CN105580266B - 感应马达磁通和转矩控制 - Google Patents

感应马达磁通和转矩控制 Download PDF

Info

Publication number
CN105580266B
CN105580266B CN201480052426.XA CN201480052426A CN105580266B CN 105580266 B CN105580266 B CN 105580266B CN 201480052426 A CN201480052426 A CN 201480052426A CN 105580266 B CN105580266 B CN 105580266B
Authority
CN
China
Prior art keywords
flux
stator
rotor
reference frame
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480052426.XA
Other languages
English (en)
Other versions
CN105580266A (zh
Inventor
Y·唐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atieva Inc
Original Assignee
Atieva Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atieva Inc filed Critical Atieva Inc
Publication of CN105580266A publication Critical patent/CN105580266A/zh
Application granted granted Critical
Publication of CN105580266B publication Critical patent/CN105580266B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • H02P21/10Direct field-oriented control; Rotor flux feed-back control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/12Stator flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/141Flux estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

提供一种感应马达控制器。该感应马达控制器包括第一模块,其经由转子磁通调节器回路和转矩调节器回路导出定子磁通参考系中的命令定子电压矢量,转子磁通调节器回路和转矩调节器回路至少部分在定子磁通参考系中处理。感应马达控制器包括第二模块,该模块处理命令定子电压矢量以为感应马达产生AC(交流电)电力。

Description

感应马达磁通和转矩控制
技术领域
本申请大体涉及感应马达控制器和控制感应马达的基于控制器的方法。
背景技术
在感应马达中,AC(交流电)电力激励定子的绕组,产生旋转的磁场,该磁场特征为具有定子磁通。该定子磁通在转子绕组中感应电流。该转子经历转矩,并且在负载下以低于定子磁通的旋转速度的速度旋转。转子的旋转速度与定子磁通的旋转速度之间的差值是转差速度,并且转子和定子磁通的位置之间的差异被称为偏离角。转子所见的变化的磁通由于定子磁通旋转速度的差异被称为转子磁通。
两种普及类型的感应马达控制器,以及其所用的算法,是直接转矩控制(DTC)和磁场定向控制(FOC)。在DTC中,使用定子α和β参考系中的坐标控制转矩和定子磁通,也就是,坐标与定子的相位有关,其中,在固定坐标系统中计算。在FOC中,使用转子磁通d和q参考系中的坐标控制转子磁通、转矩电流的横向分量和转子磁通纵向分量,也就是,坐标与转子磁通的纵轴和横轴相关,其中,在与转子磁通同步旋转的旋转坐标系统中计算。每种类型的感应马达控制器都有优势和劣势。因此,在本技术领域需要克服前面所述系统的缺点的解决方案。
发明内容
提出本申请以克服上文描述的例如DTC和FOC的现有技术感应马达控制器的缺陷。
在一些实施例中,提供了一种感应马达控制器。该感应马达控制器包括第一模块,该第一模块经由转子磁通调节器回路和转矩调节器回路导出在定子磁通参考系中的命令定子电压矢量,转子磁通调节器回路和转矩调节器回路至少部分在定子磁通参考系中处理。该感应马达控制器包括第二模块,该第二模块处理命令定子电压矢量,以为感应马达产生AC(交流电)电力。
在一些实施例中,提供了一种感应马达控制器。该感应马达控制器包括转矩调节器,该转矩调节器在定子磁通参考系中处理命令转矩、转矩、命令转子磁通和感应马达的转子的旋转速度,以产生投影到定子磁通参考系中的横轴线上的命令定子电压。该感应马达控制器包括转子磁通调节器,该转子磁通调节器在定子磁通参考系中处理命令转子磁通和转子磁通,以产生投影到定子磁通参考系的纵轴线上的命令定子电压。该感应马达控制器包括定子磁通参考系到相电压参考系的矢量旋转模块,当所述命令定子电压投影到所述纵轴线和所述横轴线上时,所述模块应用定子磁通角以将命令定子电压从定子磁通参考系中表示的第一矢量变换到相电压参考系中表示的第二矢量。
在一些实施例中,提供了一种控制感应马达的方法。该方法包括在定子磁通参考系中生成定子电压矢量,并且将定子电压矢量从定子磁通参考系变换到相电压参考系。该方法包括根据相电压参考系的定子电压矢量产生用于感应马达的交流电(AC)电力,该方法的至少一个步骤被处理器执行。
因此,使用本申请的技术方案,能够实现改进的控制精确度和改进的系统稳定性。
根据下列具体实施方式结合附图,实施例的其他方面和优点将变得明显,其中附图通过示例方式示出所描述的实施例的原理。
附图说明
通过参考下列描述并结合附图可以最好地理解所描述的实施例及其优点。这些图形在形式和细节上绝不限制任何改变,在不脱离所描述实施例的精神和范围的情况下,本领域的技术人员可以对所描述的实施例进行改变。
图1是根据本发明的感应马达控制器的原理图。
图2是说明定子磁通参考系的纵轴线和横轴线(d和q)相对于相电压参考系的x轴线和y轴线旋转的矢量图,如图1的原理图所述。
图3是图1中感应马达控制器的实施例的原理图。
图4是图3中磁通和转矩估计器的实施例的原理图。
图5是图3中磁通和转矩限制器的实施例的原理图。
图6是图1和图3中转矩调节器的实施例的原理图。
图7是图1和图3中磁通调节器的实施例的原理图。
图8是控制感应马达的方法的流程图,其能够在图1和图3至图7中的感应马达控制器的实施例中实施。
具体实施方式
感应马达控制器,其实施例在图1至图8中示出以及在此被描述,具有不同于场定向控制(FOC)和直接转矩控制(DTC)感应马达控制器的特征和操作。本感应马达控制器通过转子磁通调节器回路和转矩调节器回路执行转子磁通和转矩控制,并且在定子磁通参考系和相电压参考系中操作。该转子磁通和转矩调节器回路在定子磁通参考系中被(至少部分)处理。这对比于控制转矩和定子磁通的DTC,DTC在静态的(即非旋转的)参考系中执行计算,并且对比FOC,FOC在对齐于受控的特定磁通的参考系中执行计算,以及其他差异。在定子磁通参考系中控制转子磁通作为可调节的变量,在本系统中,对比其它系统和方法,在转子磁通参考系中控制转子磁通作为可调节的变量,或者在定子磁通参考系中控制定子磁通作为可调节的变量。对比于很多(或所有)要求电流控制的FOC控制器,本感应马达控制器的实施例可以在没有电流调节回路的情况下操作。
在本感应马达控制器中,转矩调节器和磁通调节器生成命令定子电压矢量,其在定子磁通参考系中被表示。该矢量被旋转并变换成相电压参考系中的矢量,从中导出感应马达的AC(交流电)电力。附加的模块为转矩调节器回路和转子磁通调节器回路提供反馈,也将在下面进一步描述。
本文公开详细的说明实施例。然而,本文公开的具体功能细节仅代表描述实施例的目的。但是,实施例可以以许多替换形式体现,不应该构建为仅限于在此阐述的实施例。
应该理解,尽管本文使用术语第一、第二等描述步骤或计算,这些步骤或计算不应被这些术语限制。这些术语仅用来将其中一个步骤或计算与另一个步骤或计算区分开。例如,在不脱离本公开的范围的情况下,第一计算可以被称为第二计算,并且类似地,第二步骤可以被称为第一步骤。如本文使用的,术语“和/或”和“/”符号包括相关列举条目中的一个或更多个的任意和全部结合。
如本文所用的,单数形式“一个(a和an)和“该(the)”旨在也包括复数形式,除非上下文另外清楚指出。将进一步理解,术语“包括”,和/或“包含”,当在本文中使用时,说明所述特征、整数、步骤、操作、元素和/或部件存在,但不排除一个或更多其他特征、整数、步骤、操作、元素、部件和/或组群的存在和添加。因此,本文使用的术语仅用来描述具体实施例的目的且并不旨在限制。
还应该注意,在一些替代实施方式中,示出的功能/动作可以不按照图中示出的顺序发生。例如,连续示出的两个附图可以基本同时执行或有时可以以相反顺序执行,这取决于涉及的功能/动作。
图1示出感应马达控制器在定子磁通参考系和相电压参考系中操作。该感应马达控制器向感应马达106提供AC(交流电)电力,例如提供三相电力到三相感应马达。转矩调节器108操作转矩调节器回路116,并且利用此生成投影到定子磁通参考系中的横(q)轴线上的命令定子电压矢量,该矢量投影或分量被表示为Vqsc。转子磁通调节器110操作转子磁通调节器回路114,并且利用此生成投影到定子磁通参考系中的纵轴线(d)上的命令定子电压矢量,该矢量投影或分离被表示为Vdsc。定子磁通参考系102关于图2将被进一步讨论。定子磁通参考系102中的物理量,如果是矢量就被认定为“dq”,如果是矢量的纵轴分量就被认定为“d”,如果是矢量的横向分量就被认为是“q”。
因此,转矩调节器108和转子磁通调节器110一起生成命令定子电压矢量Vdsc、Vqsc,其在定子磁通参考系102中表示。转矩调节器108和转子磁通调节器110都在定子磁通参考系102中操作。在所示的实施例中,转矩调节器108和磁通调节器110是分开的模块,但是可以结合成更大的模块。命令定子电压矢量Vdsc,Vqsc代表定子电压,其被感应马达控制器命令,其被确定以调整感应马达106的转矩和转子磁通。DQ/XY坐标变换模块112将命令定子电压矢量Vdsc,Vqsc从定子磁通参考系102变换到相电压参考系104,其中,变换后的矢量Vxsc,Vysc被用来为感应马达106生成AC电力。在所示的实施例所示中,感应马达106是三相感应马达。该三相表示为a,b,c。其它相数和其它相的表示也可以使用。
图2的作用是指导理解本文所述的感应马达控制器的参考系、矢量、投影和实施例。在图2中,x轴线和y轴线是正交的。x轴线和y轴线在相电压参考系中。x轴线与感应马达定子的其中一个相电压对齐,例如与定子的绕组“A”的相电压对齐。当AC电力应用到定子绕组时,定子磁链(即定子绕组所链环的总磁通)相对于相电压参考系旋转。这在矢量图标中被描绘成以Wfs的旋转速度或旋转速率、定子磁通的旋转速度旋转的d或纵轴线。作为本领域通用的做法,术语定子磁链被缩写成定子磁通。q轴线或横轴线垂直于d轴线。q轴线和d轴线一起旋转,这是定子磁通参考系相对于相电压参考系旋转的象征。在任意瞬间,d轴线对准定子磁通并且被定子磁通角(表示为Afs)从x轴线有角度地置换。等价地,定子磁通角Afs是介于定子磁通d轴线和x轴线之间的角度。在任意瞬间,任意矢量物理量在定子磁通空间或相电压空间都能被投影到任意轴线上。在所示的例子中,转子电流(表示为ir)被投影到d轴线和q轴线上。
在图3中,图1中的感应马达控制器的实施例被进一步开发。图3中的感应马达控制器旨在由感应马达106推进的电力或混合动力车辆中使用。感应马达控制器的进一步实施例可以被用在除车辆以外的感应马达的其他应用中,例如,在工业应用中、在机电的机器中和在机器人中。感应马达控制器的模块、操作和控制回路的综述被呈现如下,然后伴随更深一步地讨论。应该领会各种变量、系数、中间值、输入和输出可以被调整以适应维度兼容性或规范化,基于实施方式以及各种实施例,模块可以被组合或分解,或模块可以包含附加的模块。
车辆控制单元318、转矩命令生成器316和磁通命令生成器314配合产生命令转矩Tc和命令转子磁通Frc。一般地,在电力或混合动力车辆中,命令转矩基于来自用户的输入,例如电力车辆的驾驶员或机电装置的操作员。更具体地,命令转矩将基于车辆中加速器踏板的位置和制动踏板的位置。在其它系统中这些量将基于其它输入。
命令转矩Tc和命令转子磁通Frc与回路变量一同被输入到转矩调节器108和磁通调节器110。转矩调节器108和磁通调节器110一起经由转子磁通调节器回路114和转矩调节器回路116导出定子磁通参考系中表示的命令定子电压矢量。转子磁通调节器回路114和转矩调节器回路116至少部分在定子磁通参考系中处理。
DQ/XY矢量旋转模块302、空间矢量调制模块304、和DC/AC(直流电到交流电)逆变器306处理命令定子电压矢量以为感应马达106产生AC(交流电)电力。DQ/XY矢量旋转模块302是图1的DQ/XY坐标变换模块112的一个实施例,该模块根据定子磁通角Afs应用矢量旋转,将命令定子电压矢量从定子磁通参考系102(如Vdsc,Vqsc)变换到相电压参考系104(如Vxsc,Vysc)。定子磁通角Afs是估计的而不是感测的,并且在磁通和转矩估计器310中生成。
空间矢量调制模块304根据变换到相电压参考系104中的命令定子电压矢量Vxsc,Vysc生成用于DC/AC逆变器306的脉宽调制(PWM)开关控制。DC/AC逆变器306根据从空间矢量调制模块304接收的脉宽调制开关控制生成用于感应马达106的三相AC电力。在进一步的实施例中,基于逆变器306和感应马达106的设计,DC/AC逆变器306生成用于感应马达106的其它数量相位的AC电力。
磁通和转矩估计器310产生估计转矩T、估计转子磁通角Afs、估计转子磁通量Fr、定子磁通参考系102中表示的估计定子电流矢量Idqs和定子磁通参考系102中表示的估计转子电流矢量Idqr。磁通和转矩估计器310根据在相电压参考系104中表示的定子电压矢量Vxys、至少两相的定子电流Iabs、和感应马达转子的旋转速度Wr产生上述量。在所示实施例中,转子的旋转速度Wr由传感器比如与感应马达106有关的传感器提供。例如,传感器可以包括或者是轴编码器、转速计、速度计或其他感测设备或组件的部分。定子电流可以在所有三相感应马达106中被提供作为显示电流。但是,如已知的,提供两相电流值允许在三相感应马达中的第三相中扣除电流,由于这三个电流的矢量和为零(伴随马达没有净电荷的积累或损失)。在一个实施例中,定子电流Iabs由传感器提供,也就是测量值。
估计转子磁通量Fr从磁通和转矩估计器310耦合到磁通调节器110。估计转矩T从磁通和转矩估计器310耦合到转矩调节器108。估计定子磁通角Afs从磁通和转矩估计器310耦合到DQ/XY矢量旋转模块302。空间矢量调制模块304根据在定子磁通参考系102中表示的命令定子电压矢量Vdsc,Vqsc产生在相电压参考系104中被表示的定子电压矢量Vxys。至少两相的定子电流Iabs被DC/AC逆变器306提供并且作为输入被耦合到磁通和转矩估计器310。
在一个实施例中,将根据图4进一步讨论,磁通和转矩估计器310应用转子磁通电流模型和转子磁通电压模型生成估计转子磁通量Fr和估计转矩T。再参考图1,转子调节器回路114包括估计转子磁通量Fr作为磁通调节器110的输入,以及转矩调节器回路116包括估计转矩T作为转矩调节器108的输入。
继续图3,磁通和转矩限制器312与磁通和命令生成器314、转矩命令生成器316和车辆控制单元318一起工作。这些模块互相配合生成命令转矩Tc和命令转子磁通Frc,限制命令转矩Tc小于或等于可变最大命令转矩Tcmax,并且限制命令转子磁通大于或等于可变最小命令转子磁通Frcmin以及小于等于可变的最大命令转子磁通Frcmax。命令转矩Tc从转矩命令生成器316被耦合到转矩调节器108作为其输入。命令转子磁通Frc从磁通命令生成器314被耦合到转矩生成器108和磁通生成器110二者作为它们的输入。磁通和转矩限制器312的实施例将根据图5进一步讨论。
图3的感应马达控制器的讨论始于车辆控制单元318,并绕着转子磁通调节器回路和转矩调节器回路顺时针(在图中)进行。概念上,在高电平处,感应马达106的转矩命令由用户通过车辆控制单元318给出。转矩命令根据感应马达106的状态(更具体地,根据感应马达106的估计转子磁通Fr和估计转矩T)被解释。根据命令转矩Tc,命令转子磁通Frc被导出,并且它们被用于定子磁通参考系102中的计算或处理。从定子磁通参考系102变换到相电压参考系104后,生成感应马达106的AC电力。变量通过转子磁通调节器回路和转矩调节器回路被反馈,并且被用于定子磁通参考系102中的计算或处理,以完成循环。变量模块在各种实施例中可以被制成如硬件、软件、固件、或其组合。例如,在一个实施例中,一个或更多个模块用数字信号处理器(DSP)中的软件被执行。实施例能够包括一个或更多个处理器,或者一个或更多个处理器和硬件的组合。
车辆控制单元318基于用户输入产生初始命令转矩Tc0。在一个实施例中,命令转矩Tc0从耦合到车辆的节气门和制动踏板的传感器被映射。在进一步的实施例中,命令转矩Tc0从其它传感器或模块被计算、导出或映射。例如,增大的命令转矩Tc0是用户要求增大车辆的速度或加速度的结果,以及减小命令转矩Tc0是用户要求减小车辆的速度或加速度的结果。在一些实施例中,车辆控制单元将映射回滞应用到命令转矩Tc0。
转矩命令生成器316根据可变的最大命令转矩Tcmax和初始命令转矩Tc0生成命令转矩Tc。可变的最大命令转矩Tcmax作为转矩限制被应用到初始命令转矩Tc0。该操作可以通过比较和映射执行,其发送初始命令转矩Tc0作为命令转矩Tc,除非初始命令转矩Tc0超过可变的最大命令转矩Tcmax,在该情况下可变的最大命令转矩Tcmax作为命令转矩Tc发送。在各种实施例中,转矩命令生成器316在与主回路采样率相同的采样率下,或以比主回路采样率慢的采样率下运行。
磁通命令生成器314根据可变的最小命令转子磁通Frcmin、可变的最大命令转矩Tcmax、命令转矩Tc和转子的旋转速度Wr生成命令转子磁通Frc。可变的最小命令转子磁通Frcmin和可变的最大命令转矩Tcmax被作为磁通限制应用到命令转子磁通Frc。在一个实施例中,磁通命令生成器314根据命令转矩Tc、使用转子的旋转速度Wr乘以转子磁通的乘积是反EMF(电动势)的关系生成初始命令转子磁通,其与转矩直接相关。感应马达通过操作一系列不同的转子磁通可能产生相同的给定转矩,其中,不同的转子磁通产生不同的马达操作性能,例如不同的操作效率或不同的转子电力损失。通过实时计算或查找表操作,初始命令转子磁通Frc可以从命令转矩Tc获得,其优化系统操作的某些方面(例如优化的马达效率)。随后执行初始命令转子磁通和磁通限制的比较。初始命令转子磁通作为命令转子磁通Frc被发送,除非初始命令转子磁通小于可变的最小命令转子磁通Frcmin,在该情况下,可变的最小命令转子磁通Frcmin作为命令转子磁通Frc被发送。如果初始命令转子磁通大于可变的最大命令转子磁通Frcmax,可变的最大命令转子磁通Frcmax作为命令转子磁通Frc被发送。在各种实施例中,磁通命令生成器314在与主回路采样率相同的采样率下,或比主回路采样率慢的采样率下运行。
转矩调节器108处理一部分转矩调节器回路,并产生命令定子电压矢量Vqsc在定子磁通参考系102中的横轴线上的投影。转矩调节器108在定子磁通参考系102中处理。具体地,转矩调节器108处理命令转矩Tc、估计转矩T、命令转子磁通Frc和感应马达106的转子的旋转速度Wr,以产生投影到定子磁通参考系102中的横轴线上的命令定子电压Vqsc。在一个实施例中,转矩调节器108包括PI(比例积分)控制器。转矩调节器108的实施例将参考图6进一步讨论。
转子磁通调节器110处理一部分转子磁通调节器回路,并产生命令定子电压矢量Vdsc到定子磁通参考系102中的纵轴线上的投影。转子磁通调节器110在定子磁通参考系102中处理。具体地,定子磁通调节器110处理命令转子磁通Frc和估计转子磁通量Fr,以产生投影到定子磁通参考系102中的纵轴线上的命令定子电压Vdsc。
DQ/XY矢量旋转模块302作为定子磁通参考系102到相电压参考系104的矢量旋转模块,其将估计定子磁通角Afs应用到定子磁通参考系102中表示的命令定子电压矢量Vdsc、Vqsc。该估计定子磁通角Afs的应用将投影到纵轴线和横轴线上的命令定子电压从定子磁通参考系102中的第一矢量Vdsc、Vqsc(也就是命令定子电压矢量)变换到相电压参考系104中的第二矢量Vxsc、Vysc(也就是命令定子电压矢量)。在一个实施例中,该坐标变换运用了反向克拉克变换。在各种实施例中,使用实时计算或查找表执行该坐标变换。
空间矢量调制模块304生成脉宽调制(PWM)开关控制。进一步,空间矢量调制模块304生成在相电压参考系中表示的定子电压矢量Vxys,如磁通和转矩估计器310使用的。根据从DQ/XY矢量旋转模块302接收的作为第二矢量Vxsc、Vysc的命令定子电压,空间矢量调制模块304生成上述量。在一个实施例中,PWM开关控制被标准化。在各种实施例中,通过电源电压测量值Vdc乘以在相电压参考系104中表示的命令定子电压矢量Vxsc、Vysc,生成在相电压参考系104中表示的定子电压矢量Vxys,或者测量(例如用传感器)或估计在相电压参考系104中表示的定子电压矢量Vxys。
DC母线308从传感器提供电源电压测量值Vdc。在一个实施例中,DC母线耦合到电动车辆的蓄电池或电池,其提供到DC/AC逆变器306的DC电力。在一个实施例中,传感器测量DC母线308的电压测量值Vdc。
DC/AC逆变器306根据从空间矢量调制模块304接收的PWM开关控制生成用于感应马达106的三相AC电力。在一个实施例中,传感器测量逆变器温度Ti,其被发送到磁通和转矩限制器312。在一个实施例中,传感器测量定子的至少两相的定子电流Iabs,并将其发送到磁通和转矩估计器310。
在所示实施例中,感应马达106配备有传感器。一个传感器测量马达温度Tm,并将其发送到磁通和转矩限制器312。一个传感器测量转子的旋转速度Wr,并将其发送到磁通和转矩估计器310、磁通和转矩限制器312和磁通命令生成器314。
磁通和转矩估计器310为DQ/XY矢量旋转模块302生成估计定子磁通角Afs、为磁通调节器110生成估计转子磁通Fr、为转矩调节器108生成估计转矩以及为磁通和转矩限制器312生成在定子磁通参考系102中表示的定子电流矢量Idqs和在定子磁通参考系102中表示的转子电流矢量Idqr。磁通和转矩估计器310的一个实施例采用两个不同的转子磁通模块,将根据图4进行讨论。
磁通和转矩限制器312生成可变的最小命令转子磁通Frcmin、可变的最大命令转子磁通Frcmax和可变的最大命令转矩Frcmax。上述数据根据在定子磁通参考系102中表示的定子电流矢量Idqs、在定子磁通参考系102中表示的估计转子电流矢量Idqr、逆变器温度Ti、马达温度Tm、转子的旋转速度Wr和DC母线308的测量的DC电压Vdc生成。转矩限制,即可变的最大命令转矩Tcmax,从磁通和转矩限制器312被发送到转矩命令生成器316。较小和较大的转子磁通限制,即可变的最小命令转子磁通Frcmin和可变的最大命令转子磁通Frcmax,从磁通和转矩限制器312被发送到磁通命令生成器314。
因此,经由磁通和转矩估计器310、磁通调节器110和转矩调节器108,转子磁通调节器回路114和转矩调节器回路116被关闭,并且经由磁通和转矩限制器312、磁通命令生成器314和转矩命令生成器316被施加限制。为了关闭回路,允许反馈通过相电压参考系104回到定子磁通参考系102,磁通和转矩估计器310的一个实施例包括相电压参考系到定子磁通参考系的矢量旋转模块,该模块将电流矢量从相电压参考系104变换到定子磁通参考系102。磁通和转矩限制器312的实施例将参考图5进一步讨论。
图4示出磁通和转矩估计器310的实施例。磁通和转矩估计器310中的模块被实施在各种实施例中的软件、硬件、固件、和其各种组合中。例如,模块可以作为在DSP或其它处理器中执行的软件模块被执行。在各种实施例中,转子磁通电流模型404、转子磁通电压模型406、转子磁通量计算器410、转子电流计算器414、定子磁通计算器412、转矩计算器416和定子磁通角计算器418都是基于查找表或基于实时计算的。
ABC/XY矢量旋转模块402作为定子相电流参考系到相电压参考系104的矢量旋转模块,其将至少两相的定子电流Iabs变换到相电压参考系104中所表示的定子电流矢量Ixys。在一个实施例中,该变换使用帕克变换或其变体执行。
在图4所示的磁通和转矩估计器310的实施例中,两个转子磁通模型与调节器合作形成转子磁通矢量的估计值。转子磁通电流模型404比转子磁通电压模型406收敛的更快。结合两个转子磁通模型能在很宽的操作条件下提高系统的精度,就是说,在马达速度的很宽的范围以及马达转矩的很宽的范围上。另外,结合两个转子磁通模型允许各种基于电压、电流和速度的估计结果,而不仅仅是三个这些变量中的两个。
转子磁通电流模型404生成在相电压参考系104中表示的快收敛的估计转子磁通矢量Fxyr。该估计转子磁通矢量是根据在相电压参考系104中表示的定子电压矢量Ixys和转子的旋转速度Wr生成。
转子磁通电压模型406生成在相电压参考系104中表示的慢收敛的估计转子磁通矢量Fxyr0。该模型根据在相电压参考系104中表示的定子电压矢量Vxys、在相电压参考系104中表示的定子电流矢量Ixys和估计矫正因子生成估计转子磁通矢量。
估计调节器408根据在相电压参考系104中表示的快收敛的估计转子磁通矢量Fxyr和在相电压参考系104中表示的慢收敛的估计转子磁通矢量Fxyr0生成估计矫正因子。在一个实施例中,估计调节器408包括PI(比例积分)控制器。该PI控制器可以根据在相电压参考系104中表示的快收敛的估计转子磁通矢量Fxyr和在相电压参考系104中表示的慢收敛的估计转子磁通矢量Fxyr之间的差值形成误差项。该误差项然后可以被发送到比例模块和积分模块,该模块的输出被加和以形成估计矫正因子。PI控制器参考图6和转矩调节器108的实施例被描述。
继续图4,使用DSP或其它处理器的计算设备或者硬件乘法器或者一个或更多个查找表的计算能力实现磁通和转矩估计器310中的四个计算器。该计算器可以分享能力或者每个都有各自的计算能力。转子磁通量计算器410根据在相电压参考系104中表示的快收敛的估计转子磁通矢量Fxyr0生成估计转子磁通量Fr。定子磁通计算器412根据在相电压参考系104中表示的慢收敛估计转子磁通矢量Fxyr0和在相电压参考系104中表示的定子电流矢量Ixys生成在相电压参考系104中表示的估计定子磁通矢量Fxys。在一个实施例中,定子磁通计算器412包括感应马达的定子绕组的电感模型。转子电流计算器414根据在相电压参考系104中表示的快收敛估计转子磁通矢量Fxyr和在相电压参考系104中表示的估计定子磁通矢量Fxys生成在相电压参考系中表示的转子电流矢量Ixyr。转矩计算器416根据在相电压参考系104中表示的定子电流矢量Ixys和在相电压参考系104中表示的估计定子磁通矢量Fxys中生成估计转矩T。定子磁通角计算器418根据在相电压参考系104中表示的估计定子磁通矢量Fxys生成估计定子磁通角Afs。
XY/DQ矢量旋转模块420作为相电压参考系104到定子磁通参考系102的矢量旋转模块,其生成在定子磁通参考系102中表示的估计转子电流矢量Idqr和在定子磁通参考系102中表示的定子电流矢量Idqs。该模块根据在相电压参考系104中表示的估计转子电流矢量Ixyr、在相电压参考系104中表示的定子电流矢量Ixys和估计定子磁通角Afs生成上述量。在一个实施例中,XY/DQ矢量旋转模块420采用克拉克变换。
图5示出磁通和转矩限制器312的一个实施例。一些模块和磁通和转矩限制器312具有计算器,该计算器可以与磁通和转矩估计器310中的计算器类似被实现。在各种实施例中,磁通和转矩限制器312中的模块在软件、硬件、固件、及其各种组合中被执行。在各种实施例中,转子电流限制器、场削弱器、定子电流限制器、低转子磁通限制器、高转子磁通限制器、基于定子的转矩限制器和基于转子的转矩限制器中的每个是基于查找表或基于实时计算的。在各种实施例中,磁通和转矩限制器312在与主回路采样率相同的采样率下或比主回路采样率慢的采样率下运行。
转子电流限制器502根据转子的旋转速度Wr、在定子磁通参考系102中表示的估计转子电流矢量Idqr和马达温度Tm生成可变的最大转子电流Irmax。马达温度Tm受转子电流和转子的旋转速度Wr影响。在一个实施例中,转子电流限制器502减小可变的最大转子电流Irmax,以响应升高的马达温度Tm。此动作保护转子和感应马达106,不受由于过大的转子电流引起的过热损害。在一个实施例中,转子电流限制器502包括计算器。
场削弱器504根据转子的旋转速度Wr和DC母线308的DC电压Vdc或感应马达106的其他电源生成可变的最大定子磁通Fsmax。在一个实施例中,场削弱器504减小可变的最大定子磁通Fsmax,以响应转子的旋转速度Wr产生超过基础速度。场削弱器504进一步减小可变的最大定子磁通Fsmax,以响应减小的感应马达106的电源的DC电压。一些马达由于过高的定子磁通值而变得不稳定。例如,感应马达能够轻易承受最大定子磁通升高达马达的基础速度,但是在用于高的旋转速度的小的定子磁通值处变得不稳定。在一个实施例中,在转子的更高的RPM处,低的DC电压减小最大的可用磁通。作为进一步的例子,在一些感应马达中,为了更低的电源电压值,最大定子磁通应该被降低,越过转子的旋转速度的一些基础值。根据规定的感应马达106的特性,场削减器504的各种示意图被轻易地设计出来。在一个实施例中,场削减器504包括计算器。
定子电流限制器506根据转子的旋转速度Wr、在定子磁通参考系102中表示的定子电流矢量Idqs和逆变器温度Ti生成可变的最大定子电流Ismax。逆变器温度Ti受定子电流和转子的旋转速度Wr影响。在一个实施例中,定子电流限制器506减小可变的最大定子电流Ismax,以响应升高的逆变器温度Ti。这保护定子和感应马达106不受由于过大的定子电流所产生的过热损害。
低转子磁通限制器508根据可变的最大转子电流Irmax和转子的旋转速度Wr生成可变的最小命令转子磁通Frcmin。在一个实施例中,低转子磁通限制器508设定与预备状态一致的可变的最小命令转子磁通Frcmin以加速转子。例如,因为转子电流在感应马达中被感应,具有过低的转子磁通导致低转子电流,这将给出缓慢的响应命令来增大感应马达的转矩。设定可变的最小命令转子磁通Frcmin的另一个原因是维持马达的稳定或鲁棒性以对抗突发的轴负荷的变化和其它干扰。设定最小命令转子磁通为感应马达更快地响应命令做准备,来增大转矩和在干扰中维持转矩和速度。在一些实施例中,该最小值基于马达的设计和操作环境。
高转子磁通限制器510根据可变的最大定子磁通Fsmax和可变的最大定子电流Ismax生成可变的最大命令转子磁通Frcmax。在一个实施例中,高转子磁通限制器510基于可变的最大定子磁通Fsmax和可变的最大定子电流Ismax,设定可变的最大命令转子磁通Frcmax,以便减小可变的最大命令转子磁通Frcmax,以响应可变的最大定子磁通Fsmax或可变的最大定子电流Ismax减小。
基于定子的转矩限制器512根据可变的最大定子磁通Fsmax和可变的最大定子电流Ismax生成可变的基于定子的最大命令转矩Tcmaxs。在一个实施例中,基于定子的转矩限制器512根据可变的最大定子磁通Fsmax和可变的最大定子电流Ismax的乘积设定可变的基于定子的最大命令转矩Tcmaxs。在一个实施例中,基于定子的转矩限制器512包括计算器。
基于转子的转矩限制器514根据可变的最大转子电流Irmax和可变的最大命令转子磁通Frcmax生成可变的基于转子的最大命令转矩Tcmaxr。在一个实施例中,基于转子的转矩限制器根据可变的最大转子电流Irmax和可变的最大命令转子磁通Frcmax的乘积设定可变的基于转子的最大命令转矩Tcmaxr。在一个实施例中,基于转子的转矩限制器514包括计算器。
最终转矩限制器516根据可变的基于转子的最大命令转矩Tcmaxr和可变的基于定子的最大命令转矩Tcmaxs生成可变的最大命令转矩Tcmax。在一个实施例中,最终转矩限制器516通过选择可变的基于转子的最大命令转矩Tcmaxr和可变的基于定子的最大命令转矩Tcmaxs之中的较小值,设定可变的基于转子的最大命令转矩Tcmax。例如,转矩能够通过定子磁通和定子电流或者被转子磁通和转子电流计算。比较两个转矩的计算结果并且挑选较小的一个为转矩限制,这是为了稳定的目的更保守的选择。在进一步的实施例中,可以选择两者之中较大的、两者的平均数或者两者的加权平均数。
图6示出图1和图3中转矩调节器108的实施例。在此实施例中,转矩调节器108包括比例积分(PI)控制器602。该PI控制器602将命令转矩Tc和估计转矩T之间的差作为输入。这个差,在PI控制器术语中的误差项,被示为命令转矩Tc为正的输入并且估计转矩T作为负的输入的求和电路606。求和电路606的输出产生转矩误差。转矩误差被路由到比例模块614和积分模块616,模块614产生与求和电路606输出成比例的因数(也就是与转矩误差成比例),模块616产生与求和电路606输出的积分成比例的因数(也就是与转矩误差的积分成比例)。比例模块614的输出和积分模块616的输出被求和电路608加起来以产生PI控制器602的输出。
在图6所示的实施例中,转矩调节器108包括正反馈模块604。正反馈模块604包括求和电路610,其将PI控制器602的输出以及命令转子磁通Frc和转子的旋转速度Wr的乘积作为输入。正反馈求和电路610将投影到定子磁通参考系102中的横轴线上的命令定子电压Vqsc作为输出。在进一步的实施例中,PI控制器的输出求和电路608与正反馈模块604的正反馈求和电路610结合,作为三个输入的单个求和电路。
图7示出图1和3中转子磁通调节器110的实施例。在此实施例中,转子磁通调节器110包括比例积分导数(PID)控制器702,其将命令转子磁通Frc和估计转子磁通Fr作为输入,以及将投影到定子磁通参考系102中的纵轴线上的命令定子电压Vdsc作为输出。输入求和电路704具有命令转子磁通Frc作为正的输入以及估计转子磁通Fr作为负的输入。在这种磁通误差情况下,在PID控制器的术语中,输入求和电路704的输出产生误差项。磁通误差被路由到比例模块708、积分模块710和导数模块712,模块708产生与求和电路704输出成比例(也就是与磁通误差成比例)的项,积分模块710产生与求和电路704输出的积分成比例的项(也就是与磁通误差的积分成比例),以及导数模块712产生与求和电路704输出的导数成比例的项(也就是与磁通误差的导数成比例)。比例模块708的输出、积分模块710的输出和导数模块712的输出被输出求和电路706加起来产生PID控制器702的输出,该输出是投影到定子磁通参考系102中的纵轴线上的命令定子电压Vdsc。
图8示出了控制感应马达的方法的实施例。该方法可以在感应马达控制器的实施例中实践,包括参考图1至图7所述的。在各种实施例中,处理器可以执行该方法中的一个或更多个步骤。
在动作802中,转矩调节器回路被处理来产生命令定子电压矢量在定子磁通参考系中的横轴线投影。例如,转矩调节器产生这样的电压矢量投影。如图3所示,转矩调节器处理在定子磁通参考系中的命令转矩、估计转矩、命令转子磁通、和感应马达的转子的旋转速度,作为转矩调节器回路的部分,以产生命令定子电压矢量在定子磁通参考系中的横轴线投影。
在动作804中,转子磁通调节器回路被处理来产生命令定子电压矢量在定子磁通参考系中的纵轴线投影。例如,转子磁通调节器产生这样的电压矢量投影。如图3所示,转子磁通调机器处理定子磁通参考系中的命令转子磁通和估计转子磁通,作为转子磁通调节器回路的部分,以产生命令定子电压矢量在定子磁通参考系中的纵轴线投影。
在动作806中,命令定子电压矢量从定子磁通参考系被变换到相电压参考系。例如,DQ/XY坐标变换模块或者DQ/XY矢量旋转模块执行这样的变换。如图3所示,DQ/XY矢量旋转模块将命令定子电压矢量从定子磁通参考系变换到相电压参考系。
在动作808中,来自相电压参考系的命令定子磁通矢量被处理以为感应马达产生AC电力。例如,空间矢量调制单元和DC/AC逆变器执行这样的处理。如图3所示,空间矢量调制单元处理命令定子电压矢量,在变换到相电压参考系中以后,以产生脉宽调制开关控制。DC/AC逆变器随后处理脉宽调制开关控制以为感应马达产生交流电(AC)电力。
在一个实施例中,处理作为转矩调节器回路的部分,对于动作802,包括进一步的动作,其能够例如在图6的转矩调节器上或由图6的转矩调节器执行。在该实施例中,处理作为转矩调节器回路的一部分包括生成在定子磁通参考系中表示的命令定子电压矢量的横轴线投影。这可以通过从命令转矩减去估计转矩执行以形成转矩误差。增加与转矩误差成比例的第一项以及与转矩误差的积分成比例的第二项形成PI(比例积分)控制器的输出。通过命令转子磁通与转子的旋转速度相乘形成正反馈量。将正反馈量与PI控制器的输出相加以形成命令定子电压矢量在定子磁通参考系中的横轴线投影。
在一个实施例中,处理作为转子磁通调节器回路的部分,对于动作804,包括进一步的动作,其能够例如在图7的转子磁通调节器上或由图7的转子磁通调节器执行。在该实施例中,处理作为转子磁通调节器回路的一部分包括生成在定子磁通参考系中表示的命令定子电压矢量的纵轴线投影。这可以通过从命令转子磁通减去估计转子磁通执行以形成磁通误差。增加与磁通误差成比例的第一项、与磁通误差成比例的第二项、以及与磁通误差的导数成比例的第三项形成命令定子电压矢量在定子磁通参考系中的纵轴线投影。
本感应马达控制器的各种实施例,如参考图1至图8上面所述,具有一些或所有下面的特性和特征。转子磁通和转矩控制被转子磁通调节器回路和转矩调节器回路执行,而不是电流调节回路。该转子磁通调节器回路和转矩调节器回路在定子磁通参考系中被处理。在定子磁通参考系中的物理量被认定为“dq”,在定子固定参考系中的物理量被认定为“xy”。
磁通和转矩估计器后面跟着磁通和转矩限制器。磁通和转矩估计器的输入是感应的马达的相电、感应的或计算的相电压、和感应的马达速度。其输出是估计的转子磁通量、转矩大小、定子磁通角、以及在“dq”参考系中的定子和转子回路电流。该定子磁通角,相对于定子固定参考系,被用来执行“dq”和“xy”之间的矢量旋转。
磁通和转矩限制器在与主回路的采样率相同的(或者低于主回路的)采样率下实时运行。磁通和转矩限制器确定最大的转矩命令以及最大的转子磁通量和最小的转子磁通量。该限制器块的设计基础是综合的马达物理模型,其将马达系统的操作限制定义为电池母线电压、感应的马达速度、和感应的逆变器以及马达的操作温度的函数。
磁通和转矩限制器的好处之一是定子电流和转子电流被单独限制。在直接转矩(在DTC中)下,既不是定子电流也不是转子电流被直接调节或限制。在一些实施例中,在场定向控制(FOC)下,只有定子电流被直接调节并且转子电流既不被调节也不被限制。
磁通和转矩命令生成器在相同或低于主回路的采样率下,适应性的生成实时的磁通和转矩命令。
转子磁通调节器的好处之一是转子磁通一般包含比定子磁通和气隙磁通更低的谐波,从而改善控制精确度以及降低系统的抖动。除此之外,转子磁通的相位轻微的滞后于定子磁通和气隙磁通,这可能导致改进的系统稳定性和改进的峰值转矩包络限制。
在与定子磁通一致的参考系中处理主控制回路的好处之一是与计算转子磁通角相比,定子磁通角计算能够更加精确并且能够收敛的更快。
考虑上述实施例,应该理解,实施例可以采用各种计算机实施操作,其涉及存储在计算机系统中的数据。这些操作是要求物理量的物理操纵的操作。通常,尽管不必要,这些量采用电或磁信号的形式,其能够被存储、传输、结合、比较以及其他操作。进一步地,执行操作经常被明确指代,如产生、识别、确定或比较。形成实施例的部分的本文所述的任何操作是有用的机器操作。实施例也涉及执行这些操作的装置或设备。所述设备能够针对所需目的而被专门构建或者设备能够是通用计算机,其被存储在计算机中的计算机程序选择性激活或配置。具体地,各种通用机器能够与根据本文教导撰写的计算机程序连用,或者其可以帮助构建更专用的设备以执行所需操作。
实施例也能够体现为计算机可读介质上的计算机可读代码。计算机可读介质是能够存储数据并且数据随后被计算机系统读取的任何数据存储装置。计算机可读介质的例子包括硬盘驱动器、网络附加存储装置(NAS)、只读存储器、随机存取存储器、CD-ROM、CD-R、CD-RW、磁带以及其他光学和非光学数据存储装置。计算机可读介质也能够分布在网络耦合的计算机系统上,从而计算机可读代码以分布式方式被储存和执行。本文所述实施例可以利用各种计算机系统结构实现,包括手持装置、平板计算机、微处理器系统、基于微处理器或可编程消费性电子产品、微型计算机、大型计算机等。实施例还能够在分布式计算环境中实现,其中任务由通过有线或无线网络链路的远程处理装置执行。
尽管以具体顺序描述了方法操作,应该理解,其他操作可以在所述操作之间执行,所述操作可以被调整,使得它们发生稍微不同的次数,或者所述操作可以分布在允许处理操作与处理相关的各种间隔发生的系统中。
出于解释目的,参考具体实施例描述前述描述。然而,上述示例性讨论并不旨在穷尽或将本发明限制到所公开的精确形式。对于上述教导,许多修改和变化是可能的。实施例被选择和描述以最好地解释实施例的原理及其实际应用,从而使本领域的其他技术人员能够最好地利用实施例和各种修改以适用于所想到的具体用途。因此,本实施例视为示例性和非限制性的,并且本发明并不被限制到本文给出的细节,但是可以在所附权利要求的范围及其等同物内进行修改。

Claims (20)

1.一种感应马达控制器,包括:
控制器,其被配置成耦合到一个或更多个传感器以及具有定子和转子的感应马达,所述控制器具有第一模块和第二模块,
其中所述第一模块经由转子磁通调节器回路和转矩调节器回路导出定子磁通参考系中的命令定子电压矢量,所述转子磁通调节器回路和所述转矩调节器回路至少部分在所述定子磁通参考系中处理;并且
所述第二模块处理所述命令定子电压矢量以为所述感应马达产生AC电力即交流电电力,
其中所述第一模块包括转矩调节器,其在所述定子磁通参考系中处理命令转矩、转矩、命令转子磁通以及所述感应马达的所述转子的旋转速度以产生所述命令定子电压矢量到所述定子磁通参考系中的横轴线上的投影;以及
所述第一模块包括转子磁通调节器,其在所述定子磁通参考系中处理所述命令转子磁通和转子磁通以产生所述命令定子电压矢量到所述定子磁通参考系中的纵轴线上的投影。
2.根据权利要求1所述的感应马达控制器,其中:
所述第二模块将所述命令定子电压矢量从所述定子磁通参考系变换到相电压参考系,根据定子磁通角运用矢量旋转;
所述第二模块根据被变换到所述相电压参考系的所述命令定子电压矢量生成用于直流电到AC逆变器即DC到AC逆变器的脉宽调制开关控制;以及
所述第二模块根据所述脉宽调制开关控制为所述感应马达生成三相AC电力。
3.根据权利要求1所述的感应马达控制器,还包括:
第三模块,其根据在相电压参考系中表示的定子电压矢量、至少两相的定子电流以及所述感应马达的转子的旋转速度,产生转矩、定子磁通角、转子磁通、所述定子磁通参考系中表示的定子电流矢量和所述定子磁通参考系中表示的转子电流矢量。
4.根据权利要求3所述的感应马达控制器,其中:
所述转子磁通从所述第三模块被耦合到所述第一模块的磁通调节器;
所述转矩从所述第三模块被耦合到所述第一模块的转矩调节器;
所述定子磁通角从所述第三模块被耦合到所述第二模块;
所述相电压参考系中表示的所述定子电压矢量根据所述定子磁通参考系中表示的所述命令定子电压矢量由所述第二模块产生;以及
所述至少两相的定子电流由所述第二模块提供。
5.根据权利要求1所述的感应马达控制器,还包括:
第三模块,所述第三模块运用转子磁通电流模型和转子磁通电压模型生成转子磁通和转矩,其中所述转子磁通调节器回路包括所述转子磁通作为所述第一模块的输入,以及所述转矩调节器回路包括所述转矩作为所述第一模块的输入。
6.根据权利要求1所述的感应马达控制器,还包括:
第四模块,所述第四模块生成命令转矩和命令转子磁通,限制所述命令转矩少于或等于最大命令转矩,并且限制所述命令转子磁通大于或等于最小命令转子磁通且小于或等于最大命令转子磁通,所述命令转矩和所述命令转子磁通经耦合作为所述第一模块的输入。
7.一种感应马达控制器,包括:
控制器,其具有转矩调节器、转子磁通调节器和定子磁通参考系到相电压参考系的矢量旋转模块,所述控制器被构造成耦合到至少一个传感器和具有定子和转子的感应马达;
其中所述转矩调节器在定子磁通参考系中处理命令转矩、转矩、命令转子磁通以及所述感应马达的所述转子的旋转速度,以产生投影到所述定子磁通参考系中的横轴线上的命令定子电压;
所述转子磁通调节器在所述定子磁通参考系中处理所述命令转子磁通和转子磁通,以产生投影到所述定子磁通参考系中的纵轴线上的所述命令定子电压;并且
当所述命令定子电压投影到所述纵轴线和所述横轴线上时,所述定子磁通参考系到相电压参考系的矢量旋转模块应用定子磁通角以将所述命令定子电压从所述定子磁通参考系中表示的第一矢量变换到所述相电压参考系中表示的第二矢量。
8.根据权利要求7所述的感应马达控制器,还包括:
磁通和转矩估计器,其根据所述相电压参考系中表示的定子电压矢量、至少两相的定子电流以及所述转子的所述旋转速度,生成所述定子磁通角、所述转子磁通、所述转矩、所述定子磁通参考系中表示的转子电流矢量以及所述定子磁通参考系中表示的定子电流矢量;和
所述磁通和转矩估计器包括相电压参考系到定子磁通参考系的矢量旋转模块,其将电流矢量从所述相电压参考系变换到所述定子磁通参考系。
9.根据权利要求7所述的感应马达控制器,还包括磁通和转矩估计器,所述磁通和转矩估计器包括:
定子相电流参考系到相电压参考系的矢量旋转模块,其将至少两相的定子电流变换到所述相电压参考系中表示的定子电流矢量;
转子磁通电流模块,其根据所述相电压参考系中表示的所述定子电流矢量和所述转子的所述旋转速度,生成所述相电压参考系中表示的第一转子磁通矢量;
转子磁通电压模块,其根据所述相电压参考系中表示的定子电压矢量、所述相电压参考系中表示的所述定子电流矢量以及估计校正因子,生成所述相电压参考系中表示的第二转子磁通矢量;
估计器调节器,其根据所述相电压参考系中表示的所述第一转子磁通矢量和所述相电压参考系中表示的所述第二转子磁通矢量生成所述估计校正因子;
转子磁通量计算器,其根据所述相电压参考系中表示的所述第一转子磁通矢量生成所述转子磁通;
定子磁通计算器,其根据所述相电压参考系中表示的所述第二转子磁通矢量和所述相电压参考系中表示的所述定子电流矢量生成所述相电压参考系中表示的定子磁通矢量;
转子电流计算器,其根据所述相电压参考系中表示的所述第一转子磁通矢量和所述相电压参考系中表示的所述定子磁通矢量生成所述相电压参考系中表示的转子电流矢量;
转矩计算器,其根据所述相电压参考系中表示的所述定子电流矢量和所述相电压参考系中表示的所述定子磁通矢量生成所述转矩;
定子磁通角计算器,其根据所述相电压参考系中表示的所述定子磁通矢量生成所述定子磁通角;以及
相电压参考系到定子磁通参考系的矢量旋转模块,其根据所述相电压参考系中表示的所述转子电流矢量、所述相电压参考系中表示的所述定子电流矢量以及所述定子磁通角,生成所述定子磁通参考系中表示的所述转子电流矢量和所述定子磁通参考系中表示的所述定子电流矢量。
10.根据权利要求9所述的感应马达控制器,其中:
所述估计器调节器包括比例积分控制器,即PI控制器;
所述定子磁通计算器包括所述感应马达的绕组的电感模型;
所述定子磁通参考系到相电压参考系的矢量旋转模块执行第二变换,所述第二变换与所述相电压参考系到定子磁通参考系的矢量旋转模块所执行的第一变换相反;以及
所述转子磁通电流模块、所述转子磁通电压模块、所述转子磁通量计算器、所述转子电流计算器、所述定子磁通计算器、所述转矩计算器和所述定子磁通角计算器中的每个基于查找表或者基于实时计算。
11.根据权利要求7所述的感应马达控制器,还包括:
空间矢量调制模块,其根据被接收作为所述第二矢量的所述命令定子电压和电源的直流电电压即DC电压,生成脉宽调制开关控制即PWM开关控制,并生成所述相电压参考系中表示的定子电压矢量;和
直流电到交流电逆变器即DC到AC逆变器,其根据所述PWM开关控制生成用于所述感应马达的三相AC电力。
12.根据权利要求7所述的感应马达控制器,还包括:
磁通和转矩限制器,其根据所述定子磁通参考系中表示的定子电流矢量、所述定子磁通参考系中表示的转子电流矢量、逆变器温度、马达温度以及所述转子的所述旋转速度生成最小命令转子磁通、最大命令转子磁通以及最大命令转矩。
13.根据权利要求7所述的感应马达控制器,还包括磁通和转矩限制器,所述磁通和转矩限制器包括:
转子电流限制器,其根据所述转子的所述旋转速度、所述定子磁通参考系中表示的转子电流矢量和马达温度生成最大转子电流;
场削弱器,其根据所述转子的所述旋转速度和电源的直流电电压即DC电压生成最大定子磁通;
定子电流限制器,其根据所述转子的所述旋转速度、所述定子磁通参考系中表示的定子电流矢量和逆变器温度生成最大定子电流;
低转子磁通限制器,其根据所述最大转子电流和所述转子的所述旋转速度生成最小命令转子磁通;
高转子磁通限制器,其根据所述最大定子磁通和所述最大定子电流生成最大命令转子磁通;
基于定子的转矩限制器,其根据所述最大定子磁通和所述最大定子电流生成最大的基于定子的命令转矩;
基于转子的转矩限制器,其根据所述最大转子电流和所述最大命令转子磁通生成最大的基于转子的命令转矩;和
最终转矩限制器,其根据所述最大的基于转子的命令转矩和所述最大的基于定子的命令转矩生成最大命令转矩;
其中,所述转子电流限制器、所述场削弱器、所述定子电流限制器、所述低转子磁通限制器、所述高转子磁通限制器、所述基于定子的转矩限制器和所述基于转子的转矩限制器中的每个基于查找表或基于实时计算。
14.根据权利要求7所述的感应马达控制器,还包括磁通和转矩限制器,所述磁通和转矩限制器包括:
转子电流限制器,其减小最大转子电流以响应升高的马达温度;
场削弱器,其减小最大定子磁通以响应所述转子的所述旋转速度超过基础速度,并且进一步减小所述最大定子磁通以响应减小的电源的直流电电压,即DC电压;
定子电流限制器,其减小最大定子电流以响应升高的逆变器温度;
低转子磁通限制器,其设定与预备状态一致的最小命令转子磁通以加速所述转子;
高转子磁通限制器,其根据所述最大定子磁通和所述最大定子电流设定最大命令转子磁通;
基于定子的转矩限制器,其根据所述最大定子磁通和所述最大定子电流的乘积设定最大的基于定子的命令转矩;
基于转子的转矩限制器,其根据所述最大转子电流和所述最大命令转子磁通的乘积设定最大的基于转子的命令转矩;和
最终转矩限制器,其设定最大命令转矩,其被选择为所述最大的基于转子的命令转矩和所述最大的基于定子的命令转矩中的较小者。
15.根据权利要求7所述的感应马达控制器,还包括:
转矩命令生成器,其根据最大命令转矩和初始命令转矩生成所述命令转矩,所述最大命令转矩被应用到所述初始命令转矩作为转矩限制;和
转子磁通命令生成器,其根据最小命令转子磁通、最大命令转子磁通以及所述命令转矩生成所述命令转子磁通,所述最小命令转子磁通和所述最大命令转子磁通被应用到所述命令转子磁通作为磁通限制。
16.根据权利要求7所述的感应马达控制器,其中:
所述转矩调节器包括比例积分控制器即PI控制器,所述PI控制器具有作为输入的所述命令转矩和所述转矩之间的差值;以及
所述转矩调节器包括前反馈求和电路,所述前反馈求和电路将所述PI控制器的输出以及所述命令转子磁通和所述转子的所述旋转速度的乘积作为输入,所述前反馈求和电路将投影在所述定子磁通参考系中的所述横轴线上的所述命令定子电压作为输出。
17.根据权利要求7所述的感应马达控制器,其中:
所述转子磁通调节器包括比例积分求导控制器即PID控制器,所述PID控制器将所述命令转子磁通和所述转子磁通作为输入,并且将投影在所述定子磁通参考系中的所述纵轴线上的所述命令定子电压作为输出。
18.一种控制感应马达的基于控制器的方法,包括:
在定子磁通参考系中,生成定子电压矢量,所述生成包括:
根据命令转矩、转矩、命令转子磁通和所述感应马达的转子的旋转速度,生成所述定子磁通参考系中表示的命令定子电压矢量的横轴线投影;以及
根据所述命令转子磁通和转子磁通,生成所述定子磁通参考系中表示的所述命令定子电压矢量的纵轴线投影,其中,在所述定子磁通参考系中,所述定子电压矢量包括所述命令定子电压矢量的所述纵轴线投影和所述命令定子电压矢量的所述横轴线投影;
将所述定子电压矢量从所述定子磁通参考系变换到相电压参考系;以及
根据所述相电压参考系的所述定子电压矢量产生用于感应马达的交流电电力即AC电力,其中,所述方法的至少一个步骤被处理器执行。
19.根据权利要求18所述的方法,其中,生成所述定子磁通参考系中表示的所述命令定子电压矢量的所述横轴线投影包括:
从所述命令转矩减去所述转矩,以形成转矩误差;
将与所述转矩误差成比例的第一项和与所述转矩误差的积分成比例的第二项相加,以形成比例积分控制器输出即PI控制器输出;
所述转子的所述旋转速度乘以所述命令转子磁通,以形成前反馈量;以及
将所述前反馈量与所述PI控制器输出相加,以形成所述定子磁通参考系中表示的所述命令定子电压矢量的所述横轴线投影。
20.根据权利要求18所述的方法,其中,生成所述定子磁通参考系中表示的所述命令定子电压矢量的所述纵轴线投影包括:
从所述命令转子磁通减去所述转子磁通,以形成磁通误差;以及
将与所述磁通误差成比例的第一项、与所述磁通误差的积分成比例的第二项和与所述磁通误差的导数成比例的第三项相加,以形成所述定子磁通参考系中表示的所述命令定子电压矢量的所述纵轴线投影。
CN201480052426.XA 2013-07-23 2014-07-22 感应马达磁通和转矩控制 Active CN105580266B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/948,326 2013-07-23
US13/948,326 US9344026B2 (en) 2013-07-23 2013-07-23 Induction motor flux and torque control
PCT/US2014/047659 WO2015013304A1 (en) 2013-07-23 2014-07-22 Induction motor flux and torque control

Publications (2)

Publication Number Publication Date
CN105580266A CN105580266A (zh) 2016-05-11
CN105580266B true CN105580266B (zh) 2020-04-21

Family

ID=52389924

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480052426.XA Active CN105580266B (zh) 2013-07-23 2014-07-22 感应马达磁通和转矩控制

Country Status (4)

Country Link
US (2) US9344026B2 (zh)
EP (1) EP3025422A4 (zh)
CN (1) CN105580266B (zh)
WO (1) WO2015013304A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9722524B2 (en) * 2012-12-06 2017-08-01 Nidec Corporation Motor controller
WO2015019495A1 (ja) * 2013-08-09 2015-02-12 株式会社安川電機 モータ駆動システムおよびモータ制御装置
JP6211353B2 (ja) * 2013-09-03 2017-10-11 Ntn株式会社 電気自動車の制御装置
US9831812B2 (en) * 2015-02-27 2017-11-28 Nutech Ventures Direct torque control of AC electric machines
CN104967378B (zh) * 2015-05-27 2018-10-23 北京金风科创风电设备有限公司 风力发电机振动和噪声抑制方法及装置
US9755567B2 (en) * 2015-11-04 2017-09-05 GM Global Technology Operations LLC Determination of permanent magnetic flux in an electric machine
US10763740B2 (en) 2016-04-15 2020-09-01 Emerson Climate Technologies, Inc. Switch off time control systems and methods
US10277115B2 (en) 2016-04-15 2019-04-30 Emerson Climate Technologies, Inc. Filtering systems and methods for voltage control
US9933842B2 (en) 2016-04-15 2018-04-03 Emerson Climate Technologies, Inc. Microcontroller architecture for power factor correction converter
US10656026B2 (en) 2016-04-15 2020-05-19 Emerson Climate Technologies, Inc. Temperature sensing circuit for transmitting data across isolation barrier
US10305373B2 (en) 2016-04-15 2019-05-28 Emerson Climate Technologies, Inc. Input reference signal generation systems and methods
US10320322B2 (en) 2016-04-15 2019-06-11 Emerson Climate Technologies, Inc. Switch actuation measurement circuit for voltage converter
US11387729B2 (en) 2016-04-15 2022-07-12 Emerson Climate Technologies, Inc. Buck-converter-based drive circuits for driving motors of compressors and condenser fans
US11177748B2 (en) * 2017-08-29 2021-11-16 Gkn Automotive Ltd. Field-oriented control of a permanently excited synchronous reluctance machine
WO2019109102A1 (en) * 2017-12-01 2019-06-06 Future Motion, Inc. Control system for electric vehicles
US10399457B2 (en) 2017-12-07 2019-09-03 Future Motion, Inc. Dismount controls for one-wheeled vehicle
DK3599715T3 (da) * 2018-07-26 2022-09-12 Siemens Gamesa Renewable Energy As Vurdering af vindmøllegeneratorrotortemperatur
US20200127588A1 (en) * 2018-10-19 2020-04-23 GM Global Technology Operations LLC Symmetric control of an asymmetric ac motor via a flux regulator operating based on a targeted time constant versus sampling period ratio
US10456658B1 (en) 2019-02-11 2019-10-29 Future Motion, Inc. Self-stabilizing skateboard
EP3700081A1 (de) * 2019-02-21 2020-08-26 Siemens Aktiengesellschaft Verfahren zum betrieb eines zumindest zwei mechanisch ge-koppelte asynchronmotoren umfassenden systems, computer-programm mit einer implementation des verfahrens und nach dem verfahren arbeitendes system
US11273364B1 (en) 2021-06-30 2022-03-15 Future Motion, Inc. Self-stabilizing skateboard
US11299059B1 (en) 2021-10-20 2022-04-12 Future Motion, Inc. Self-stabilizing skateboard
CN114362602B (zh) * 2022-01-18 2023-06-13 华侨大学 一种多相电机的控制方法、装置、设备及可读存储介质
US11890528B1 (en) 2022-11-17 2024-02-06 Future Motion, Inc. Concave side rails for one-wheeled vehicles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433506B1 (en) * 2001-03-29 2002-08-13 Ford Global Technologies, Inc. Sensorless control system for induction motor employing direct torque and flux regulation
CN1954486A (zh) * 2004-05-14 2007-04-25 三菱电机株式会社 同步机控制装置
CN102751932A (zh) * 2008-03-21 2012-10-24 株式会社电装 用于改善旋转机械控制的装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4418308A (en) * 1982-08-09 1983-11-29 General Electric Company Scalar decoupled control for an induction machine
JPS61196787A (ja) * 1985-02-25 1986-08-30 Fanuc Ltd 誘導電動機のトルク制御方式
US5032771A (en) * 1990-08-09 1991-07-16 Allen-Bradley Company, Inc. Slip control based on sensing voltage fed to an induction motor
US5585709A (en) * 1993-12-22 1996-12-17 Wisconsin Alumni Research Foundation Method and apparatus for transducerless position and velocity estimation in drives for AC machines
US6137258A (en) 1998-10-26 2000-10-24 General Electric Company System for speed-sensorless control of an induction machine
JP4253903B2 (ja) * 1999-03-19 2009-04-15 富士電機システムズ株式会社 誘導モータドライブ及びそのパラメータ評価方法
US6222335B1 (en) * 2000-01-27 2001-04-24 General Motors Corporation Method of controlling a voltage-fed induction machine
US6388419B1 (en) * 2000-09-01 2002-05-14 Ford Global Technologies, Inc. Motor control system
US6924617B2 (en) * 2003-06-23 2005-08-02 General Motors Corporation Position sensorless control algorithm for AC machine
DE10336068B4 (de) * 2003-08-06 2006-04-06 Siemens Ag Verfahren zur gesteuerten Einprägung eines Ständerstrom- und eines Drehmoment-Sollwertes für eine stromrichtergespeiste Drehfeldmaschine
US6982533B2 (en) * 2003-09-17 2006-01-03 Rockwell Automation Technologies, Inc. Method and apparatus to regulate loads
US7187155B2 (en) 2004-05-14 2007-03-06 Rockwell Automation Technologies, Inc. Leakage inductance saturation compensation for a slip control technique of a motor drive
US7023168B1 (en) 2004-09-13 2006-04-04 General Motors Corporation Field weakening motor control system and method
US6965212B1 (en) 2004-11-30 2005-11-15 Honeywell International Inc. Method and apparatus for field weakening control in an AC motor drive system
US7161375B2 (en) * 2005-02-23 2007-01-09 International Rectifier Corporation Phase-loss detection for rotating field machine
WO2006124010A1 (en) 2005-05-16 2006-11-23 General Motors Corporation Current regulation for a field weakening motor control system and method
US7327111B2 (en) * 2005-08-12 2008-02-05 Siemens Energy & Automation, Inc. System and method for parallel control of variable frequency drives
US8179068B2 (en) * 2006-07-24 2012-05-15 Kabushiki Kaisha Toshiba Variable-flux motor drive system
US7586286B2 (en) * 2006-11-17 2009-09-08 Continental Automotive Systems Us, Inc. Method and apparatus for motor control
US8115441B2 (en) * 2007-07-19 2012-02-14 Hamilton Sundstrand Corporation On-line measurement of an induction machine's rotor time constant by small signal d-axis current injection
US7745949B2 (en) 2008-02-26 2010-06-29 General Electric Company Method and apparatus for assembling electrical machines
US7960928B2 (en) * 2008-10-15 2011-06-14 Tesla Motors, Inc. Flux controlled motor management
US8742704B2 (en) * 2009-03-30 2014-06-03 Hitachi, Ltd. AC motor control device and AC motor driving system
DE102009021823A1 (de) * 2009-05-18 2010-12-09 Bombardier Transportation Gmbh Überstrombegrenzung bei der Regelung von stromrichtergespeisten Drehstrommaschinen
KR101628385B1 (ko) * 2010-03-31 2016-06-08 현대자동차주식회사 영구자석 동기모터의 제어방법
US8736222B2 (en) * 2010-10-15 2014-05-27 Lsis Co., Ltd. Flux controller for induction motor
KR101376389B1 (ko) * 2010-11-30 2014-03-20 엘에스산전 주식회사 유도전동기용 자속 제어장치
KR101390020B1 (ko) * 2010-11-11 2014-04-29 미쓰비시덴키 가부시키가이샤 모터 제어 시스템 및 그 안전 감시 방법
EP2469692B1 (en) 2010-12-24 2019-06-12 ABB Research Ltd. Method for controlling a converter
KR101562419B1 (ko) * 2011-07-05 2015-10-22 엘에스산전 주식회사 매입형 영구자석 동기 전동기의 구동장치
JP5357232B2 (ja) * 2011-10-11 2013-12-04 三菱電機株式会社 同期機制御装置
KR101549283B1 (ko) * 2011-10-12 2015-09-01 엘에스산전 주식회사 영구자석 동기 전동기 구동 시스템의 파라미터 추정장치
US8823298B2 (en) * 2012-03-14 2014-09-02 Whirlpool Corporation Apparatus and method of braking applied in a laundry treating appliance
JP5420006B2 (ja) * 2012-03-22 2014-02-19 三菱電機株式会社 同期機制御装置
US9954624B2 (en) 2012-04-27 2018-04-24 The Board Of Trustees Of The University Of Illinois Angle-based speed estimation of alternating current machines utilizing a median filter
GB201301259D0 (en) * 2013-01-24 2013-03-06 Rolls Royce Plc Method of controlling an ac machine and controller for controlling an ac machine
JP6107936B2 (ja) * 2013-04-01 2017-04-05 富士電機株式会社 電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433506B1 (en) * 2001-03-29 2002-08-13 Ford Global Technologies, Inc. Sensorless control system for induction motor employing direct torque and flux regulation
CN1954486A (zh) * 2004-05-14 2007-04-25 三菱电机株式会社 同步机控制装置
CN102751932A (zh) * 2008-03-21 2012-10-24 株式会社电装 用于改善旋转机械控制的装置

Also Published As

Publication number Publication date
EP3025422A1 (en) 2016-06-01
CN105580266A (zh) 2016-05-11
WO2015013304A1 (en) 2015-01-29
US20160261217A1 (en) 2016-09-08
US9344026B2 (en) 2016-05-17
EP3025422A4 (en) 2018-01-17
US20150028792A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
CN105580266B (zh) 感应马达磁通和转矩控制
CN105580016B (zh) 转子磁通估计器和估计转子磁通的方法
CN110224648B (zh) 永磁同步电机参数辨识和无位置传感器控制方法及系统
JP5693652B2 (ja) 同期機制御装置
CN103580574B (zh) 电动机控制装置
JP4989075B2 (ja) 電動機駆動制御装置及び電動機駆動システム
JP5957704B2 (ja) 電動機制御装置
JP5156352B2 (ja) 交流モータの制御装置
US9219432B2 (en) Control systems and methods for angle estimation of permanent magnet motors
CN108599651A (zh) 基于虚拟电压注入的感应电机无速度传感器驱动控制方法
JP2014515244A (ja) 温度補償と共に電気モータを制御する方法およびシステム
AU2012223656A1 (en) System for controlling a motor
JP5939316B2 (ja) 誘導モータ制御装置および誘導モータ制御方法
JP2004166408A (ja) 永久磁石同期電動機制御方法
CN110557075A (zh) 电机转矩的确定方法及装置、电机控制系统
Lin et al. An improved flux observer for sensorless permanent magnet synchronous motor drives with parameter identification
WO2021015296A1 (en) Motor drive system and control method
JP2011050178A (ja) モータ制御装置及び発電機制御装置
US11418140B2 (en) Induction motor flux and torque control
WO2015131182A1 (en) Induction motor flux and torque control
JP2004120834A (ja) Dcブラシレスモータの制御装置
WO2020100268A1 (ja) 電動車両の制御方法、及び、制御装置
JP2009213287A (ja) 回転電機制御装置
WO2013185762A2 (en) Method for controlling a synchronous reluctance electric motor
CN107528517B (zh) 旋转电机的控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant