CN105839062A - 一种复合型多层膜结构银纳米线及其制备方法 - Google Patents

一种复合型多层膜结构银纳米线及其制备方法 Download PDF

Info

Publication number
CN105839062A
CN105839062A CN201610207325.6A CN201610207325A CN105839062A CN 105839062 A CN105839062 A CN 105839062A CN 201610207325 A CN201610207325 A CN 201610207325A CN 105839062 A CN105839062 A CN 105839062A
Authority
CN
China
Prior art keywords
film structure
preparation
layer film
nano silver
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610207325.6A
Other languages
English (en)
Inventor
王雅新
张梦宁
赵晓宇
陈雷
张永军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Normal University
Original Assignee
Jilin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Normal University filed Critical Jilin Normal University
Priority to CN201610207325.6A priority Critical patent/CN105839062A/zh
Publication of CN105839062A publication Critical patent/CN105839062A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种复合型多层膜结构银纳米线及其制备方法,主要采用物理沉积技术和退火处理相结合的方法,利用磁控溅射技术在二维有序胶体球模板上制备出[Ag 20~30nm/SiO2 3~5nm]n纳米多层膜阵列,并进一步对其在氩气保护下进行退火处理,从而形成复合型多层膜结构表面生长出银纳米线。这种方法制备成本低、耗时少,且具有结构稳定、可控性强、纯度高的特点,将二氧化硅和银结合到一起,二氧化硅可以改变金属周围的电介质环境,而且可以防止银发生氧化,使银纳米线结构存活时间更长。此外,结构具有丰富的热点,有很高的SERS活性,可应用于分子探测与识别技术等领域、电子学、磁学、声学、光学等领域。

Description

一种复合型多层膜结构银纳米线及其制备方法
技术领域
本发明属于纳米功能材料技术领域。
背景技术
纳米材料具有很多独特的性能和特殊的应用,其结构的特殊性,导致了宏观的声、光、电、磁、热、力学等的物理效应与常规材料有所不同,体现为量子尺寸效应、小尺寸效应、表面效应和宏观隧道效应等,成为了当前人们研究的热点。纳米材料具有较低的光反射系数,能够高效地将太阳能转化为电能和热能,而且作为添加剂还具有增强韧性和强度的功能,在电子学、磁学、声学、光学等领域具有巨大的发展空间和潜在价值。银纳米线作为一维无机纳米材料已经在偏光器件、光子晶体、催化剂以及生物和化学传感器等领域得到了广泛地应用。目前已经开发了很多制备银纳米线的方法,然而大部分方法工艺比较复杂,成本高,对反应设备要求比较高而且能量消耗大。
发明内容
为了解决现有的银纳米线的制备方法工艺复杂成本高,对反应设备要求比较高而且能量消耗大的问题,本发明提供了一种复合型多层膜结构银纳米线,其生长于结构为20~30nm的银和3~5nm的二氧化硅循环沉积n个周期形成的[Ag 20~30nm/SiO2 3~5nm]n纳米多层膜阵列表面;其中5≥n≥1,优选n=4。
所述复合型多层膜结构银纳米线的制备方法具体步骤如下:
步骤一、利用自组装技术制备聚苯乙烯二维有序胶体球序列模板,其中胶体球呈六方密堆排列,胶体球直径为200-700nm;
步骤二、采用磁控溅射技术向二维有序胶体球模板上依次沉积20-30nm的银和3-5nm的二氧化硅,循环沉积n个周期,形成[Ag 20~30nm/SiO2 3~5nm]n纳米多层膜阵列;其中5≥n≥1,优选n=4。
步骤三、将上一步制得的[Ag 20~30nm/SiO2 3~5nm]n纳米多层膜阵列浸泡在四氢呋喃或氯仿、甲苯等有机溶剂中去掉聚苯乙烯二维有序胶体球序列模板,然后在保护气氛下进行800-900℃退火处理1-2小时。
本发明步骤二中进行磁控溅射时采用直流溅射制备银层,采用交流溅射制备SiO2层。在正式镀膜之前,要预溅射20分钟左右。靶材和基底之间的距离为20厘米。在共溅射期间基底被旋转并且真空室的本底气压为2.4×10-4Pa。Ag靶和SiO2靶的溅射功率分别是20瓦和72瓦。在薄膜沉积的时期,工作气压为0.6Pa并且Ag和SiO2的溅射速率分别为0.06纳米每秒和0.01纳米每秒。
本发明的有益效果:
1、这种基底制备方法过程简单,耗时少,成本低。
2、复合型多层膜银纳米线结构稳定,可控性强,纯度高。
3、对复合型多层膜银纳米线结构进行表面增强拉曼(SERS)性能检测,该结构具有丰富的热点,有很高的SERS活性,可应用于分子探测与识别技术、电子学、磁学、声学、光学等领域。
4、单质银在所有金属中具有最高的导电性和导热性,在许多应用领域,都具有潜在的用途,但是银的缺点在于化学稳定性和生物相容性较差,不能满足检测要求。而二氧化硅是一种化学惰性的、热稳定的、生物相容的绝缘体,二氧化硅不吸光,也不会干扰磁场,可保持结合的材料本身的性质,将二氧化硅和银结合到一起,二氧化硅可以改变金属周围的电介质环境,而且可以防止银发生氧化,使银纳米线结构存活时间更长。
附图说明
图1是利用磁控溅射技术在二维有序胶体球模板上制备出[Ag20~30nm/SiO23~5nm]n纳米多层膜阵列的示意图。
图2是本发明实施例1中[Ag30nm/SiO25nm]4纳米多层膜阵列侧面的SEM图。
图3是本发明实施例1中[Ag30nm/SiO25nm]4纳米多层膜阵列正面的SEM图。
图4和图5是本发明实施例1中将[Ag30nm/SiO25nm]4纳米多层膜阵列在氩气保护下,900℃退火处理后形成的复合型多层膜银纳米线结构SEM图。
图6是本发明实施例1中制备的复合型多层膜结构银纳米线mapping图。
具体实施方式
实施例1
首先采用自组装技术制备单层的二维有序胶体球模板,在附图1中a为胶体球模板示意图。具体步骤是:硅片衬底放到含有氨水、过氧化氢和水(体积比为1:2:6)的混合溶液中煮沸五分钟,然后依次用去离子水和乙醇溶液超声清洗三次。将其中一片硅片浸泡在10%的十二烷基硫酸钠溶液中24小时,得到亲水的衬底表面,其余的放在去离子水中保存用来做胶体球模板衬底。取体积比为1:1的聚苯乙烯溶液和去离子水混合,然后取一滴混合溶液滴在用十二烷基硫酸钠溶液浸泡过的硅片衬底上,待溶液均匀晕开之后,缓慢的倾斜浸入装有去离子水的容器中,由于水表面张力作用,在水的表面形成一层聚苯乙烯胶体小球的单层膜,再快速在单层膜周围滴入浓度为2%的十二烷基硫酸钠溶液,使其形成高度有序紧密堆积的胶体球模板,稍静止2分钟左右,再用保存在去离子水中的硅片衬底将单层膜捞起来,用滤纸吸去多余的水之后,在空气中自然挥发干燥后即可在硅衬底表面形成单层的聚苯乙烯小球二维有序阵列,中胶体球呈六方密堆排列,胶体球直径为200~700nm。
由图3所示,采用磁控溅射技术向二维有序胶体球模板上依次沉积30nm的银和5nm的二氧化硅,循环沉积4个周期,形成[Ag30nm/SiO25nm]4纳米多层膜阵列。如图2中SEM图所示,4层[Ag30nm/SiO25nm]纳米帽子形成了一个柱状结构,由于材料的属性不同相邻的银层之间由二氧化硅层隔开,二氧化硅层有效的避免了银层之间发生团聚。
为防止有机物质的干扰,将上面制得的[Ag30nm/SiO25nm]4纳米多层膜阵列浸泡在四氢呋喃溶液中两个小时,去掉胶体球模板后在氩气保护下进行900℃退火处理1小时,紧密排列的小球之间存在缺陷,当加热后,银会从缺陷中被烧出来,在多层膜上面形成了无序的纳米线结构,如附图4和图5所示,可看出产物为复合型多层膜结构的纳米线,而图6的mapping验证了纳米线中的元素含量大多为银。由此可知,我们将[Ag 30nm/SiO2 5nm]4纳米多层膜阵列退火处理后得到了复合型多层膜结构银纳米线。
本实施例中所用的磁控溅射系统是ATC 1800-F,USA AJA高真空多靶溅射仪,它是一种直流溅射和射频溅射相结合的磁控镀膜仪。通常采用直流溅射制备金属薄膜,采用交流溅射制备氧化物薄膜。通过溅射Ag和SiO2靶材制备复合型纳米图纹结构缝隙阵列基底。在正式镀膜之前,要预溅射20分钟左右。靶材和基底之间的距离为20厘米。在共溅射期间基底被旋转并且真空室的本底气压为2.4×10-4Pa。Ag靶和SiO2靶的溅射功率分别是20瓦和72瓦。在薄膜沉积的时期,工作气压为0.6Pa并且Ag和SiO2的溅射速率分别为0.06纳米每秒和0.01纳米每秒。
实施例2
本实施例与实施例1的不同之处在于采用磁控溅射技术向二维有序胶体球模板上依次沉积20-30nm的银和3-5nm的二氧化硅,循环沉积周期可为1~5个周期。所达到的技术效果与实施例1相同。
实施例3
本实施例与实施例1的不同之处在于[Ag 30nm/SiO2 5nm]n纳米多层膜阵列浸泡在四氢呋喃或氯仿、甲苯等有机溶剂中去掉聚苯乙烯二维有序胶体球序列模板。所达到的技术效果与实施例1相同。
实施例4
本实施例与实施例1的不同之处在于在氩气保护下进行800-900℃退火处理1-2小时。所达到的技术效果与实施例1相同,即在经过退火处理后,银会从缺陷中被烧出来,在多层膜上面形成了无序的纳米线结构。
本发明实施例1中磁控溅射的条件和参数是本领域常用的条件和参数,实施例1中磁控溅射步骤中所采用的条件和设定的参数为本领域常用的条件和参数,因此该条件参数仅作为实施本发明的优选方案,除实施例1中所使用的条件外,其他条件和参数制备出的[Ag20~30nm/SiO2 3~5nm]n复合结构经过800-900℃退火处理1-2小时也可达到本发明相同的技术效果。

Claims (9)

1.一种复合型多层膜结构银纳米线,其特征在于,其生长于结构为20~30nm的银和3~5nm的二氧化硅循环沉积n个周期形成的[Ag 20~30nm/SiO2 3~5nm]n纳米多层膜阵列的表面;其中5≥n≥1。
2.根据权利要求1所述的复合型多层膜结构银纳米线,其特征在于,其结构为30nm的银和5nm的二氧化硅循环沉积形成。
3.根据权利要求1所述的复合型多层膜结构银纳米线,其特征在于,[Ag 20~30nm/SiO23~5nm]n纳米多层膜阵列中的n=4。
4.一种权利要求1所述复合型多层膜结构银纳米线的制备方法,具体步骤如下:
步骤一、利用自组装技术制备聚苯乙烯二维有序胶体球序列模板,其中胶体球呈六方密堆排列,胶体球直径为200-700nm;
步骤二、采用磁控溅射技术向二维有序胶体球模板上依次沉积20-30nm的银和3-5nm的二氧化硅,循环沉积n个周期,形成[Ag 20~30nm/SiO2 3~5nm]n纳米多层膜阵列;其中5≥n≥1。
步骤三、将上一步制得的[Ag 20~30nm/SiO2 3~5nm]n纳米多层膜阵列浸泡在有机溶剂中去掉聚苯乙烯二维有序胶体球序列模板,然后在保护气氛下进行800-900℃退火处理1-2小时。
5.根据权利要求4所述的复合型多层膜结构银纳米线的制备方法,其特征在于,所述的有机溶剂为四氢呋喃、氯仿或甲苯。
6.根据权利要求4所述的复合型多层膜结构银纳米线的制备方法,其特征在于,退火处理的温度为900℃。
7.根据权利要求4所述的复合型多层膜结构银纳米线的制备方法,其特征在于,步骤二中进行磁控溅射时采用直流溅射制备银层,采用交流溅射制备二氧化硅层。
8.根据权利要求4所述的复合型多层膜结构银纳米线的制备方法,其特征在于,在磁控溅射期间基底被旋转并且真空室的本底气压为2.4×10-4Pa;Ag靶和SiO2靶的溅射功率分别是20瓦和72瓦。
9.根据权利要求4所述的复合型多层膜结构银纳米线的制备方法,其特征在于,在磁控溅射后的薄膜沉积的时期,工作气压为0.6Pa并且Ag和SiO2的溅射速率分别为0.06纳米每秒和0.01纳米每秒。
CN201610207325.6A 2016-04-05 2016-04-05 一种复合型多层膜结构银纳米线及其制备方法 Pending CN105839062A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610207325.6A CN105839062A (zh) 2016-04-05 2016-04-05 一种复合型多层膜结构银纳米线及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610207325.6A CN105839062A (zh) 2016-04-05 2016-04-05 一种复合型多层膜结构银纳米线及其制备方法

Publications (1)

Publication Number Publication Date
CN105839062A true CN105839062A (zh) 2016-08-10

Family

ID=56597571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610207325.6A Pending CN105839062A (zh) 2016-04-05 2016-04-05 一种复合型多层膜结构银纳米线及其制备方法

Country Status (1)

Country Link
CN (1) CN105839062A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108456848A (zh) * 2018-03-28 2018-08-28 吉林师范大学 一种Ag/FeS分层复合材料SERS基底及其制备方法
CN113385680A (zh) * 2021-05-19 2021-09-14 杭州电子科技大学 一种金属纳米片的制备方法
CN113976904A (zh) * 2021-10-20 2022-01-28 杭州电子科技大学 一种微腔内光激发化学诱导生长贵金属纳米粒子的方法
CN114262875A (zh) * 2021-12-27 2022-04-01 杭州电子科技大学 一种Ag纳米带/片/花的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201007A (ja) * 2012-03-23 2013-10-03 Fujifilm Corp 導電性部材及びその製造方法、並びにタッチパネル
CN103540899A (zh) * 2013-11-05 2014-01-29 哈尔滨工业大学 一种脉冲激光沉积制备纳米银/二氧化硅复合结构涂层的方法
CN103575721A (zh) * 2013-11-07 2014-02-12 无锡英普林纳米科技有限公司 一种多层结构表面增强拉曼散射基底及其制备方法
CN104681662A (zh) * 2013-12-02 2015-06-03 青岛事百嘉电子科技有限公司 一种高反射率太阳能薄膜的制备方法
CN105403551A (zh) * 2015-10-30 2016-03-16 上海纳米技术及应用国家工程研究中心有限公司 一种具有拉曼增强性能薄膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201007A (ja) * 2012-03-23 2013-10-03 Fujifilm Corp 導電性部材及びその製造方法、並びにタッチパネル
CN103540899A (zh) * 2013-11-05 2014-01-29 哈尔滨工业大学 一种脉冲激光沉积制备纳米银/二氧化硅复合结构涂层的方法
CN103575721A (zh) * 2013-11-07 2014-02-12 无锡英普林纳米科技有限公司 一种多层结构表面增强拉曼散射基底及其制备方法
CN104681662A (zh) * 2013-12-02 2015-06-03 青岛事百嘉电子科技有限公司 一种高反射率太阳能薄膜的制备方法
CN105403551A (zh) * 2015-10-30 2016-03-16 上海纳米技术及应用国家工程研究中心有限公司 一种具有拉曼增强性能薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAXIN WANG ET AL.: "Ordered Nanocap Array Composed of SiO2-Isolated Ag Islands as SERS Platform", 《LANGMUIR》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108456848A (zh) * 2018-03-28 2018-08-28 吉林师范大学 一种Ag/FeS分层复合材料SERS基底及其制备方法
CN113385680A (zh) * 2021-05-19 2021-09-14 杭州电子科技大学 一种金属纳米片的制备方法
CN113976904A (zh) * 2021-10-20 2022-01-28 杭州电子科技大学 一种微腔内光激发化学诱导生长贵金属纳米粒子的方法
CN113976904B (zh) * 2021-10-20 2024-02-13 杭州电子科技大学 一种微腔内光激发化学诱导生长贵金属纳米粒子的方法
CN114262875A (zh) * 2021-12-27 2022-04-01 杭州电子科技大学 一种Ag纳米带/片/花的制备方法
CN114262875B (zh) * 2021-12-27 2024-05-07 杭州电子科技大学 一种Ag纳米带/片/花的制备方法

Similar Documents

Publication Publication Date Title
CN105839062A (zh) 一种复合型多层膜结构银纳米线及其制备方法
CN109071211B (zh) 纳米发动机推进
Zhao et al. Synthesis of monodispersedly sized ZnO nanowires from randomly sized seeds
Van Hieu Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures
Cho et al. Formation of amorphous zinc citrate spheres and their conversion to crystalline ZnO nanostructures
Wang et al. Detection of hydrogen peroxide at a palladium nanoparticle-bilayer graphene hybrid-modified electrode
CN103641064B (zh) 金属-二氧化硅多层薄膜空心纳米结构阵列及其制备方法
TWI384636B (zh) 以液態或凝膠態前驅物形成圖案化金屬氧化物層或圖案化金屬層之製作方法
CN105648413A (zh) 一种金属/氧化物复合表面增强拉曼活性基底的制备方法
CN102530845B (zh) 三角形金属纳米孔阵列的制备方法
CN103938158A (zh) 一种自组装球型阵列的sers基底及制备方法
CN101100000A (zh) 一种核壳结构复合纳米材料及其制备方法
CN107385372B (zh) 一种纳米结构过渡金属薄膜的制备方法
CN102586834B (zh) 一种通透二氧化钛纳米管薄膜的制备及应用
CN103862032A (zh) 四方超晶格的核壳贵金属纳米棒及其自组装方法
CN105063556B (zh) 一种在石墨烯上制备纳米金属颗粒阵列的制备方法
CN102849730A (zh) 一种制备纳米银-石墨烯仿生纳米结构复合薄膜的方法
CN103803486A (zh) 一种超细硅纳米线阵列的制备方法
CN106282931A (zh) 一种制备有序银纳米球阵列的方法
Le et al. Controllable synthesis and visible-active photocatalytic properties of Au nanoparticles decorated urchin-like ZnO nanostructures
CN108330454B (zh) 一种网状金银复合纳米薄膜的制备方法
Ke et al. Unpacking the toolbox of two-dimensional nanostructures derived from nanosphere templates
Wu et al. Room‐Temperature Annealing‐Free Gold Printing via Anion‐Assisted Photochemical Deposition
CN108179404A (zh) 一种基于生长法构筑有序金属纳米孔阵列的方法
Junisu et al. Three-Dimensional Interconnected Network of Gold Nanostructures for Molecular Sensing via Surface-Enhanced Raman Scattering Spectroscopy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160810

WD01 Invention patent application deemed withdrawn after publication