CN111398217B - 一种高品质等离激元光学传感器及其制备方法 - Google Patents

一种高品质等离激元光学传感器及其制备方法 Download PDF

Info

Publication number
CN111398217B
CN111398217B CN201910486124.8A CN201910486124A CN111398217B CN 111398217 B CN111398217 B CN 111398217B CN 201910486124 A CN201910486124 A CN 201910486124A CN 111398217 B CN111398217 B CN 111398217B
Authority
CN
China
Prior art keywords
quality
optical sensor
dielectric layer
layer
slits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910486124.8A
Other languages
English (en)
Other versions
CN111398217A (zh
Inventor
刘正奇
周进
张后交
刘桂强
刘晓山
王燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Normal University
Original Assignee
Jiangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Normal University filed Critical Jiangxi Normal University
Priority to CN201910486124.8A priority Critical patent/CN111398217B/zh
Publication of CN111398217A publication Critical patent/CN111398217A/zh
Application granted granted Critical
Publication of CN111398217B publication Critical patent/CN111398217B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/24Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing the transmission of wave or particle radiation through the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及光学传感器技术领域,具体涉及一种高品质等离激元光学传感器及其制备方法。该传感器由下及上依次设有一基底层、一金属谐振单元和一介质层,金属谐振单元设于基底层与介质层之间,金属谐振单元下表面平滑,与基底层相接触,上表面平行设有不少于两个的狭缝,介质层与金属谐振单元上表面紧密接触,介质层上设有与狭缝一一对应的槽孔,槽孔贯穿介质层。当入射光与金属谐振单元之间具有一不等于90°和0°的角度,金属谐振单元的二聚体产生等离激元共振小于入射光与介质层的光学共振,产生增强的杂化耦合效应,使得吸收光谱带宽极大减小,从而获得超高品质等离激元光学传感器,光学传感品质因子最高可以达到1333,比同期最高水平高10倍以上。

Description

一种高品质等离激元光学传感器及其制备方法
技术领域
本发明涉及光学传感器技术领域,具体涉及一种高品质等离激元光学传感器及其制备方法。
背景技术
表面等离激元(Surface Plasmon Polaritons,SPPs)是一种局域在介质-金属表面的特殊的电磁模式,它的光场能量在分界面处最大,并且以指数形式向两边衰减。它是一种强大潜在的信息技术载体,在光通信领域内越来越受到重视。SPPs具有克服传统光学中的衍射极限的优势,而且还具有巨大的场增强效应。以表面等离激元为基础的光学器件为光子器件的集成化和小型化提供了可能。基于以上的优点,基于表面等离激元的纳米光学器件已经成为了纳米光子学研究的热点之一。
等离激元光学传感器更是研究的热点,但目前的等离激元传感器的品质因子一般都比较低,对等离激元在光学传感器上的应用产生了限制。
发明内容
针对上述问题,本发明的目的是解决目前等离激元传感器的品质因子低的技术问题。
为此,本发明提供了一种高品质等离激元光学传感器,由下及上依次设有一基底层、一金属谐振单元和一介质层;所述金属谐振单元设于所述基底层与所述介质层之间;所述金属谐振单元包括上表面和下表面;所述下表面平滑,与所述基底层相接触;所述上表面平行设有不少于两个的狭缝;所述介质层与所述金属谐振单元上表面紧密接触;所述介质层上设有与所述狭缝一一对应的槽孔;所述槽孔贯穿所述介质层。
进一步地,所述金属谐振单元为二聚体。
进一步地,所述二聚体为二维光栅阵列结构。
进一步地,所述狭缝为矩形狭缝;所述狭缝完全相同。
进一步地,所述狭缝之间的距离大于所述狭缝的缝宽;所述狭缝的深度大于所述狭缝的缝宽。
进一步地,所述介质层为介质光学微腔膜层。
进一步地,所述基底层为不透明金属制成。
进一步地,一种高品质等离激元光学传感器制备方法,包括以下步骤:
步骤1、准备洁净的硅片或者玻璃片备用;
步骤2、镀膜,在步骤1准备好的洁净硅片或者玻璃片上蒸镀一层金属膜;
步骤3、蒸镀,在步骤2中形成的金属膜上表面蒸镀一层介质形成介质层;
步骤4、刻蚀,对经步骤3处理后的介质层和金属膜进行刻蚀,在所述金属膜上形成不少于两个的狭缝,在所述介质层上形成与狭缝一一对应的槽孔;
步骤5、得到高品质等离激元光学传感器。
进一步地,所述步骤2中镀膜和步骤4中的蒸镀采用磁控溅射蒸镀或电子束蒸镀。
进一步地,步骤4中的刻蚀为电子束刻蚀或聚焦离子束刻蚀。
本发明的有益效果:本发明提供了一种高品质等离激元光学传感器,在入射光的照射下,金属谐振单元与介质层均表面均产生电荷共振,入射光斜入射时,使得入射光与金属谐振单元之间具有一不等于0°和90°的倾斜角度,金属谐振单元的二聚体产生等离激元共振小于入射光与介质层之间的光学共振,产生增强的杂化耦合效应,使得吸收光谱带宽和半峰宽极大减小,从而获得超高品质等离激元光学传感器,光学传感品质系数最大可以达到1375,在环境折射率改变测试中,光学传感品质因子最大可以达到1333,比目前现有技术中最高水平高10倍以上。
附图说明
以下将结合附图对本发明做进一步详细说明。
图1是本申请实施例高品质等离激元光学传感器基底层和金属谐振单元立体结构图;
图2为本申请实施例高品质等离激元光学传感器剖面结构示意图;
图3是本申请实施例高品质等离激元光学传感器吸收光谱图一;
图4是本申请实施例高品质等离激元光学传感器待测物折射率与响应波段关系对应图一。
图5是本申请实施例高品质等离激元光学传感器吸收光谱图二;
图6是本申请实施例高品质等离激元光学传感器待测物折射率与响应波段关系对应图二。
图中:1、基底层;2、金属谐振单元;21、狭缝;3、介质层;31、槽孔。
具体实施方式
实施例1:
为解决现有技术中光学传感器品质因子比较低的技术问题,本实施例提供了一种高品质等离激元光学传感器,如图1和图2所示,由下及上依次设有一基底层1、一金属谐振单元2和一介质层3,金属谐振单元2设于基底层1与介质层3之间,金属谐振单元2包括上表面和下表面,下表面平滑,与基底层1相接触,上表面平行设有不少于两个的狭缝21,介质层3与金属谐振单元2上表面紧密接触,介质层3上设有与狭缝21一一对应的槽孔31,槽孔31贯穿所述介质层3。
具体而言:
金属谐振单元2具体为二聚体,二聚体为二维光栅阵列结构。介质层3为介质光学微腔膜层,基底层1为不透明金属制成,具体可以为任意金属材料,例如:金、银等,本实施例具体为金。
狭缝21可以为任意相同或者不相同的狭缝21,可以为矩形、弧形、三角形等任意形状,本实施例具体为矩形狭缝21,且狭缝21完全相同,特别的,狭缝21之间的距离大于狭缝21的缝宽,狭缝21的深度大于狭缝21的缝宽。
本实施例一种高品质等离激元光学传感器,如图1所示在入射光的照射下,金属谐振单元2与介质层3均表面均产生电荷共振,入射光斜入射时,使得入射光与金属谐振单元2之间具有一不等于0°或90°的倾斜角度,金属谐振单元2的二聚体产生等离激元共振小于入射光与介质层3之间的光学共振,产生增强的杂化耦合效应,使得吸收光谱带宽和半峰宽的极大减小,从而获得超高品质等离激元光学传感器,光学传感品质系数最大可以达到1375,在环境折射率改变测试中,光学传感品质因子最大可以达到1333,比现有技术中同期最高水平高10多倍。
实施例2:
为进一步说明实施例1和实施例3中的一种高品质等离激元光学传感器,本实施例进一步公开了本实施例高品质等离激元光学传感器的光学特性,具体如下:
如图2所示,基底层1厚度h1=150nm;金属谐振单元2厚度h2=20nm,狭缝21宽度w2=20nm,两个狭缝21之间的距离d2=200nm,狭缝21深度不大于20nm;介质层3厚度h3=360nm,槽孔31宽度w3=20nm,槽孔31深度等于360nm。
如图1和图3所示,为当入射光以0°倾斜照射至介质层3表面的吸收光谱图,从图中我们可以看到,共产生两个共振吸收峰,分别位于:λ=0.655μm和λ=0.921μm。λ=0.655μm时,吸收率A=0.997,光谱品质因子Q=62;λ=0.921μm时,吸收率A=0.969,光谱品质因子Q=92。吸收率是基于定义A=1-R-T,其中R,T分别为光谱的反射率和透射率。光谱品质因子Q是基于定义Q=λ/FWHM,其中λ为共振吸收峰的波长,FWHM是吸收峰的半高宽。比如,λ=0.655μm时,吸收峰的半高宽FWHM为10.56nm,则光谱品质因子Q=λ/FWHM=655/10.56=62。
如图4所示,为本实施例高品质等离激元光学传感器,当入射光以0°倾斜照射至介质层3表面时随材料折射率变化的光谱频移图,从图中我们可以清楚的看到,折射率与波长成正相关,随着待测物折射率的增加,响应波段也随之红移,传感的灵敏度因子S=246纳米/折射率单位,传感检测的品质因子FOM=S/半峰宽=23,灵敏度低,品质因子也低。
如图5所示,当入射光以21°倾斜角照射至介质层3表面,即图5中粗点虚线,我们可以看到,共产生三个共振吸收峰,分别位于:λ=0.727μm、λ=0.815μm和λ=1.070μm。如图5中粗点虚线所示,λ=0.727μm时,吸收率A=0.510,光谱品质因子Q=56;λ=0.815μm时,吸收率A=0.821,光谱品质因子Q=815;λ=1.070μm时,吸收率A=0.988,光谱品质因子Q=194。
如图5中实线所示,当入射光以22°倾斜角照射至介质层3表面,我们可以看到,共产生三个共振吸收峰,分别为:λ=0.721μm、λ=0.825μm和λ=1.078。如图5中实线所示,λ=0.721μm时,吸收率A=0.518,光谱品质因子Q=51;λ=0.825μm时,吸收率A=0.535,光谱品质因子Q=1375;λ=1.078时,吸收率A=0.984,光谱品质因子Q=196。
如图5中细点虚线所示,当入射光以23°倾斜角照射至介质层3表面,从图中我们可以看到,共产生三个共振吸收峰,分别为:λ=0.716μm、λ=0.835μm和λ=1.086μm。如图5中细点虚线所示,λ=0.716μm时,吸收率A=0.526,光谱品质因子Q=48;λ=0.835μm时,吸收率A=0.354,光谱品质因子Q=834;λ=1.086时,吸收率A=0.987,光谱品质因子Q=197。
由此可见,当入射光以一定倾斜角照射至介质层3表面时,相比于倾斜角度为0°或者90°,不仅共振吸收峰数量增加,光谱品质因子Q也大大增加,高达十倍左右。
如图6所示,为本实施例高品质等离激元光学传感器,当入射光以22°倾斜角照射至介质层3表面时随材料折射率变化的光谱频移图,从图中我们可以清楚的看到,折射率与波长成正相关关系,随着待测物折射率的增加,响应波段也随之红移,传感的灵敏度因子S=800纳米/折射率单位,传感检测的品质因子FOM=S/半峰宽=1333,由此可见,本实施例高品质等离激元光学传感器具有高灵敏度和高品质因子。
实施例3:
基于实施例1公开的一种高品质等离激元光学传感器,本实施例公开了一种高品质等离激元光学传感器制备方法,包括以下步骤:
步骤1、准备洁净的硅片或者玻璃片备用;
步骤2、镀膜,在步骤1准备好的洁净硅片或者玻璃片上蒸镀一层金属膜;
步骤3、蒸镀,在步骤2形成的金属膜上表面蒸镀一层介质形成介质层3;
步骤4、刻蚀,对经步骤3处理后的介质层3和金属膜进行刻蚀,在所述金属膜上形成不少于两个的狭缝21,在所述介质层3上形成与狭缝21一一对应的槽孔31;
步骤5、得到高品质等离激元光学传感器。
具体的,所述步骤2中镀膜和步骤4中的蒸镀均可以采用磁控溅射法或电子束蒸镀技术,步骤4中的刻蚀为电子束刻蚀或聚焦离子束刻蚀。
本发明一种高品质等离激元光学传感器结构简单,易于制备,简化实验制备流程,节省人力物力,易于实际推广生产,具有很高的实用价值。
实施例4:
基于实施例1公开的一种高品质等离激元光学传感器,本实施例公开了一种高品质等离激元光学传感器的应用方法,具体如下:
实施例1高品质等离激元光学传感器在入射光的照射下,金属谐振单元2与介质层3表面均产生电荷共振,入射光斜入射时,即入射光与金属谐振单元2之间具有一不等于90°和0°的角度,金属谐振单元2的二聚体产生等离激元共振小于入射光与介质层3的光学共振,产生增强的杂化耦合效应,产生了高光谱品质因子光学吸收,使得吸收光谱带宽和半峰宽的极大减小,从而获得超高品质等离激元光学传感器。
将待检测材料置入凹槽中,例如:不同的气体、液体或者固态膜层材料,根据材料的密度或折射率不同,测量不同密度或折射率对应共振光谱频率的改变,从而测量出材料的密度或折射率,检测方法简单,易于操作,并且,目前的光学检测仪器成本很高,一般普通实验室很难实现,本实施例提供了一种高品质等离激元光学传感器,结构易于制备,在普通实验中中即可实现,成本低,且操作简单,适合工业化生产,大面积推广。
更进一步地,不同材料与入射光的响应波点不同,本实施例高品质等离激元光学传感器可以通过调控入射光在介质层3表面入射角度,从而对共振光谱频率的响应范围进行调控,实现在不同频率处的高光谱品质的共振响应,根据实验条件或者实际需要调节共振响应波段,降低实验检测难度,降低成本。
此外,本实施例高品质等离激元光学传感器结构体系的金属谐振单元2二聚体产生的等离激元共振小于与介质光学微腔膜层的光学共振可以产生多个共振响应模式,对应在不同频率处,可以为多频谱高集成的等离激元光学传感器提供新的途径,在传感检测时产生两个或三个共振工作频率进行同时检测,实现二重或三重传感检测,对同一被测材料获得更为准确的传感检测结构。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (8)

1.一种高品质等离激元光学传感器,其特征在于,由下及上依次设有一基底层、一金属谐振单元和一介质层;所述基底层为不透明金属制成,所述金属谐振单元设于所述基底层与所述介质层之间;所述金属谐振单元包括上表面和下表面;所述下表面平滑,与所述基底层相接触;
所述上表面平行设有不少于两个的狭缝;
所述介质层与所述金属谐振单元上表面紧密接触;
所述介质层上设有与所述狭缝一一对应的槽孔,所述槽孔贯穿所述介质层;所述狭缝为矩形狭缝;所述狭缝完全相同;
应用时,入射光斜入射所述介质层,通过测量共振波长的移动实现环境折射率传感。
2.根据权利要求1所述的高品质等离激元光学传感器,其特征在于,所述金属谐振单元为二聚体。
3.根据权利要求2所述的高品质等离激元光学传感器,其特征在于,所述二聚体为二维光栅阵列结构。
4.根据权利要求1所述的高品质等离激元光学传感器,其特征在于,所述狭缝之间的距离大于所述狭缝的缝宽;所述狭缝的深度大于所述狭缝的缝宽。
5.根据权利要求1所述的高品质等离激元光学传感器,其特征在于,所述介质层为介质光学微腔膜层。
6.权利要求1-5任一项所述的高品质等离激元光学传感器的制备方法,其特征在于,包括以下步骤:
步骤1、准备洁净的硅片或者玻璃片备用;
步骤2、镀膜,在步骤1准备好的洁净硅片或者玻璃片上蒸镀一层金属膜;
步骤3、蒸镀,在步骤2形成的金属膜上表面蒸镀一层介质形成介质层;
步骤4、刻蚀,对经步骤3处理后的介质层和金属膜进行刻蚀,在所述金属膜上形成不少于两个的狭缝,在所述介质层上形成与狭缝一一对应的槽孔;
步骤5、得到高品质等离激元光学传感器。
7.根据权利要求6所述的高品质等离激元光学传感器的制备方法,其特征在于,所述步骤2中镀膜和步骤4中的蒸镀采用磁控溅射蒸镀或电子束蒸镀。
8.根据权利要求6所述的高品质等离激元光学传感器的制备方法,其特征在于,步骤4中的刻蚀为电子束刻蚀或聚焦离子束刻蚀。
CN201910486124.8A 2019-06-05 2019-06-05 一种高品质等离激元光学传感器及其制备方法 Active CN111398217B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910486124.8A CN111398217B (zh) 2019-06-05 2019-06-05 一种高品质等离激元光学传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910486124.8A CN111398217B (zh) 2019-06-05 2019-06-05 一种高品质等离激元光学传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN111398217A CN111398217A (zh) 2020-07-10
CN111398217B true CN111398217B (zh) 2022-08-19

Family

ID=71430275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910486124.8A Active CN111398217B (zh) 2019-06-05 2019-06-05 一种高品质等离激元光学传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN111398217B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433094B (zh) * 2021-05-11 2023-01-17 中山大学 实现fp-wa耦合模式的生物传感器及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148187A (ja) * 2000-11-08 2002-05-22 Nippon Telegr & Teleph Corp <Ntt> 光導波路型spr現象計測チップ、その製造方法およびspr現象計測方法
JP2009150749A (ja) * 2007-12-20 2009-07-09 Japan Aviation Electronics Industry Ltd 表面プラズモンセンサ
CN102401788A (zh) * 2011-05-18 2012-04-04 曹暾 一种具有集成光学谐振腔结构的微流控芯片生物传感器
CN102664350A (zh) * 2012-03-09 2012-09-12 中国科学院苏州纳米技术与纳米仿生研究所 一种等离子激元纳米激光器
CN103105378A (zh) * 2011-11-14 2013-05-15 中国科学院微电子研究所 生物传感器及其制造方法、生物传感器测试系统
JP2013250117A (ja) * 2012-05-31 2013-12-12 Olympus Corp 水素検出素子および水素センサ
CN103543128A (zh) * 2012-07-10 2014-01-29 中国科学院微电子研究所 一种基于自支撑光栅结构的传感器及其制备方法
CN104568849A (zh) * 2014-12-24 2015-04-29 江西师范大学 三维亚波长金属腔体结构光谱多带光完美吸收等离激元传感器及其制备方法与用途
CN108611604A (zh) * 2018-03-28 2018-10-02 江西师范大学 一种基于高介电材料的经济型高精密表面增强拉曼活性基底的制造方法
CN108956531A (zh) * 2018-04-15 2018-12-07 桂林电子科技大学 一种光纤端面电介质-金属圆孔阵列结构的折射率传感器
CN108982474A (zh) * 2018-09-07 2018-12-11 江西师范大学 一种基于金属-介质复合等离激元共振结构的表面增强拉曼活性基底及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016963A (ja) * 2003-06-23 2005-01-20 Canon Inc 化学センサ、化学センサ装置
JP2009025091A (ja) * 2007-07-18 2009-02-05 Canon Inc センサー装置
US8174698B2 (en) * 2007-08-10 2012-05-08 Corporation de l'Ecole Polytechnique de Montréal MEMS tunable silicon fabry-perot cavity and applications thereof
CN102556959B (zh) * 2011-12-30 2014-04-16 中国科学院苏州纳米技术与纳米仿生研究所 一种金属纳米颗粒二聚体的制备方法
CN107390311A (zh) * 2017-07-11 2017-11-24 中国计量大学 一种多重周期的光子晶体纳米裂缝表面等离子体共振光栅
CN107966422B (zh) * 2017-10-11 2020-05-08 中国船舶重工集团公司第七一五研究所 一种基于表面等离激元共振效应的氢气传感微结构
CN109001157B (zh) * 2018-06-22 2020-07-07 江南大学 一种基于双重表面等离子体共振实现折射率传感的方法
CN109613633B (zh) * 2018-12-29 2021-06-01 江西师范大学 一种超窄多频带光学传感器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148187A (ja) * 2000-11-08 2002-05-22 Nippon Telegr & Teleph Corp <Ntt> 光導波路型spr現象計測チップ、その製造方法およびspr現象計測方法
JP2009150749A (ja) * 2007-12-20 2009-07-09 Japan Aviation Electronics Industry Ltd 表面プラズモンセンサ
CN102401788A (zh) * 2011-05-18 2012-04-04 曹暾 一种具有集成光学谐振腔结构的微流控芯片生物传感器
CN103105378A (zh) * 2011-11-14 2013-05-15 中国科学院微电子研究所 生物传感器及其制造方法、生物传感器测试系统
CN102664350A (zh) * 2012-03-09 2012-09-12 中国科学院苏州纳米技术与纳米仿生研究所 一种等离子激元纳米激光器
JP2013250117A (ja) * 2012-05-31 2013-12-12 Olympus Corp 水素検出素子および水素センサ
CN103543128A (zh) * 2012-07-10 2014-01-29 中国科学院微电子研究所 一种基于自支撑光栅结构的传感器及其制备方法
CN104568849A (zh) * 2014-12-24 2015-04-29 江西师范大学 三维亚波长金属腔体结构光谱多带光完美吸收等离激元传感器及其制备方法与用途
CN108611604A (zh) * 2018-03-28 2018-10-02 江西师范大学 一种基于高介电材料的经济型高精密表面增强拉曼活性基底的制造方法
CN108956531A (zh) * 2018-04-15 2018-12-07 桂林电子科技大学 一种光纤端面电介质-金属圆孔阵列结构的折射率传感器
CN108982474A (zh) * 2018-09-07 2018-12-11 江西师范大学 一种基于金属-介质复合等离激元共振结构的表面增强拉曼活性基底及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Improving Plasmon Sensing Performance by Exploiting》;Zhengqi Liu;《Plasmonics》;20150711;第2016卷(第11期);第212-217页 *
《Solid-state optical coupling for surface plasmon resonance sensors》;Sandy Owega;《Sensors and Actuators B》;20050602;第124卷;第29-36页 *

Also Published As

Publication number Publication date
CN111398217A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
Chen et al. Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review
Stewart et al. Ultrafast pyroelectric photodetection with on-chip spectral filters
CN109642822B (zh) 光谱仪和利用其的光谱测量方法
US8048385B2 (en) Sensing chip
US8599486B2 (en) Three dimensional sub-wavelength structure with surface plasmon energy matching properties
CN108195494B (zh) 一种基于狭缝表面等离激元效应的光学压力传感器及压力检测方法
CN104656170A (zh) 一种宽波段光全吸收器及其制备方法
US7898667B2 (en) Optical element and method for preparing the same, sensor apparatus and sensing method
CN105758821B (zh) 具有超窄线宽光谱响应的高灵敏度超材料纳米传感系统
CN112255716B (zh) 基于结构对称性破缺的高效光吸收装置及制备方法和应用
CN103035981A (zh) 一种超薄金属膜太赫兹吸收层及其制备方法
CN104764732A (zh) 基于特异材料超吸收体的表面增强拉曼散射基底及其制备方法
CN102998725B (zh) 用于吸收太赫兹辐射的粗糙黑化金属薄膜及其制备方法
CN102798615A (zh) 一种基于周期性纳米结构的生物传感器及其制备方法
CN111398217B (zh) 一种高品质等离激元光学传感器及其制备方法
Wu et al. Nanogratings fabricated by wet etching assisted femtosecond laser modification of silicon for surface plasmon resonance sensing
CN105048103A (zh) 一种用于吸收太赫兹波的超薄金属膜的制备方法
Bi et al. A niobium pentoxide waveguide sensor for on-chip mid-infrared absorption spectroscopic methane measurement
US8299435B2 (en) Tunable broadband anti-relfection apparatus
CN106054400B (zh) 用于1THz波段的太赫兹偏振分束硅光栅
EP3355118A1 (fr) Procédé de mesure du désalignement entre une première et une seconde zones de gravure
Agarwal et al. Influence of metal roughness on SPR sensor performance
Deng et al. Optimization of the Rayleigh anomaly of metallic gratings for terahertz sensor applications
Makarenko et al. Mueller polarimetry of discontinuous gold films
CN113189047A (zh) 金属膜上介质周期结构折射率传感器及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant