh) * | 2013-08-07 | 2013-11-20 | 苏州扬清芯片科技有限公司 | 一种具有纳米圆锥形sers活性基片的快速制备方法 |
CN103575721A (zh) * | 2013-11-07 | 2014-02-12 | 无锡英普林纳米科技有限公司 | 一种多层结构表面增强拉曼散射基底及其制备方法 |
CN104764732A (zh) * | 2015-04-09 | 2015-07-08 | 复旦大学 | 基于特异材料超吸收体的表面增强拉曼散射基底及其制备方法 |
CN104789939A (zh) * | 2015-03-17 | 2015-07-22 | 清华大学 | 一种表面增强拉曼散射基底及其制备方法 |
-
2016
- 2016-01-22 CN CN201610044492.3A patent/CN105648413A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102285629A (zh) * | 2011-05-05 | 2011-12-21 | 厦门大学 | 一种表面增强拉曼光谱活性基底的制备方法 |
CN102628808A (zh) * | 2012-04-13 | 2012-08-08 | 中国科学院光电技术研究所 | 高灵敏度、高稳定性表面增强拉曼芯片的制备方法及应用方法 |
CN103398997A (zh) * | 2013-08-07 | 2013-11-20 | 苏州扬清芯片科技有限公司 | 一种具有纳米圆锥形sers活性基片的快速制备方法 |
CN103575721A (zh) * | 2013-11-07 | 2014-02-12 | 无锡英普林纳米科技有限公司 | 一种多层结构表面增强拉曼散射基底及其制备方法 |
CN104789939A (zh) * | 2015-03-17 | 2015-07-22 | 清华大学 | 一种表面增强拉曼散射基底及其制备方法 |
CN104764732A (zh) * | 2015-04-09 | 2015-07-08 | 复旦大学 | 基于特异材料超吸收体的表面增强拉曼散射基底及其制备方法 |
Non-Patent Citations (1)
Title |
---|
YAXIN WANG ET AL.: "Ordered Nanocap Array Composed of SiO2-Isolated Ag Islands as SERS Platform", 《LANGMUIR》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI651530B (zh) * | 2016-07-22 | 2019-02-21 | 美商惠普發展公司有限責任合夥企業 | 可致動式表面增強拉曼光譜感測器級台 |
US10712279B2 (en) | 2016-07-22 | 2020-07-14 | Hewlett-Packard Development Company, L.P. | Activatable surface enhanced Raman spectroscopy sensor stage |
CN107101988A (zh) * | 2017-03-16 | 2017-08-29 | 中国科学院合肥物质科学研究院 | 一种金膜覆盖的高密度纳米针尖阵列及其应用 |
CN107101988B (zh) * | 2017-03-16 | 2020-08-28 | 中国科学院合肥物质科学研究院 | 一种金膜覆盖的高密度纳米针尖阵列及其应用 |
CN107916407A (zh) * | 2017-11-14 | 2018-04-17 | 辽宁大学 | 一种表面颗粒均匀银基底的制备方法 |
CN111693502A (zh) * | 2019-03-12 | 2020-09-22 | 武汉大学 | 一种结合空腔增强与表面增强的液相拉曼增强光谱衬底 |
CN111693502B (zh) * | 2019-03-12 | 2024-05-07 | 武汉大学 | 一种结合空腔增强与表面增强的液相拉曼增强光谱衬底 |
CN110592545A (zh) * | 2019-09-16 | 2019-12-20 | 吉林师范大学 | 一种桥联型SERS活性Ag/SiO2纳米球壳阵列结构复合材料及其制备方法 |
CN110668396A (zh) * | 2019-09-16 | 2020-01-10 | 吉林师范大学 | 一种周期波浪状纳米孔结构阵列的制备方法 |
CN113249698A (zh) * | 2021-04-23 | 2021-08-13 | 杭州电子科技大学 | 一种多层纳米帽-星耦合周期性阵列及其制备方法 |
CN113385680A (zh) * | 2021-05-19 | 2021-09-14 | 杭州电子科技大学 | 一种金属纳米片的制备方法 |
CN113652689A (zh) * | 2021-08-03 | 2021-11-16 | 杭州电子科技大学 | 一种曲面蜂巢阵列的构筑方法及其曲面蜂巢阵列的应用 |
CN114486845A (zh) * | 2021-12-31 | 2022-05-13 | 杭州电子科技大学 | 一种制备纳米球形蜂窝结构的方法 |
CN114486845B (zh) * | 2021-12-31 | 2023-08-04 | 杭州电子科技大学 | 一种制备纳米球形蜂窝结构的方法 |
CN116174735A (zh) * | 2022-09-22 | 2023-05-30 | 之江实验室 | 一种定点生长有序金属纳米粒子阵列的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105648413A (zh) | 一种金属/氧化物复合表面增强拉曼活性基底的制备方法 | |
CN107313046B (zh) | 一种sers基底及其制备方法 | |
Hou et al. | Periodic silver nanocluster arrays over large-area silica nanosphere template as highly sensitive SERS substrate | |
CN106353296B (zh) | 一种制备高均匀性表面增强拉曼活性基底的方法 | |
CN108982474B (zh) | 一种基于金属-介质复合等离激元共振结构的表面增强拉曼活性基底及其制备方法 | |
Kaisar et al. | Surface-enhanced Raman scattering substrates of flat and wrinkly titanium nitride thin films by sputter deposition | |
CN107177874B (zh) | 一种超高密度有序银纳米球阵列及其应用 | |
CN111175284A (zh) | 一种分层微/纳米结构的表面增强拉曼底物的制备方法 | |
CN109612976B (zh) | 一种三维多层结构表面增强拉曼基底及其制备方法 | |
CN105002469B (zh) | 一种陶瓷‑金属纳米线复合薄膜及其制备方法 | |
Liu et al. | Fabrication of Au network by low-degree solid state dewetting: Continuous plasmon resonance over visible to infrared region | |
CN110044866B (zh) | 一种横向纳米腔阵列结构sers基底及其制备方法 | |
CN111007056B (zh) | 一种宽带等离激元复合结构及其制备方法 | |
CN100379891C (zh) | 一种铜银纳米颗粒分散氧化物光学薄膜制备方法 | |
CN111175285A (zh) | 具有分层微/纳米结构的表面增强拉曼底物及其检测方法 | |
Dan et al. | Highly ordered Au-decorated Ag nanorod arrays as an ultrasensitive and reusable substrate for surface enhanced Raman scattering | |
Kočišová et al. | V2O5 nanoparticle films as a platform for plasmon-free surface-enhanced Raman spectroscopy | |
CN114720448A (zh) | 半导体氧化物纳米颗粒修饰贵金属纳米锥阵列结构的表面增强拉曼衬底的制备方法 | |
CN108611604B (zh) | 一种基于高介电材料的经济型高精密表面增强拉曼活性基底的制造方法 | |
Zhang et al. | Effect of Zr contents and covering Ag layer on microstructure and SERS properties of Cu nanoparticles/Cu-Mo-Zr alloy films on flexible substrates | |
TW201031765A (en) | Method for manufacturing metal material pattern | |
CN106950213B (zh) | 一种纳米异质结表面增强拉曼活性基底的制备方法 | |
CN105839062A (zh) | 一种复合型多层膜结构银纳米线及其制备方法 | |
Liu et al. | Diffusion behavior of Ag in TiO2 nanofilms | |
Wang et al. | Pillar-cap shaped arrays of Ag/SiO2 multilayers after annealing treatment as a SERS—active substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160608 |