CN108611604B - 一种基于高介电材料的经济型高精密表面增强拉曼活性基底的制造方法 - Google Patents

一种基于高介电材料的经济型高精密表面增强拉曼活性基底的制造方法 Download PDF

Info

Publication number
CN108611604B
CN108611604B CN201810260990.0A CN201810260990A CN108611604B CN 108611604 B CN108611604 B CN 108611604B CN 201810260990 A CN201810260990 A CN 201810260990A CN 108611604 B CN108611604 B CN 108611604B
Authority
CN
China
Prior art keywords
noble metal
metal nano
dielectric
island structure
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810260990.0A
Other languages
English (en)
Other versions
CN108611604A (zh
Inventor
陈检
刘桂强
汤莉
刘怡
黄镇平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Normal University
Original Assignee
Jiangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Normal University filed Critical Jiangxi Normal University
Priority to CN201810260990.0A priority Critical patent/CN108611604B/zh
Publication of CN108611604A publication Critical patent/CN108611604A/zh
Application granted granted Critical
Publication of CN108611604B publication Critical patent/CN108611604B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • G01N2021/655Stimulated Raman

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种基于高介电材料的经济型高精密表面增强拉曼活性基底的制造方法,包括贵金属纳米岛的制备、高介电纳米材料的沉积、HF和H2O2混合溶液的蒸汽刻蚀等三个步骤,通过磁控溅射和退火处理人为控制贵金属纳米岛的尺度,再通过简单磁控溅射镀膜法在贵金属纳米岛上沉积高介电纳米材料,然后再采取HF和H2O2混合溶液的蒸汽对样品进行刻蚀而最终获得。本发明的方法经济性好、标准化程度高、拉曼增强能力和识别能力强、可靠性高、稳定性好。

Description

一种基于高介电材料的经济型高精密表面增强拉曼活性基底 的制造方法
技术领域
本发明涉及理化检测领域,尤其涉及一种高介电材料的经济型高精密表面增强拉曼活性基底的制造方法。
背景技术
贵金属纳米结构引起表面等离激元的激发能提供强的拉曼增强,基于贵金属纳米结构的这种特性,人们开发了许多的表面增强拉曼散射基底。如基于离散化贵金属纳米颗粒的局域表面增强效应可以实现较强的拉曼增强,但重复性有待提高。基于聚焦离子束刻蚀、电子束刻蚀或模板刻蚀等复杂方法制备的基底结构,具有规则的有序结构,拉曼增强效果非常显著、可重复性高,但制备成本高、仪器操作复杂、制备时间长。而通过结合简单镀膜沉积技术制备的贵金属-介质分级结构,虽可显示优越的拉曼增强效应,但由于贵金属材料的大量使用,导致成本过高。近年来,高介电材料如硅(Si)、砷化镓(GaAs)和二氧化钛(TiO2)等因具有类似于金属等离激元的特性,也逐渐进入表面增强拉曼研究领域,但基于高介电材料的拉曼增强效应与贵金属纳米结构的相比要弱很多。
贵金属等离激元-光子复合结构,如早期的贵金属覆盖介质球阵列,能够结余成本,但拉曼信号有待增强。通过在介质球阵列上吸附贵金属纳米颗粒或者自组装贵金属纳米颗粒或在贵金属覆盖介质球阵列上自组装贵金属纳米颗粒等方法,可使得吸附在这些结构上的被测分子的拉曼信号的强度与贵金属薄膜相比,得到了很大程度的完善,但上述结构仍存在成本高、制备过程繁杂、增强效果有待加强等不足之处。
市场上亟需一种将贵金属纳米结构和高介电材料结合的低成本的、标准化程度高的、适于工业化生产的表面拉曼增强型拉曼基底,用于材料表面结构的常规检测或基础研究。
发明内容
为解决现有技术中存在的上述缺陷,本发明旨在提供一种低成本、标准化程度高、适于工业化生产、表面拉曼增强能力和识别能力强、可靠性高、稳定性好的基于高介电材料的经济型高精密表面增强拉曼活性基底的制造方法。
为了实现上述发明目的,本发明采用以下技术方案:
一种基于高介电材料的经济型高精密表面增强拉曼活性基底的制造方法,包括以下步骤:
(1)贵金属纳米岛的制备
①利用磁控溅射设备将贵金属靶材(贵金属靶材可以是金、银或者铂金靶材)溅射到洁净石英玻璃表面,使之在石英玻璃表面形成超薄贵金属纳米膜层,磁控溅射速度控制在32nm/min,溅射时间为3.8秒-38秒,贵金属纳米膜层实得厚度为2nm-20nm;
②将制备的贵金属纳米膜层放入马弗炉中,在200℃下退火30min,获得贵金属纳米岛结构;
(2)高介电纳米颗粒材料的沉积
①利用磁控溅射设备将高介电靶材[高介电靶材可以为硅(Si)、砷化镓(GaAs)或者二氧化钛(TiO2)靶材]溅射到(1)中制备的贵金属纳米岛结构表面,使之在贵金属纳米岛结构表面形成高介电纳米颗粒层,磁控溅射速度控制在3nm/min,溅射时间为20秒,高介电纳米颗粒的尺寸为1nm,得到附有高介电材料的贵金属纳米岛结构;
(3)HF和H2O2混合溶液的蒸汽刻蚀
①将1ml质量浓度为40%的氢氟酸(HF)水溶液、3ml质量浓度为30%的过氧化氢(H2O2)水溶液加入到装有19ml的去离子水的玻璃容器中,形成混合溶液,将(2)中获得的附有高介电材料的贵金属纳米岛结构连同石英玻璃基底倒扣在玻璃容器上端,通过混合溶液的蒸汽来进行刻蚀。刻蚀时间10min,即获得所需表面增强拉曼活性基底;
(4)拉曼基底检测
①选取3-5片(3)中步骤①制备好的表面增强拉曼活性基底浸润到浓度为10-10-10-11mol/L的罗丹明溶液中,均匀浸润后,再取出自然晾干;
②对浸润有罗丹明分子的基底进行拉曼信号激光检测,采用的激光波长为514nm、激光功率为0.12mW;以采用100倍放大后能观察到该分子的拉曼特征峰为合格标准。
与现有技术相比较,本发明具有以下优点:利用简单的磁控溅射技术,制备出超薄的贵金属纳米薄膜,有利于贵金属纳米岛的形成。退火的处理促进了贵金属纳米岛的形成,由于精细的溅射时间控制和退火控制,贵金属纳米岛的形貌尺寸人为可控且均匀性高、局域表面激元增强效应强、活性较高,易于后期的高介电材料的附着和处理;创新地采用高介电纳米颗粒材料对贵金属纳米岛结构进行修饰和整理,然后再经过HF和H2O2的混合溶液的蒸汽刻蚀处理后,使表面拉曼增强活性基底的结构更规则、排布更有序,增加了表面拉曼增强活性基底的表面均一性。此制备操作简单,易于工业化生产。同时,因利用了高介电纳米颗粒结构的类等离激元特性与贵金属纳米岛的局域表面等离激元特性及两者的杂化耦合效应,表面拉曼增强活性更高、更均匀;结合高介电纳米颗粒材料和贵金属纳米岛,进一步提升了本发明的性能(主要是拉曼信号增强能力、识别能力及精准性),由于本发明只采用磁控溅射技术、化学刻蚀技术和退火处理,工艺可靠性和稳定性提高,并保证了工业化生产时所制成拉曼基底的性能均一性;由于整个工艺过程只使用了少量的贵金属材料、高介电材料、HF和H2O2,成本很低,但其性能很稳定、均一、可靠,采用10-10-10-11mol/L的罗丹明为标的物,以0.12mW的激光功率激发,确保了本发明在识别能力和放大能力上均超过同成本下的常规技术(常规技术仅能实现对10-4mol/L浓度罗丹明检测的放大能力和对0.2mW以上激光激发的识别能力),即使与成本远高于本发明的完全贵金属基底或石墨烯-贵金属复合基底相比也相差不远(现有专利文件及研究论文体现,最高能做到对10-10mol/L的罗丹明进行识别,但需要0.8mW的激光激发,或采用0.1mW的激光激发时可识别10-8mol/L的罗丹明浓度),由于兼具好的识别能力和放大能力,精确性和可靠性又能得到保证,经济性好,因此本发明的使用范围很广,具有良好的商业化前景。
附图说明
图1是本发明实施例1制备的基于高介电材料的经济型高精密表面增强拉曼活性基底的示意图。
图2是本发明实施例1制备的基于高介电材料的经济型高精密表面增强拉曼活性基底、贵金属纳米岛和附有高介电材料的贵金属纳米岛结构中R6G分子的拉曼光谱。
图3是本发明实施例2制备的基于高介电材料的经济型高精密表面增强拉曼活性基底、贵金属纳米岛和附有高介电材料的贵金属纳米岛结构中R6G分子的拉曼光谱。
图4是本发明实施例3制备的基于高介电材料的经济型高精密表面增强拉曼活性基底、贵金属纳米岛和附有高介电材料的贵金属纳米岛结构中R6G分子的拉曼光谱。
具体实施方式
实施例1
一种基于高介电材料的经济型高精密表面增强拉曼活性基底的制造方法,包括以下步骤:
(1)贵金属纳米岛的制备
①利用磁控溅射设备将贵金属靶材溅射到洁净石英玻璃表面,使之在石英玻璃表面形成超薄的贵金属纳米膜层,磁控溅射速度控制在32nm/min,溅射时间为7.6秒,贵金属纳米膜层实得厚度为4nm,此处贵金属靶材为金靶材;
②将制备的贵金属纳米膜层放入马弗炉中,在200℃下退火30min,获得贵金属纳米岛结构;
(2)高介电纳米颗粒材料的沉积
①利用磁控溅射设备将高介电靶材溅射到(1)中制备的贵金属纳米岛结构表面,使之在贵金属纳米岛结构表面形成高介电纳米颗粒层,磁控溅射速度控制在3nm/min,溅射时间为20秒,高介电纳米颗粒尺寸为1nm,得到附有高介电材料的贵金属纳米岛结构,此处高介电靶材为硅靶材;
(3)HF和H2O2混合溶液的蒸汽刻蚀
①将1ml浓度为40%的氢氟酸(HF)、3ml浓度为30%的过氧化氢(H2O2)加入到装有19ml的去离子水的玻璃容器中,形成混合溶液,将(2)中获得的附有高介电材料的贵金属纳米岛结构倒扣在玻璃容器上端,通过混合溶液的蒸汽来进行刻蚀,刻蚀时间为10min,即获得所需表面增强拉曼活性基底;
(4)拉曼基底检测
①选取3-5片(3)中步骤①制备好的表面增强拉曼活性基底浸润到浓度为10- 10mol/L的罗丹明溶液中,均匀浸润后,再取出自然晾干;
②对浸润有罗丹明分子的基底进行拉曼信号激光检测,采用的激光波长为514nm、激光功率为0.12mW;以采用100倍放大后能观察到该分子的极强拉曼特征峰为合格标准。
本实施例的基于高介电材料的经济型高精密表面增强拉曼活性基底的示意图如图1所示,尽管被分析物—罗丹明R6G分子的浓度低至10-10mol/L,激光功率低至0.12mW,但仍能观察到该分子的极强拉曼特征峰(如图2所示)。可见,本实施例制成的拉曼基底具有极强的拉曼检测灵敏度,可应用于微量乃至可能痕量物质的分析和检测;将测试所得的拉曼光谱与贵金属纳米岛结构、附有高介电纳米颗粒的贵金属纳米岛结构的相比[该贵金属纳米岛结构是利用磁控溅射仪直接在石英玻璃上溅射贵金属靶材,然后通过退火而形成,贵金属纳米岛结构的制备参数与步骤(1)中一样;附有高介电纳米颗粒的贵金属纳米岛结构是利用磁控溅射仪直接在石英玻璃上溅射贵金属靶材(金靶材),退火后再利用磁控溅射技术溅射高介电靶材(硅靶材)而形成,其制备参数与步骤(1)中一样]。图2显示了实施例1制备的表面增强拉曼活性基底的拉曼光谱、贵金属纳米岛和附有高介电纳米颗粒的贵金属靶材纳米岛结构的拉曼光谱,从该图中可以看到,该表面增强拉曼活性的特征峰拉曼信号强度是附有高介电纳米颗粒的贵金属靶材纳米岛结构的3.5倍,是贵金属靶材纳米岛结构的7倍。
实施例2
一种基于高介电材料的经济型高精密表面增强拉曼活性基底的制造方法,包括以下步骤:
(1)贵金属纳米岛的制备
①利用磁控溅射设备将贵金属靶材(金靶材)溅射到洁净石英玻璃表面,使之在石英玻璃表面形成超薄的贵金属纳米膜层,磁控溅射速度控制在32nm/min,溅射时间为38秒,贵金属纳米膜层实得厚度为20nm;
②将制备的贵金属纳米膜层放入马弗炉中,在200℃下退火30min,获得贵金属纳米岛结构;
(2)高介电纳米颗粒材料的沉积
①利用磁控溅射设备将高介电靶材(硅靶材)溅射到(1)中制备的贵金属纳米岛结构表面,使之在贵金属纳米岛结构表面形成高介电纳米颗粒层,磁控溅射速度控制在3nm/min,溅射时间为20秒,高介电纳米颗粒层实得厚度为1nm,得到附有高介电材料的贵金属纳米岛结构;
(3)HF和H2O2混合溶液的蒸汽刻蚀
①将1ml浓度为40%的氢氟酸(HF)、3ml浓度为30%的过氧化氢(H2O2)加入到装有19ml的去离子水的玻璃容器中,制成混合溶液,将(2)中获得的附有高介电材料的贵金属纳米岛结构连同石英玻璃基底倒扣在玻璃容器上端,通过混合溶液的蒸汽来进行刻蚀,刻蚀时间为10min,即获得所需表面增强拉曼活性基底;
(4)拉曼基底检测
①选取3-5片(3)中步骤①制备好的表面增强拉曼活性基底浸润到浓度为10- 10mol/L的罗丹明溶液中,均匀浸润后,再取出自然晾干;
②对浸润有罗丹明分子的基底进行拉曼信号激光检测,采用的激光波长为514nm、激光功率为0.12mW;以采用100倍放大后能观察到该分子的极强拉曼特征峰为合格标准。
本实施例同样能满足10-10mol/L的识别能力,且实测拉曼峰强度比贵金属纳米岛强3.6倍,比附有高介电纳米颗粒的贵金属纳米岛强1.5倍(如图3所示)。
实施例3
一种基于高介电材料的经济型高精密表面增强拉曼活性基底的制造方法,包括以下步骤:
(1)贵金属纳米岛的制备
①利用磁控溅射设备将贵金属靶材(金靶材)溅射到洁净石英玻璃表面,使之在石英玻璃表面形成超薄的贵金属纳米膜层,磁控溅射速度控制在32nm/min,溅射时间为3.8秒,贵金属纳米膜层实得厚度为2nm;
②将制备的贵金属纳米膜层放入马弗炉中,在200℃下退火30min,获得贵金属纳米岛结构;
(2)高介电纳米颗粒材料的沉积
①利用磁控溅射设备将高介电靶材(硅靶材)溅射到(1)中制备的贵金属纳米岛结构表面,使之在贵金属纳米岛结构表面形成高介电纳米颗粒层,磁控溅射速度控制在3nm/min,溅射时间为20秒,高介电纳米颗粒尺寸为1nm,得到附有高介电材料的贵金属纳米岛结构;
(3)HF和H2O2混合溶液的蒸汽刻蚀
①将1ml浓度为40%的氢氟酸(HF)、3ml浓度为30%的过氧化氢(H2O2)加入到装有19ml的去离子水的玻璃容器中,制成混合溶液,将(2)中获得的附有高介电材料的贵金属纳米岛结构连同石英玻璃基底倒扣在玻璃容器上端,通过混合溶液的蒸汽来进行刻蚀,刻蚀时间为10min,即获得所需表面增强拉曼活性基底;
(4)拉曼基底检测
①选取3-5片(3)中步骤①制备好的表面增强拉曼活性基底浸润到浓度为10- 11mol/L的罗丹明溶液中,均匀浸润后,再取出自然晾干;
②对浸润有罗丹明分子的基底进行拉曼信号激光检测,采用的激光波长为514nm、激光功率为0.12mW;以采用100倍放大后能观察到该分子的极强拉曼特征峰为合格标准。
本发明的基于高介电材料的经济型高精密表面增强拉曼活性基底,尽管被分析物—罗丹明R6G分子的浓度低至10-11mol/L,激光功率低至0.12mW,但仍能观察到该分子的极强拉曼特征峰(如图4所示),可见,本实施例制成的拉曼基底具有极强的拉曼检测灵敏度,可应用于微量乃至可能痕量物质的分析和检测。
对所公开的实施例的上述说明,仅为了使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (5)

1.一种表面增强拉曼活性基底的制造方法,包括以下步骤:
(1)贵金属纳米岛的制备
将贵金属靶材溅射到基底表面,使之在基底表面形成贵金属纳米膜层;将制备的贵金属纳米膜层在一定温度下退火一段时间,获得贵金属纳米岛结构;
(2)高介电纳米颗粒材料的沉积
将高介电靶材溅射到(1)中制备的贵金属纳米岛结构表面,使之在贵金属纳米岛结构表面形成高介电纳米颗粒层,得到附有高介电材料的贵金属纳米岛结构;
(3)HF和H2O2混合溶液的蒸汽刻蚀
将HF溶液、H2O2溶液加入到装有去离子水的容器中形成混合溶液,将(2)中获得的附有高介电材料的贵金属纳米岛结构倒扣在容器的上端,通过混合溶液的蒸汽进行刻蚀,即获得所述的表面增强拉曼活性基底;
其中,步骤(1)中,利用磁控溅射设备将贵金属靶材溅射到基底表面,磁控溅射速度控制在32nm/min,溅射时间为3.8秒-38秒,贵金属纳米膜层实得厚度为2nm-20nm;贵金属纳米膜层放入马弗炉中进行退火,退火温度为200℃,退火时间为30min;
步骤(2)中,所述的高介电靶材为硅、砷化镓或者二氧化钛;利用磁控溅射设备将高介电靶材溅射到(1)中制备的贵金属纳米岛结构表面,磁控溅射速度控制在3nm/min,溅射时间为20秒,高介电纳米颗粒尺度为1nm。
2.根据权利要求1所述的制造方法,其特征在于:步骤(1)中,所述的贵金属靶材为金、银或者铂金靶材。
3.根据权利要求1所述的制造方法,其特征在于:步骤(3)中,HF溶液是指质量浓度为40%的HF水溶液,H2O2溶液是指质量浓度为30%的H2O2水溶液。
4.根据权利要求1所述的制造方法,其特征在于:步骤(3)中,刻蚀时间为10min。
5.根据权利要求1所述的制造方法,其特征在于:步骤(1)中,所述的基底为石英玻璃基底。
CN201810260990.0A 2018-03-28 2018-03-28 一种基于高介电材料的经济型高精密表面增强拉曼活性基底的制造方法 Expired - Fee Related CN108611604B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810260990.0A CN108611604B (zh) 2018-03-28 2018-03-28 一种基于高介电材料的经济型高精密表面增强拉曼活性基底的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810260990.0A CN108611604B (zh) 2018-03-28 2018-03-28 一种基于高介电材料的经济型高精密表面增强拉曼活性基底的制造方法

Publications (2)

Publication Number Publication Date
CN108611604A CN108611604A (zh) 2018-10-02
CN108611604B true CN108611604B (zh) 2021-01-01

Family

ID=63659084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810260990.0A Expired - Fee Related CN108611604B (zh) 2018-03-28 2018-03-28 一种基于高介电材料的经济型高精密表面增强拉曼活性基底的制造方法

Country Status (1)

Country Link
CN (1) CN108611604B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111398217B (zh) * 2019-06-05 2022-08-19 江西师范大学 一种高品质等离激元光学传感器及其制备方法
CN111830614A (zh) * 2020-05-13 2020-10-27 华南师范大学 利用激光偏振态实现纳米光栅刻印的解决方案
CN114842735B (zh) * 2022-04-29 2023-03-17 北京航空航天大学 基于贵金属分形图案的puf防伪标签制作方法及防伪标签

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7450227B2 (en) * 2004-09-22 2008-11-11 The Penn State Research Foundation Surface enhanced Raman spectroscopy (SERS) substrates exhibiting uniform high enhancement and stability
US20100190661A1 (en) * 2009-01-26 2010-07-29 City University Of Hong Kong Sers-active structure for use in raman spectroscopy
CN105572100B (zh) * 2016-03-03 2018-07-13 张志刚 一种表面增强拉曼散射衬底及其制备方法
CN106075470B (zh) * 2016-06-22 2019-01-29 东南大学 金纳米片合成方法及金纳米片在乳腺癌诊疗方面的应用

Also Published As

Publication number Publication date
CN108611604A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
Wang et al. Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection
Kvítek et al. Noble metal nanostructures influence of structure and environment on their optical properties
US20150049332A1 (en) Gold nanoisland arrays
CN108611604B (zh) 一种基于高介电材料的经济型高精密表面增强拉曼活性基底的制造方法
US7707647B2 (en) Probe used for surface enhanced vibrational spectroscopic analysis and method of manufacturing the same
CN103451610B (zh) 新型仿生表面增强拉曼光谱基底及其制备方法
CN103938158A (zh) 一种自组装球型阵列的sers基底及制备方法
CN108169171B (zh) 一种基于表面等离子激元共振的折射率测试及其制作方法
CN111175284A (zh) 一种分层微/纳米结构的表面增强拉曼底物的制备方法
CN105842228A (zh) 基于表面等离激元效应的纳米环形腔sers基底及其制作方法
Li et al. Graphene-coated Si nanowires as substrates for surface-enhanced Raman scattering
CN108982474A (zh) 一种基于金属-介质复合等离激元共振结构的表面增强拉曼活性基底及其制备方法
KR20170066089A (ko) 금속 나노구조체의 제조방법 및 상기 제조방법에 따라 제조되는 금속 나노구조체를 포함하는 표면증강라만산란 분광용 기판
CN104692827A (zh) 一种Ag-SiO2-Ag纳米球阵列的制备方法
CN107064107A (zh) 一种利用硅纳米介电材料制备的超疏水表面增强拉曼基底及其制备方法
Spasopoulos et al. LSPR based optical fiber sensors treated with nanosecond laser irradiation for refractive index sensing
CN111175285A (zh) 具有分层微/纳米结构的表面增强拉曼底物及其检测方法
CN108802005B (zh) 基于粒子-波导耦合结构的拉曼散射增强基底及制备方法
Hu et al. Preparation and SERS performance of gold nanoparticles-decorated patterned silicon substrate
CN107119252B (zh) 一种硅基表面增强拉曼基底的制备方法
CN107328750B (zh) 高活性高均一性表面增强拉曼散射基底及其制备方法
CN106350058B (zh) 基于纳米多孔金的荧光增强基底的制备方法
CN111122543A (zh) 一种粗糙化硅柱阵列结构及其制备方法
Ou et al. Structural and optical properties of textured silicon substrates by three-step chemical etching
CN112795870A (zh) 一种纳米链结构阵列的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210101

CF01 Termination of patent right due to non-payment of annual fee