CN1056138A - 单晶硅直径控制法及其设备 - Google Patents
单晶硅直径控制法及其设备 Download PDFInfo
- Publication number
- CN1056138A CN1056138A CN91102922A CN91102922A CN1056138A CN 1056138 A CN1056138 A CN 1056138A CN 91102922 A CN91102922 A CN 91102922A CN 91102922 A CN91102922 A CN 91102922A CN 1056138 A CN1056138 A CN 1056138A
- Authority
- CN
- China
- Prior art keywords
- single crystal
- diameter
- silicon single
- pull rate
- pulling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 120
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 67
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 67
- 239000010703 silicon Substances 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 66
- 238000012545 processing Methods 0.000 claims abstract description 10
- 230000003287 optical effect Effects 0.000 claims abstract description 8
- 230000004044 response Effects 0.000 claims description 21
- 238000005094 computer simulation Methods 0.000 claims description 9
- 238000012360 testing method Methods 0.000 claims description 4
- 101000830021 Equine arteritis virus (strain Bucyrus) Glycoprotein 2b Proteins 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 238000004033 diameter control Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 6
- 230000014509 gene expression Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- PDNHLCRMUIGNBV-UHFFFAOYSA-N 1-pyridin-2-ylethanamine Chemical compound CC(N)C1=CC=CC=N1 PDNHLCRMUIGNBV-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000009699 differential effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 229960002259 nedocromil sodium Drugs 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/08—Measuring arrangements characterised by the use of optical techniques for measuring diameters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T117/00—Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
- Y10T117/10—Apparatus
- Y10T117/1004—Apparatus with means for measuring, testing, or sensing
- Y10T117/1008—Apparatus with means for measuring, testing, or sensing with responsive control means
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
单晶硅直径的一种控制方法,在单晶硅边相对于
坩埚转动边受提拉的单晶硅制造过程中,将光学装置
测出的提拉单晶的直径测定值与要求直径值进行比
较,以确定偏差,再对得出的偏差进行不完全微分
PID处理或史密斯法处理,以计算提拉速度,再将提
拉速度加到晶体提拉设备的电动机控制器上,从而通
过控制提拉速度控制提拉单晶的参数。为完成上述
单晶硅直径的一种控制方法的设备,包括输入装置、
不完全微分PID计算装置和输出装置。
Description
本发明涉及单晶硅直径的一种控制法和控制设备,更具体地说,涉及单晶硅直径的这样一种控制法和控制设备,即在提拉单晶硅时,单晶硅在边相对于坩埚旋转边连续形成的过程中控制经提拉的单晶的直径。
参看附图2这一示意图,图中示出了应用周知的制造象硅之类的半导体单晶的切克劳斯基法以制造单晶的设备。应该注意的是,切克劳斯基法广泛称为CZ法,通常也叫做晶体提拉法。
图中,在制造单晶硅的过程中,坩埚2中装有由加热器4加热的熔融硅3,借助于图中未示出的旋转机构使单晶硅1以相反于坩埚2的转向转动的同时逐步由提拉设备7提拉上来,于是晶体就在熔融硅3与单晶硅1之间的界面区中生长。单晶硅1是通过晶体生长由籽晶1a生长出来的,籽晶1a则由连接到提拉设备7的籽晶夹具6加以固定。在下面的讨论中,我们把生长过程中的单晶硅叫做提拉单晶。此外提拉设备7包括单晶硅1的垂直运动机构和单晶硅1的旋转机构,由电动机控制器8、提拉电动机9等组成。因此,这种设备是众所周知的,故这里不再详细说明其结构。除上述旋转机构外,坩埚2还由提升机构(图中未示出)支撑着,而且由该提升机构而计得即使在晶体生长时液面也保持恒定而不致下降,而且使液面附近的温度分布不变。
由于CZ法制造出来的提拉单晶1以后就加工成圆柱形的单晶硅锭,因而要求将晶体1提拉得使其整个晶体部分直径大致相同。为此,在晶体提拉过程中直接用如视频测定仪5之类的光学装置测定提拉单晶的直径,而且提拉晶体1是边调节提拉速度边提拉的,以使直径保持在所要求的值上。在这种情况下,光学装置是固定在晶体提拉设备上,因而出现在提拉单晶1与液体表面的界面处的熔融环是由单根测量线从上面倾斜地测定,从而直接测出提拉单晶1的直径。
通过调节提拉速度的上述提拉单晶的直径控制是这样进行的:将来自光学装置的实际直径测定值与要求的直径值进行比较,以使得出的偏差值经周知的PID(比例积分微分)控制而计算出作为控制变量的提拉速度,再将此控制变量作为指令加到电动机控制器8,由此控制提拉速度。
在上述单晶硅直径控制方法和上述设备的情况下,通常的情况是,例如,当晶体提拉设备的提拉速度发生变化时,单晶硅以这样反应或提拉单晶的直径以这样变化,使得经过相当长的时间之后其产生的影响才起作用(停滞时间长),而且变化速度小(变化或反应速度低)。因此在将直径测定值与要求的直径值进行比较以进行PID控制时,为精确掌握提拉单晶直径的变化,需要及时控制提拉速度,因而需要提前进行控制,重点放在导数控制方面(微商作用)。但光学装置测定出来的提拉单晶的直径测定值中含有大量干扰因素,在这些干扰的影响下,提拉速度有变化过度的危险,因而不可能着重进行导数控制。因此对晶体直径变化的控制是有一定的限度的,而且晶体的产量往往因此而下降。
此外,必须就地调节PID参数,因此仅仅为了调节PID参数就需要白白地提拉单晶硅。
本发明是为解决现有技术中的上述问题而提出的,本发明的主要目的是提供一种经过如此设计的单晶硅直径控制法和控制设备,来改进在直径控制中所进行的PID处理算法,而且加上停滞时间补偿控制,从而确保在跟踪要求值方面有所改进,而且无需在现场调节PID参数。
为实现上述目的,按照本发明的一种情况,本发明因此提供了一种经过如此设计的单晶硅直径控制法,使得在单晶硅边相对于坩埚转动边受提拉的单晶硅制造过程中,将光学装置测出的单晶硅直径测定值与要求的直径值进行比较,以确定与要求值的偏差,再对得出的偏差进行不完全的微分PID处理,以计算提拉速度,再将提拉速度加到晶体提拉设备的电动机控制器上,从而通过控制提拉速度控制提拉单晶的直径。
按照本发明的另一种情况,本发明提供单晶硅直径的这样一种控制方法,其中的不完全微分PID处理用史密斯法处理代替来计算提拉速度。
按照本发明的第三种情况,本发明提供单晶硅直径的一种控制设备,该设备包括一输入装置、一不完全微分PID计算装置和一输出装置;输入装置用以接收光学装置测出的提拉单晶的直径测定值;不完全微分PID计算装置用以将提拉单晶的直径测定值与要求的直径值进行比较,以计算提拉速度;输出装置则用以将提拉速度加到晶体提拉设备的电动机控制器上。
按照本发明的第四种情况,本发明提供这样一种单晶硅直径的控制设备,其中不完全微分PID计算装置用史密斯法计算装置代替。
按照本发明的第五种情况,本发明提供一种单晶硅模型参数化法,其中提拉单晶直径值对提拉速度的响应特性按下式用传递函数加以模拟,并通过阶跃响应试验确定传递函数中的两个模型参数,或响应速度V和停滞时间L,阶跃响应试验是用以研究提拉速度以阶跃形式变化时直径值的响应。
传递函数GP(S) = - (V)/(S2) ·e-LS
按照本发明的第六种情况,本发明提供一种确定最佳参数的PID参数化法,即利用上述单晶硅模型进行计算机模拟。
第一种单晶硅直径控制法和控制设备显示了微分的有效作用,即通过不完全微分PID控制减少了直径测定值中的干扰影响,从而使单晶硅的直径值非常接近要求值。
此外第二种单晶硅直径控制法和控制设备并不单独使用不完全微分PID控制,而是同时按史密斯法控制直径,因而除了第一种直径控制法和控制设备的作用之外,在局部回路中还加入了呈GP(S)·(1-e-LS)形式的停滞时间补偿模型,从而用不会有停滞时间的传递函数GP(S)形成控制系统,以实现所需数值跟踪性能优异的直径控制。
应该指出,应用于上述直径控制法和控制设备的PID参数和史密斯参数并不是通过实际提拉单晶硅确定的,而最佳参数是由计算机模拟确定的。
图1是一个实施例的直径控制设备的结构示意图,这个设备是通过本发明不完全微分PID处理以控制单晶硅直径的方法的直径控制设备。
图2是普通切克劳斯基法单晶硅制造设备的结构示意图。
图3是说明图1实施例设备功能的方框图。
图4是波形的比较图,说明不完全微分对偏差阶跃变化的响应特性。
图5是就制造出来的单晶硅测出其直径值的示意图。
图6是一个实施例的直径控制设备的结构示意图,这个设备用史密斯法处理来完成直径控制的方法。
图7是说明图6设备实施例功能的方框图。
图8是按史密斯法借助于直径控制模型的计算机模拟来确定的结果曲线。
现在说明本发明的最佳实施例。实施例1主要说明采用不完全处理的单晶硅直径控制法和设备,实施例2则说明采用史密斯法处理的直径控制法和设备。
实施例1
图1是直径控制设备实施例的结构示意图,该设备采用不完全微分PID处理以实现直径控制法。图中,编号1至9表示的零部件,这些零部件与用以说明图2的普通单晶硅制造设备所使用的同样编号完全一样,因而这里不再加以说明。图3是说明图1直径控制设备的作用的方框图。
图1中,编号20表示以方框图的形式示出的采用不完全微分PID处理的直径控制设备部分。在此设备中,所控制的系统数据基本上表示作为光学装置的视频测定仪5测出的直径测定值。如图中所示,直径控制设备包括晶体直径输入装置10、不完全微分PID计算装置11和提拉速度输出装置12;晶体直径输入装置10用以处理直径测定值,不完全微分PID计算装置11用以将经处理的直径测定值与要求的直径值进行比较,以计算提拉速度,提拉速度输出装置12用以将提拉速度作为指令加到单晶硅制造设备(晶体提拉设备)上。编号13表示PID参数装置,用以存储处理过程中所使用的参数。
现在参看图1和2说明采用不完全微分PID的直径控制法的实施例。在求和点31将视频测定仪5所产生的直径测定值(这些是图3单晶硅制造设备30的输出和图1晶体直径输入装置10的输出)与存储在存储器(图中未示出)中的要求直径进行比较,并在不完全微分PID计算装置11中应用不完全微分进行PID处理11a,从而计算出控制输出或提拉速度。此提拉速度通过提拉速度输出装置12加到电动机控制器8上,以对它进行控制,同时以所控制的提拉速度提拉单晶1,由此制造单晶硅1。这个控制操作是在提拉单晶每转一圈的过程中进行好几次的,因而这个操作是在晶体的整个提拉过程中进行的。
采用上述直径控制方法就可以制造出单晶硅1,其直径变化减少且其直径值接近所要求的直径。应该指出的是,在此控制方法中,PID参数装置13存储最佳参数,它是通过用单晶硅模型的计算机模拟法所确定的,因而无需在现场调节PID参数。
现在说明不完全微分PID处理算法和模型参数化法。
仅用普通的PID操作产生的控制输出Go(S)用下式(Ⅱ)表示,其中E(S)表示直径测定值与要求直径之间的偏差:
Go(S)=K*{1+1/(Ti*S)+Td*S}E(S) (Ⅱ)
其中K为比例增益,Ti为积分时间,Td为微分时间,S为拉普拉斯变量(复数)。
另一方面,下式(Ⅲ)表示本发明直径控制中所采用的不完全微分PID操作的控制输出G(S)
G(S)=K*{1+1/(Ti*2)+Td*S/(1+α*Td*S)}*E(S) (Ⅲ)
这里1/α叫做微分增益。(Ⅱ)式和(Ⅲ)式的差别在于控制变量计算中的微分项,而在(Ⅲ)式的情况是令(Ⅱ)式的普通微分项输出Td S通过第一级延迟滤波器。图4示出了偏差E(S)阶跃变化响应特性的波形比较图。图4(a)示出偏差值对横坐标上的时间关系曲线。图4(b)中,纵坐标表示普通PID处理在偏差方面的控制输出变量M。图4(c)示出不完全微分PID处理的导数控制操作部分中控制输出变量M的响应特性。从图4中可以看出,在不完全微分PID的情况下,举例说,在干扰偏差方面的输出减少了1/α(图中为M/α)的增益,因而对干扰响应的灵敏度降低了,从而取得有效的微分效果。
此外,在计算机模拟中用以确定PID参数13所使用的单晶硅模型系近似于用下面考虑到了停滞时间L的(Ⅳ)式表示且能如实地再现实际响应的二次积分系统。
GP(S) = - (V)/(S2) ·e-LS(Ⅳ)
其中V=响应速度
含停滞时间L和响应速度的模型参数按下列步骤确定。首先以阶跃方式改变单晶硅制造设备的提拉速度,然后收集由此产生的单晶硅直径响应数据。然后取停滞时间L和响应速度V,并用计算机模拟重现阶跃特性试验。然后这样来确定V和L值,使得模拟结果与实际响应波形数据之间的误差减小到最小程度。
现在介绍用上述不完全微分PID控制法和设备实际制造单晶硅操作实例的结果。
在此工作实例,一系列操作,包括每隔0.1秒所测直径测定数据的移动平均值与要求直径值的比较、提拉速度的计算和提拉速度往电动机控制器8上的施加,是每秒钟进行一次的,就是说,单晶硅平稳转动时操作3次。(提拉单晶的转速为20.0转/分)。至于控制周期,当提拉速度和转速增加、且同时例如改变温度等的操作所引起的干扰增加时,在控制提拉单晶的直径时进一步缩短控制周期。所要求的单晶主体部分的直径为160.0毫米。图5的示意图示出了从所制出的单晶硅有效主体部分的顶部起0.0、50.0、100.0、150.0、200.0和250.0毫米的位置测定直径的结果。如图5所示,偏离所要求的160.0毫米直径的最大和最小偏差值小于+0.5毫米,而且制出来的单晶硅各部分直径均匀。
此外,这个数据代表了根据计算机模拟采用单晶硅模型确定的PID参数制造的第一个产品,如此精确地符合所要求的直径的单晶硅在第一次尝试中就这样制造出来了。
操作实例2
参看图6,图中示出了一个实施例的结构示意图,这个设备结构用以实施根据史密斯法处理控制直径的方法的直径控制设备。
图6中,编号11例外,编号1至13表示与说明图1设备实施例时所采用的同编号所表示的零部件完全相同或等效的零部件。图7是说明图6直径控制设备功能的方框图。
图6中,编号21以方框图表示的采用史密斯法处理的直径控制部分,编号14则表示史密斯法计算装置。虽然本实施例除以史密斯计算装置14代替不完全微分PID计算装置11外在结构上是与图1的实施例完全相同的。如图7可知,尽管史密斯控制调节的主要功能是进行不完全的微分PID 11a,但按照史密斯法控制提拉单晶1的直径具有这样的特点,即控制偏差是采用(Ⅳ)式表示的单晶硅模型确定的。换句话说,除反馈到不完全微分PID 11a的主回路之外,在局部回路中还加了一个根据从(Ⅳ)式得出的停滞时间补偿模型的传递函数V/S2·(1-e-LS),并将该函数反馈到求和点2上,由此确定控制偏差。这样就可以进行停滞时间补偿控制,从而在跟踪所要求值的跟踪性能方面实现优异的直径控制。
图8示出在按照史密斯法制造单晶硅时对直径控制模型进行计算机模拟的结果的曲线。图中,横坐标表示控制时间,纵坐标表示提拉单晶的直径。实线表示按史密斯法得出的控制特性,按普通PID控制得出的模拟结果用虚线表示,以供对比。在模拟的情况下,控制特性是采用162.0毫米的原始直径和160.0毫米的要求直径确定的。从图中可以看出,PID控制需要大约2小时才能使所测定的直径等于所要求的直径,史密斯法则需要大约1小时,而且史密斯法确保停滞时间补偿控制,这种控制在要求值的跟踪方面性能是优异的。
从以上所述可以看出,本发明的单晶硅直径控制法和设备具有这样的效果:不完全微分PID控制不仅能确保在提拉过程中减少干扰影响的直径控制,从而提高控制性能,进而确保晶体质量的均匀性,而且确保重点放在导数控制的控制,从而使直径非常接近要求值,进而确保产量的提高。
此外,采用史密斯法的控制不仅使与不完全微分PID控制相同的运行得以实现,而且也确保了停滞时间补偿控制,从而实现在对要求值的跟踪性能优异的直径控制,进而进一步提高产量。
另外,由于一开始就确保采用计算机模拟所确定的最佳PID参数来制造单晶硅,因而可消除用一般单晶硅制造方法中遇到的任何冗长的操作,例如对晶体徒劳无功的提拉,即为确定各参数而对单晶进行实际的提拉。
Claims (6)
1、单晶硅直径的一种控制方法,用以按晶体提拉速度控制相对于坩埚转动的提拉单晶的直径,其特征在于,它包括下列步骤:
将光学装置所测出的所述提拉单晶的直径测定值与要求的直径值进行比较,以确定偏盖;
对所述偏盖进行不完全微分PID处理,以计算单晶的提拉速度;然后
将所述单晶提拉速度作为指令加到提拉装置上,将所述提拉单晶的直径控制在所要求的直径上。
2、根据权利要求1所述的单晶硅直径控制法,其特征在于,所述偏差是用史密斯法处理而不用所述不完全微分PID处理法处理。
3、单晶硅直径的一种控制设备,用以按晶体提拉速度控制相对于坩埚转动的提拉单晶的直径,其特征在于,所述设备包括:
晶体直径输入装置,用以接收光学装置所测出的所述单晶的直径测定值;
不完全微分PID计算装置,用以将直径测定值与要求直径值进行比较,以根据得出的偏差计算所述单晶的提拉速度;和
提拉速度输出装置,用以将所述晶体提拉速度作为指令加到提拉装置上。
4、根据权利要求3所述的单晶硅直径控制设备,其特征在于,用史密斯法计算装置代替所述不完全微分PID计算装置。
5、一种模型参数化法,其特征在于,它包括下列步骤:
按下列(Ⅰ)式所示的传递函数表示提拉单晶直径值对晶体提拉速度的响应特性;
进行确定所述直径测定值对所述单晶提拉速度阶跃变化的响应的阶跃响应试验,以确定所述传递函数中的两个模型参数V和L:
GP(S) = - (V)/(S2) ·e-LS(1)
其中V=响应速度
L=停滞时间
S=拉普拉斯变量
6、一种PID参数化法,其特征在于,用权利要求5所述的单晶硅模型借助于计算机模拟分别确定权利要求1和3所述的不完全微分PID处理计算中所使用的PID参数和权利要求2和4所述的史密斯法处理计算中所使用的史密斯法参数。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP110385/90 | 1990-04-27 | ||
JP11038590 | 1990-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1056138A true CN1056138A (zh) | 1991-11-13 |
Family
ID=14534468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN91102922A Pending CN1056138A (zh) | 1990-04-27 | 1991-04-27 | 单晶硅直径控制法及其设备 |
Country Status (5)
Country | Link |
---|---|
US (1) | US5164039A (zh) |
EP (1) | EP0456370A3 (zh) |
KR (1) | KR910018584A (zh) |
CN (1) | CN1056138A (zh) |
FI (1) | FI911857A (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100371507C (zh) * | 2005-03-28 | 2008-02-27 | 荀建华 | 晶体等径生长的控制系统及其方法 |
WO2010048790A1 (zh) * | 2008-10-28 | 2010-05-06 | Hui Mengjun | 提拉法晶体生长的控制方法 |
CN101748477B (zh) * | 2008-12-19 | 2013-10-23 | 北京太克易航科贸有限公司 | 用于单晶硅生长过程控制的智能pid控制方法及其系统 |
CN107208307A (zh) * | 2015-01-21 | 2017-09-26 | Lg矽得荣株式会社 | 单晶锭直径的控制系统及控制方法 |
CN111254485A (zh) * | 2018-12-03 | 2020-06-09 | 隆基绿能科技股份有限公司 | 单晶硅等径生长的控制方法、设备及存储介质 |
CN112368428A (zh) * | 2018-06-28 | 2021-02-12 | 环球晶圆股份有限公司 | 涉及监测锭颈部提拉速率的移动平均值的用于制造硅锭的方法 |
CN113308730A (zh) * | 2020-02-26 | 2021-08-27 | 隆基绿能科技股份有限公司 | 一种晶体连续生长的加料控制方法和控制系统 |
CN113493926A (zh) * | 2020-03-19 | 2021-10-12 | 隆基绿能科技股份有限公司 | 一种提拉速度控制方法及设备、系统 |
CN113584576A (zh) * | 2021-07-30 | 2021-11-02 | 上海众壹云计算科技有限公司 | 晶体直径生长的自动控制方法、装置、电子设备和存储介质 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5593498A (en) * | 1995-06-09 | 1997-01-14 | Memc Electronic Materials, Inc. | Apparatus for rotating a crucible of a crystal pulling machine |
US6093244A (en) * | 1997-04-10 | 2000-07-25 | Ebara Solar, Inc. | Silicon ribbon growth dendrite thickness control system |
TW200706711A (en) | 2005-08-12 | 2007-02-16 | Komatsu Denshi Kinzoku Kk | Control system and method for time variant system control object having idle time such as single crystal producing device by czochralski method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2149093C3 (de) * | 1971-10-01 | 1975-07-24 | N.V. Philips' Gloeilampenfabrieken, Eindhoven (Niederlande) | Vorrichtung zur Züchtung von Einkristallen durch Ziehen aus einer Schmelze |
US4242589A (en) * | 1979-01-15 | 1980-12-30 | Mobil Tyco Solar Energy Corporation | Apparatus for monitoring crystal growth |
JPS57123892A (en) * | 1981-01-17 | 1982-08-02 | Toshiba Corp | Preparation and apparatus of single crystal |
JPS59102896A (ja) * | 1982-11-30 | 1984-06-14 | Toshiba Corp | 単結晶の形状制御方法 |
JPS6033299A (ja) * | 1983-07-29 | 1985-02-20 | Toshiba Corp | 単結晶の製造装置 |
JPS63242991A (ja) * | 1987-03-31 | 1988-10-07 | Shin Etsu Handotai Co Ltd | 結晶径制御方法 |
JPS63307186A (ja) * | 1987-06-05 | 1988-12-14 | Shin Etsu Handotai Co Ltd | 晶出結晶径制御装置 |
JPS6469590A (en) * | 1987-09-09 | 1989-03-15 | Mitsubishi Metal Corp | Method for measurement and control of crystal diameter in crystal producing device and apparatus therefor |
-
1991
- 1991-04-17 FI FI911857A patent/FI911857A/fi not_active Application Discontinuation
- 1991-04-22 EP EP19910303575 patent/EP0456370A3/en not_active Withdrawn
- 1991-04-25 KR KR1019910006688A patent/KR910018584A/ko not_active Application Discontinuation
- 1991-04-27 CN CN91102922A patent/CN1056138A/zh active Pending
- 1991-09-05 US US07/755,437 patent/US5164039A/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100371507C (zh) * | 2005-03-28 | 2008-02-27 | 荀建华 | 晶体等径生长的控制系统及其方法 |
WO2010048790A1 (zh) * | 2008-10-28 | 2010-05-06 | Hui Mengjun | 提拉法晶体生长的控制方法 |
CN101748477B (zh) * | 2008-12-19 | 2013-10-23 | 北京太克易航科贸有限公司 | 用于单晶硅生长过程控制的智能pid控制方法及其系统 |
CN107208307A (zh) * | 2015-01-21 | 2017-09-26 | Lg矽得荣株式会社 | 单晶锭直径的控制系统及控制方法 |
US10385472B2 (en) | 2015-01-21 | 2019-08-20 | Sk Siltron Co., Ltd. | Control system and control method for diameter of single crystal ingot |
CN107208307B (zh) * | 2015-01-21 | 2020-04-28 | 爱思开矽得荣株式会社 | 单晶锭直径的控制系统及控制方法 |
CN112368428A (zh) * | 2018-06-28 | 2021-02-12 | 环球晶圆股份有限公司 | 涉及监测锭颈部提拉速率的移动平均值的用于制造硅锭的方法 |
CN111254485A (zh) * | 2018-12-03 | 2020-06-09 | 隆基绿能科技股份有限公司 | 单晶硅等径生长的控制方法、设备及存储介质 |
CN111254485B (zh) * | 2018-12-03 | 2021-05-04 | 隆基绿能科技股份有限公司 | 单晶硅等径生长的控制方法、设备及存储介质 |
CN113308730A (zh) * | 2020-02-26 | 2021-08-27 | 隆基绿能科技股份有限公司 | 一种晶体连续生长的加料控制方法和控制系统 |
CN113493926A (zh) * | 2020-03-19 | 2021-10-12 | 隆基绿能科技股份有限公司 | 一种提拉速度控制方法及设备、系统 |
CN113584576A (zh) * | 2021-07-30 | 2021-11-02 | 上海众壹云计算科技有限公司 | 晶体直径生长的自动控制方法、装置、电子设备和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
EP0456370A3 (en) | 1992-08-12 |
FI911857A0 (fi) | 1991-04-17 |
US5164039A (en) | 1992-11-17 |
EP0456370A2 (en) | 1991-11-13 |
FI911857A (fi) | 1991-10-28 |
KR910018584A (ko) | 1991-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1056138A (zh) | 单晶硅直径控制法及其设备 | |
CN100338540C (zh) | 伺服马达驱动控制装置 | |
CN1350602A (zh) | 在半导体晶体生长工艺中控制锥体生长的方法与系统 | |
CN111014340B (zh) | 一种生箔机收卷张力控制系统和控制方法 | |
CN101114166A (zh) | 一种复杂轨迹的轮廓控制方法 | |
CN1840746A (zh) | 晶体等径生长的控制系统及其方法 | |
CN109896423A (zh) | 一种时变非线性小车-吊重防摇控制装置及防摇控制方法 | |
JPH0416437B2 (zh) | ||
CN103713520A (zh) | 一种陀螺稳定平台的自适应复合控制方法 | |
CN110244758A (zh) | 一种无人机精准降落控制方法及系统 | |
KR102592887B1 (ko) | 무결함 단결정질 실리콘 결정을 제조하기 위한 방법 및 장치 | |
CN107208307A (zh) | 单晶锭直径的控制系统及控制方法 | |
CN1056165A (zh) | 单晶硅直径测定法及其设备 | |
CN2825658Y (zh) | 晶体等径生长的控制系统 | |
DE3889294T2 (de) | Fermentation mit gesteuerter Wachstumsgeschwindigkeit. | |
CN108732387A (zh) | 一种sicm的探针样品距离控制方法及系统 | |
US5246535A (en) | Method and apparatus for controlling the diameter of a silicon single crystal | |
CN113325857B (zh) | 基于质心与浮力系统的仿蝠鲼水下航行器定深控制方法 | |
RU1798396C (ru) | Способ выращивани кристаллов из расплава в автоматическом режиме | |
JPS63256594A (ja) | Cz炉内の結晶直径計測方法 | |
JPH07277879A (ja) | Cz法による単結晶製造装置および融液レベル制御方法 | |
CN103713518B (zh) | 一种陀螺速度稳定控制装置和方法 | |
JP2563327B2 (ja) | 単結晶の直径制御方法及び装置 | |
CN1047241C (zh) | 滤波伺服方法及其系统 | |
CN1584131A (zh) | 熔体注入法生长近化学比铌酸锂晶体系统及其工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C03 | Withdrawal of patent application (patent law 1993) | ||
WD01 | Invention patent application deemed withdrawn after publication |