CN106054400B - 用于1THz波段的太赫兹偏振分束硅光栅 - Google Patents

用于1THz波段的太赫兹偏振分束硅光栅 Download PDF

Info

Publication number
CN106054400B
CN106054400B CN201610592414.7A CN201610592414A CN106054400B CN 106054400 B CN106054400 B CN 106054400B CN 201610592414 A CN201610592414 A CN 201610592414A CN 106054400 B CN106054400 B CN 106054400B
Authority
CN
China
Prior art keywords
silicon
grating
polarization beam
1thz
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610592414.7A
Other languages
English (en)
Other versions
CN106054400A (zh
Inventor
冯吉军
李安原
李敏
曾和平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201610592414.7A priority Critical patent/CN106054400B/zh
Publication of CN106054400A publication Critical patent/CN106054400A/zh
Application granted granted Critical
Publication of CN106054400B publication Critical patent/CN106054400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Polarising Elements (AREA)

Abstract

本发明涉及一种用于1THz波段的太赫兹偏振分束硅光栅,镂空的周期排列的矩形硅条纹构成的硅光栅,硅光栅的硅条纹宽度和周期的比值为0.27,光栅的周期为204.6‑219.4微米,硅片厚度为47.6‑51.4微米。此硅光栅对垂直入射的1THz光波,没有高阶衍射存在,仅有零阶的透射与反射波,光栅的消光比大于100。该透射反射式偏振分束光栅具有宽工作角度带宽、结构简单、成本低、高分束效率、高消光比等优点,在太赫兹成像和波谱测量领域中具有重要的实用价值。硅光栅可由飞秒微加工或微光学技术加工而成,取材方便,造价小,能大批量生产,具有重要的实用前景。

Description

用于1THz波段的太赫兹偏振分束硅光栅
技术领域
本发明涉及一种光栅偏振分束器,特别涉及一种用于1THz波段的太赫兹偏振分束硅光栅。
背景技术
太赫兹波是频率范围在0.1~10THz,波长范围在0.03~3毫米,介于微波与红外之间的电磁波。太赫兹光谱技术不仅信噪比高,能够迅速地对样品组成的细微变化作出分析和鉴别,而且是一种非接触测量技术,能够对半导体、电介质薄膜及体材料的物理信息进行快速准确的测量。太赫兹波可携带丰富的物理化学信息,其光子能量在毫电子伏量级,不会对所作用的物体产生电离损伤,具有安全性。因而,太赫兹波在通信、生物医学、无损探测、环境检测等方面有着非常重要的应用前景。
硅是一种优良的红外导波材料,取材方便,成本低廉,可用作1550纳米波段的偏振分束器【在先技术1:周常河等,1550纳米波长硅反射式偏振分束光栅,专利CN101109831】。硅也是一种很好的太赫兹导体,可用作太赫兹聚焦透镜。基于硅材料的二维菲涅尔波带片【在先技术2:S.Wang,et al.,Opt.Lett.27,1183(2002)】也可实现类似的太赫兹聚焦功能,但由于硅材料的高折射率(在0.5-1.5THz波段,折射率为3.42),对太赫兹波具有很强的反射,限制了其实际应用。太赫兹波偏振分束器是一类重要的太赫兹功能器件,现有的太赫兹波偏振分束器多基于金属或有机聚合物材料,大都存在着结构复杂、传输损耗高、消光比低等缺点。因而,利用成本低的硅基材料制作结构简单、损耗低、消光比高的太赫兹波偏振分束器具有广泛的应用前景。
矩形光栅是利用微电子深刻蚀工艺,在基底上加工出的具有矩形槽形的光栅。高密度矩形光栅的衍射理论,不能由简单的标量光栅衍射方程来解释,须采用矢量形式的麦克斯韦方程并结合边界条件,通过编码的计算机程序精确地计算出结果。Moharam等人已给出了严格耦合波理论的算法【在先技术3:M.G.Moharam,et al.,J.Opt.Soc.Am.A.12,1077(1995)】,可以解决这类高密度光栅的衍射问题。但据我们所知,目前为止,还没有人针对1Tz波段给出在硅基片上制作的透射反射式光栅偏振分束器的设计参数。
发明内容
本发明是针对1Tz波段透射反射式光栅偏振分束器空白的问题,提出了一种用于1THz波段的太赫兹偏振分束硅光栅,该硅光栅可以使1THz光波在-2.6°至2.6°的角度入射情况下,实现TE波大于99%的反射效率,TM波几乎100%的透射效率,偏振消光比大于100。这里的偏振消光比,定义为反射TE波与反射TM波、透射TM波与透射TE波的效率比值的最小值。
本发明的技术方案为:一种用于1THz波段的太赫兹偏振分束硅光栅,镂空的周期排列的矩形硅条纹构成的硅光栅,硅光栅的硅条纹宽度和周期的比值为0.27,光栅的周期为204.6-219.4微米,硅片厚度为47.6-51.4微米。
所述硅光栅的周期为212微米、硅片厚度为49.8微米时,实现TM偏振光全透射和TE偏振光全反射。
所述硅光栅由飞秒微加工或微光学技术加工而成。
本发明的有益效果在于:本发明用于1THz波段的太赫兹偏振分束硅光栅,该透射反射式偏振分束光栅具有宽工作角度带宽、结构简单、成本低、高分束效率、高消光比等优点,在太赫兹成像和波谱测量领域中具有重要的实用价值。硅光栅可由飞秒微加工或微光学技术加工而成,取材方便,造价小,能大批量生产,具有重要的实用前景。
附图说明
图1为本发明太赫兹偏振分束硅光栅的横截面示意图;
图2为本发明太赫兹偏振分束硅光栅俯视图;
图3为本发明硅矩形光栅占空比为0.27,在1THz光波垂直入射情况下,分束器消光比的对数随光栅周期与槽深变化的等高线图;
图4为本发明硅光栅的消光比随入射角的变化曲线图;
图5为本发明硅光栅对TM、TE太赫兹波的透射、反射效率随入射角的变化曲线图;
图6为本发明硅光栅飞秒微加工光路图。
具体实施方式
如图1所示太赫兹偏振分束硅光栅的横截面示意图,区域1、3是空气层,折射率为1.0,区域2是硅光栅太赫兹偏振分束器,折射率为3.42,如图2所示太赫兹偏振分束硅光栅俯视图,为矩形光栅。4代表入射太赫兹波,5代表透射TM太赫兹波,6代表反射TE太赫兹波(横电波)。太赫兹波4垂直入射到矩形光栅表面,TE偏振波(横磁波)对应于电场矢量的振动方向垂直于入射面,TM偏振波对应于磁场矢量的振动方向垂直于入射面。
在如图2所示的光栅结构下,该光栅由镂空的矩形硅条纹构成,可将不同偏振态的光通过高效率的透射和反射完全分开,实现高消光比偏振分束。如图3所示矩形光栅(占空比为0.27,即硅条纹宽度和周期的比值)的消光比的对数随光栅周期与槽深变化的等高线图。在光栅周期小于300微米时,对垂直入射的1THz光波,没有高阶衍射存在,仅有零阶的透射与反射波。在光栅的周期为204.6-219.4微米、硅片厚度为47.6-51.4微米时,可实现大于100的消光比。在光栅的周期为212微米、硅片厚度为49.8微米时,可实现1.7×105的消光比,此时,TM偏振光可实现几乎100%的透射、5.9×10-6反射;TE偏振光可实现几乎100%的反射、3.2×10-9透射。
如图4所示硅光栅的消光比随入射角的变化曲线图,占空比为0.27,光栅的周期为212微米、硅片厚度为49.8微米时,1THz光波的入射所述太赫兹偏振分束硅光栅,入射角在-2.6°至2.6°之间,可实现大于100的偏振消光比。
如图5所示硅光栅对TM、TE太赫兹波的透射、反射效率随入射角的变化曲线图,占空比为0.27,光栅的周期为212微米、硅片厚度为49.8微米时,1THz光波的入射所述太赫兹偏振分束硅光栅,入射角在-2.6°至2.6°之间,TE太赫兹波可实现大于99%的反射效率、小于1%的透射率;TM太赫兹波可实现几乎100%的透射效率、小于6×10-6反射率。
利用飞秒微加工技术制造硅偏振分束光栅(见图6),首先利用轴棱锥透镜12结合二元相位板11,将平行入射的飞秒激光高斯光束17整形为旁瓣被压缩的飞秒激光贝塞尔光束18;再将所得到的贝塞尔光束18通过望远系统缩小光斑尺寸,使其具有足够高的能量进行样品的加工;将干燥、清洁的硅片15置于三维移动的平移台16上,并将光束聚焦在硅片15表面;控制平移台16的移动,快速加工大面积高深径比的硅光栅,图6中置于同一光轴上的透镜3和物镜4组成望远系统。
利用微光学技术制造硅偏振分束光栅,首先在干燥、清洁的硅基片上沉积一层金属铬膜,并在铬膜上均匀涂上一层正光刻胶(Shipley,S1818,USA)。然后掩模板光刻的方式记录光栅,然后显影,接着再用去铬液将光刻图案从光刻胶转移到铬膜上,利用化学试剂将多余的光刻胶去除。最后,将样品放入感应耦合等离子体刻蚀机中进行一定时间的等离子体刻蚀,将硅片完全刻透,把光栅转移到硅基片上,最后再用去铬液将剩余的铬膜剥离,就得到所需要的硅光栅。
表1给出了本发明一系列实施例,数据为对垂直入射的1THz光波,硅光栅占空比为0.27时,不同光栅周期与硅片厚度所对应的TE、TM偏振波的反射、透射效率以及消光比,在制作光栅的过程中,适当选择光栅周期、硅片厚度,就可以得到不同消光比的高效率太赫兹偏振分束光栅。由表1可知,该光栅的在光栅的周期为204.6-219.4微米、槽深为47.6-51.4微米时,可实现大于100的消光比。
表1

Claims (3)

1.一种用于1THz波段的太赫兹偏振分束硅光栅,其特征在于,镂空的周期排列的矩形硅条纹构成的硅光栅,硅光栅的硅条纹宽度和周期的比值为0.27,硅光栅的周期为204.6-219.4微米,硅片厚度为47.6-51.4微米。
2.根据权利要求1所述用于1THz波段的太赫兹偏振分束硅光栅,其特征在于,所述硅光栅的周期为212微米、硅片厚度为49.8微米时,实现TM偏振光全透射和TE偏振光全反射。
3.根据权利要求1或2所述用于1THz波段的太赫兹偏振分束硅光栅,其特征在于,所述硅光栅由飞秒微加工或微光学技术加工而成。
CN201610592414.7A 2016-07-26 2016-07-26 用于1THz波段的太赫兹偏振分束硅光栅 Active CN106054400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610592414.7A CN106054400B (zh) 2016-07-26 2016-07-26 用于1THz波段的太赫兹偏振分束硅光栅

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610592414.7A CN106054400B (zh) 2016-07-26 2016-07-26 用于1THz波段的太赫兹偏振分束硅光栅

Publications (2)

Publication Number Publication Date
CN106054400A CN106054400A (zh) 2016-10-26
CN106054400B true CN106054400B (zh) 2019-01-15

Family

ID=57418197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610592414.7A Active CN106054400B (zh) 2016-07-26 2016-07-26 用于1THz波段的太赫兹偏振分束硅光栅

Country Status (1)

Country Link
CN (1) CN106054400B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654468A (zh) * 2016-12-23 2017-05-10 中国计量大学 基于条带结构电控太赫兹波开关
CN109031705A (zh) * 2018-08-02 2018-12-18 上海理工大学 碳纳米管增强太赫兹硅光栅调制器及制作方法
CN109343163B (zh) * 2018-12-06 2021-04-20 深圳大学 一种简周期光栅结构的制作方法及太赫兹滤波器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069375A (ja) * 2007-09-12 2009-04-02 Sumitomo Chemical Co Ltd 偏光板の製造方法
CN101424766A (zh) * 2007-10-31 2009-05-06 住友化学株式会社 偏振片的制造方法
CN101813799A (zh) * 2009-02-20 2010-08-25 住友化学株式会社 偏振板及其制造方法
JP2011033798A (ja) * 2009-07-31 2011-02-17 Teijin Ltd 偏光板、その製造方法、およびそれを用いた液晶表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069375A (ja) * 2007-09-12 2009-04-02 Sumitomo Chemical Co Ltd 偏光板の製造方法
CN101424766A (zh) * 2007-10-31 2009-05-06 住友化学株式会社 偏振片的制造方法
CN101813799A (zh) * 2009-02-20 2010-08-25 住友化学株式会社 偏振板及其制造方法
JP2011033798A (ja) * 2009-07-31 2011-02-17 Teijin Ltd 偏光板、その製造方法、およびそれを用いた液晶表示装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
亚波长光栅偏振分束器的研究;郭楚才等;《光学学报》;20100930;第30卷(第9期);第2690-2695页
全介质光栅在太赫兹波段的光调控特性;崔彬等;《物理学报》;20160229;第65卷(第7期);第074209-1至074209-6页

Also Published As

Publication number Publication date
CN106054400A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
Chen et al. Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review
Siday et al. Terahertz detection with perfectly-absorbing photoconductive metasurface
CN106054400B (zh) 用于1THz波段的太赫兹偏振分束硅光栅
CN107505705B (zh) 交叉偏振转换光学器件及其设计方法
US20220011646A1 (en) Harmonic light-generating metasurface
Proust et al. Optimized 2D array of thin silicon pillars for efficient antireflective coatings in the visible spectrum
San-Blas et al. Femtosecond laser fabrication of LIPSS-based waveplates on metallic surfaces
CN109444998B (zh) 一种超表面聚焦透镜
CA2912304A1 (en) Structural colorimetric sensor
CN102981204B (zh) 193nm熔石英光栅起偏器及其在光刻设备中的应用
CN101546002B (zh) 1064纳米波段的亚波长熔融石英透射偏振分束光栅
US20220171105A1 (en) Resonant filters having simultaneously tuned central wavelengths and sidebands
Yue et al. A dual band spin-selective transmission metasurface and its wavefront manipulation
CN105700073B (zh) 一种表面等离激元单向耦合和分束器件及制备方法
US8912497B2 (en) Measurement structure, method of manufacturing same, and measuring method using same
US20220397703A1 (en) Method of manufacture of a metasurface
Karimi et al. MXene-antenna electrode with collective multipole resonances
US8299435B2 (en) Tunable broadband anti-relfection apparatus
CN105923600B (zh) 一种幅度可调的太赫兹近场激发型分子传感器及其制造方法
Qian et al. Tunable filter with varied-line-spacing grating fabricated using holographic recording
CN101661126A (zh) 偏振无关宽带高效率石英透射光栅
Schnabel et al. Fabrication and application of subwavelength gratings
CN106918856B (zh) 一种半反半透型偏振分束光栅
He et al. Photo-Excited Silicon-Based Spatial Terahertz Modulators
Sato et al. Large incident angle tolerance of guided-mode resonant gratings by light coupling via waveguide end faces

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant