CN105565292B - 一种超高密度单壁碳纳米管水平阵列及其可控制备方法 - Google Patents

一种超高密度单壁碳纳米管水平阵列及其可控制备方法 Download PDF

Info

Publication number
CN105565292B
CN105565292B CN201410594881.4A CN201410594881A CN105565292B CN 105565292 B CN105565292 B CN 105565292B CN 201410594881 A CN201410594881 A CN 201410594881A CN 105565292 B CN105565292 B CN 105565292B
Authority
CN
China
Prior art keywords
catalyst
carbon nanotube
walled carbon
vhd
horizontal array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410594881.4A
Other languages
English (en)
Other versions
CN105565292A (zh
Inventor
张锦
胡悦
康黎星
赵秋辰
张树辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201410594881.4A priority Critical patent/CN105565292B/zh
Priority to PCT/CN2014/001040 priority patent/WO2016065499A1/zh
Priority to US15/523,341 priority patent/US20170247256A1/en
Publication of CN105565292A publication Critical patent/CN105565292A/zh
Application granted granted Critical
Publication of CN105565292B publication Critical patent/CN105565292B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0406Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0433Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being a reactive gas
    • B05D3/0453After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/04Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion materials in the liquid state
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/936Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
    • Y10S977/938Field effect transistors, FETS, with nanowire- or nanotube-channel region

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种超高密度单壁碳纳米管水平阵列及其制备方法。该方法,包括如下步骤:在单晶生长基底上加载催化剂,退火后,在化学气相沉积系统中通入氢气进行所述催化剂的还原反应,并保持氢气的通入进行单壁碳纳米管的定向生长即得。该方法制备得到超高密度单壁碳纳米管水平阵列的密度超过130根/微米,这是目前世界上已报道直接生长密度最高的单壁碳纳米管水平阵列。对本发明制备的超高密度单壁碳纳米管水平阵列进行电学性能测试,其开电流密度达到380μA/μm,跨导达到102.5μS/μm,均是目前世界上碳纳米管场效应晶体管中的最高水平。

Description

一种超高密度单壁碳纳米管水平阵列及其可控制备方法
技术领域
本发明属于半导体领域,涉及一种超高密度单壁碳纳米管水平阵列及其可控制备方法。
背景技术
单壁碳纳米管(SWNTs)由于其特殊的结构、优异的性能,自1993年被发现以来吸引了纳米科技工作者的高度关注。其韧性高,导电性强,场发射性能优良,兼具金属性和半导体性,有“超级纤维”之称,被认为是后摩尔时代纳电子器件中的主体材料之一。目前,对SWNTs的潜在应用正在进行广泛研究,包括量子导线,电子器件,复合材料,电致发光,光致发光,化学传感器和纳米粒子载体等。
对于芯片行业来讲,传统的晶体管是基于硅制成的,然而随着工艺的加强,越来越多的微型晶体管被集成在单一芯片上,生产加工的良品率降低,硅晶体管已经接近了原子等级,达到了物理极限,硅晶体管的运行速度和性能难有突破性发展。科学家们正在寻找新的材料,可以替代传统芯片中的硅以便延续摩尔定律。而碳纳米管就是最有望代替半导体硅的材料之一。
2012年,IBM华盛顿研究中心的科学家已经利用碳纳米管代替半导体硅,实现了9nm的碳纳米管基场效应晶体管的构筑。同年,他们通过使用标准的主流半导体工艺,将一万多个碳纳米管打造的晶体管精确放置在一颗芯片内,并且通过了测试。碳纳米管放置的准确度越高,它们就越有可能被用在计算机芯片的半导体器件中。2013年,美国斯坦福大学的科研团队在新一代电子设备领域取得突破性进展,首次采用碳纳米管制造出世界上第一台计算机原型,其由178个碳纳米管场效应晶体管组成,每个晶体管中含10-200个碳纳米管,能够完成诸如计数、排序、函数切换等任务。
对于碳纳米管基场效应晶体管而言,其碳纳米管阵列的半导体性和密度是制约性能的主要因素,2012年,IBM研究中心的科学家清晰的指出了碳纳米管阵列的一个目标,如图一所示,到2020年,碳纳米管水平阵列的密度要达到125根每微米,同时,其中金属性碳纳米管的含量要低于0.0001%。目前对于高密度碳纳米管阵列方面的研究已有很多工作,主要分为直接生长和后处理两类。对于直接生长法,目前已报道的密度还是没有达到要求;对于后处理的方法,碳纳米管的长度、表面洁净度以及平行排列的平整度还略显不足。因此,发明一种超高密度单壁碳纳米管水平阵列的可控制备方法是亟需的,对于碳纳米管的基础研究和规模化应用都至关重要。
发明内容
本发明的目的是提供一种超高密度单壁碳纳米管水平阵列及其可控制备方法。
本发明提供的制备超高密度单壁碳纳米管水平阵列的方法,包括如下步骤:
在单晶生长基底上加载催化剂,退火后,在化学气相沉积系统中通入氢气进行所述催化剂的还原反应,并保持氢气的通入进行单壁碳纳米管的定向生长,生长完毕即在所述单晶生长基底上得到所述超高密度单壁碳纳米管水平阵列。
上述方法中,构成所述单晶生长基底的材料为ST切石英、R切石英、a面α氧化铝、r面α氧化铝或氧化镁;
所述催化剂选自金属纳米颗粒Fe、Co、Ni、Cu、Au、Mo、W、Ru、Rh和Pd中的至少一种;
所述催化剂的粒径为1nm-3nm;
上述金属纳米颗粒可由上述金属的盐溶液通过高温还原反应得到。
所述方法还包括如下步骤:在所述加载催化剂步骤之前,将所述单晶生长基底进行预处理;
所述预处理具体包括如下步骤:
将所述单晶生长基底依次在二次水、丙酮、乙醇和二次水中各超声清洗10min,氮气吹干后,在1.5h-3h内由室温升至1000℃-1500℃后恒温4h-48h,再在3h-10h内降温至300℃,再自然降温至室温;
该预处理步骤是为了清洗单晶生长基底以及修复单晶生长基底在生产加工过程中产生的晶格缺陷;
所述加载催化剂步骤中,加载方法为将所述催化剂的盐溶液旋涂或滴涂在所述单晶生长基底的表面;
上述旋涂或滴涂在单晶生长基底的表面上的催化剂的盐溶液,经过退火后,在化学气相沉积过程中的氢气处理下发生还原反应,从而得到由金属纳米颗粒构成的催化剂;
所述催化剂的盐溶液中,溶质为所述金属元素的氢氧化物或盐;具体为Fe(OH)3或(NH4)6Mo7O4
所述催化剂的盐溶液中,溶剂均选自乙醇、水和丙酮中的至少一种;
所述催化剂的盐溶液中,催化剂的盐的浓度为0.01-0.5mmol/L;
所述旋涂法中,旋涂转速具体为1000-5000rpm,更具体为2000rpm;
旋涂时间为1-10min,具体为1min。
所述退火包括如下步骤:
在空气气氛中,于1.5h-3h内由室温升至退火温度后恒温4h-48h后,再3h-10h内降温至300℃,再自然降温至室温;
所述退火的温度具体为1100℃;恒温的时间具体为8h;
这一步退火的目的是将催化剂“融入”到单晶生长基底中而储存着。
所述催化剂的还原反应步骤中,还原气氛为氢气气氛;氢气的气体流量具体为30sccm-300sccm,更具体为100sccm-300sccm;
还原时间为1min-30min,具体为5min;
这一步还原的目的主要是将催化剂还原为金属纳米粒子并释放到单晶生长基底表面上;
所述单壁碳纳米管的定向生长步骤中,所用碳源为CH4、C2H4或乙醇;乙醇碳源是通过Ar气鼓泡乙醇溶液产生的;
碳源的气体流量为10sccm–200sccm,具体为50sccm–150sccm;
生长时间为10s-1h,具体为10min–30min;
所述还原反应步骤和单壁碳纳米管的定向生长步骤中,温度均为600℃-900℃,具体为830℃-850℃;
所用载气均为氩气;所述氩气的气流流量具体为50sccm-500sccm,更具体为300sccm。
所述方法还包括如下步骤:在所述单壁碳纳米管的定向生长步骤之后,将体系降温;
所述降温具体为自然降温或程序控制降温。
另外,按照上述方法制备得到的超高密度单壁碳纳米管水平阵列以及含有该超高密度单壁碳纳米管水平阵列的场效应晶体管器件及该超高密度单壁碳纳米管水平阵列在制备场效应晶体管器件中的应用,也属于本发明的保护范围。其中,所述超高密度单壁碳纳米管水平阵列的密度为50-150根/微米,具体可为100-150根/微米、130-150根/微米。
高密度单壁碳纳米管制备的难度在于催化剂在生长过程中的聚集以及失活,从而导致直接生长得到的单壁碳纳米管水平阵列密度不高,本发明提出的超高密度单壁碳纳米管水平阵列制备方法,将催化剂在基底表面下储存着,在生长过程中逐步释放出来,边生长边释放,保证了还未开始催化生长碳纳米管的催化剂的活性,从而得到超高密度单壁碳纳米管水平阵列。具体如图1所示,首先将催化剂融入到基底表面下储存着(图1b),然后在一定的条件下使得催化剂逐渐释放(图1c),并生长碳纳米管(图1d),继续通碳源生长,在生长过程中新催化剂从基底中被释放出来,继续催化生长碳纳米管(图1e),从而直接生长得到超高密度单壁碳纳米管水平阵列。
对本发明制备的超高密度单壁碳纳米管水平阵列进行原子力显微镜(AFM)和扫描电子显微镜(SEM)表征。AFM和SEM图片均清晰表明制备的高密度单壁碳纳米管水平阵列的密度超过130根/微米,这是目前世界上已报道直接生长密度最高的单壁碳纳米管水平阵列。对本发明制备的超高密度单壁碳纳米管水平阵列进行电学性能测试,其开电流密度达到380μA/μm,跨导达到102.5μS/μm,均是目前世界上碳纳米管场效应晶体管中的最高水平,这从另一个角度也反映了本发明制备的超高密度单壁碳纳米管水平阵列的高质量和高密度。
另外,本发明提供的超高密度单壁碳纳米管水平阵列制备方法,与一般制备方法相比,具有制样简单,操作便捷,成本低廉,大规模制备的优点。并且,利用这种生长模式,通过选择不同的催化剂和基底,有望实现高密度半导体性单壁碳纳米管水平阵列的可控制备,因此本方法具有极其广阔的应用前景。
附图说明
图1为超高密度单壁碳纳米管水平阵列制备流程图。
图2为超高密度单壁碳纳米管水平阵列生长基底:a面α氧化铝单晶基底的AFM图;其中,a)为退火前单晶生长基底的AFM图,b)为退火后单晶生长基底的AFM图。
图3为实施例1中超高密度单壁碳纳米管水平阵列的SEM图;其中,a),b),c),d)为各个不同放大倍数下的SEM图。
图4为实施例1中超高密度单壁碳纳米管水平阵列的AFM图;其中,a),b),c),d)为各个不同放大倍数下的AFM图。
图5为实施例2中超高密度单壁碳纳米管水平阵列的SEM图和AFM图;其中,a),b),c),d)为各个不同放大倍数下的SEM图;e),f)为各个不同放大倍数下的AFM图。
图6为加载Fe催化剂再经马弗炉退火的单晶生长基底的XPS深度分析数据图。
图7为超高密度单壁碳纳米管水平阵列的生长基底的AFM图;其中a)为旋涂Fe催化剂后,b)为a)退火后,c)为b)氢气还原5min,d)为b)氢气还原10min,e)为b)氢气还原30min。
图8为不同生长时间下单壁碳纳米管水平阵列的SEM图;其中a)为生长时间5min,碳纳米管密度少于1根/微米,b)为生长时间10min,碳纳米管密度约为10根/微米,c)为生长时间30min,碳纳米管密度超过100根/微米。
图9为以超高密度单壁碳纳米管水平阵列为基制备的碳纳米管场效应晶体管的性能图,其中a)为转移特性曲线,b)为输出特性曲线。
具体实施方式
下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径而得。
实施例1、生长超高密度单壁碳纳米管水平阵列
1)单晶生长基底的预处理;
选用a面α氧化铝单晶基底作为碳纳米管生长的基底,将其切割成4mm×6mm大小,长4mm的边与[0001]方向平行,长6mm的边与[1-100]方向平行。将此基底进行如下预处理:
依次在二次水、丙酮、乙醇和二次水中各超声清洗10min,再用高纯氮气吹干,其表面形貌如图2a)所示。
将清洗干净的基底放入马弗炉中,在2h内由室温升到1100℃,在1100℃恒温8h后,再在10h内降温至300℃,再自然降温至室温,得到预处理后的单晶生长基底,
其表面形貌如图2b)所示。
2)准备高效的具有用于生长单壁碳纳米管的催化剂;
选用Fe(OH)3/EtOH溶液作为生长单壁碳纳米管的催化剂前驱体,称取0.3223g的FeCl3,溶于20.0mL水中,搅拌至溶解完全。吸取该溶液5.0mL,逐滴滴入175mL沸水中,溶液缓慢由橙色变成桔红色,意味着FeCl3已经开始水解,生成了Fe(OH)3胶体,继续保持微沸2h,冷却至室温,即可得到Fe(OH)3胶体溶液,移液器吸取该胶体溶液稀释于乙醇中至Fe(OH)3在Fe(OH)3/EtOH溶液中的浓度为0.05mmol/L,超声10min使其混合均匀,备用。
3)加载催化剂;
采用旋涂法在单晶生长基底上加载催化剂,将步骤1)所得预处理后的a面α氧化铝单晶基底置于匀胶机上,用机械泵将其吸住固定,取一滴步骤2)所得Fe(OH)3/EtOH溶液,滴到基底表面,设置匀胶机转速,在前10秒内预加速至500rpm,再提速至2000rpm,旋涂1min,即在该a面α氧化铝单晶基底的表面加载上了含Fe的催化剂,具体形貌见图7a)。
利用旋涂法,可有效的将催化剂胶体溶液中的催化剂粒子均匀的分散在基底表面,采用不同浓度的催化剂及匀胶机转速,可以控制基底表面的催化剂颗粒密度。选择乙醇稀释Fe(OH)3胶体是为了能够在旋涂的过程中使溶剂更容易挥发,使得催化剂纳米颗粒分散更均匀。
4)退火
将步骤3)所得旋涂了Fe(OH)3/EtOH溶液的a面α氧化铝单晶基底置于马弗炉中,在空气气氛中高温退火,具体为在2h内由室温升到1100℃,再在1100℃恒温8h,再在10h内降温至300℃,再自然降温至室温,完成退火步骤,所得单晶基底的XPS检测结果如图6所示;
5)利用化学气相沉积方法进行单壁碳纳米管的定向生长:
将步骤4)所得单晶生长基底置于化学气相沉积系统中,在空气中以40℃/min的升温速率升温至生长温度830℃,然后通入300sccm氩气排空气5min,继续通入100sccmH25min用来还原析出催化剂纳米颗粒。继而通入50sccmAr/EtOH(Ar/EtOH是指以氩气Ar鼓泡的形式通入乙醇液体)开始定向生长单壁碳纳米管,生长时间为10min,生长完成后,停止通入碳源,保持氢气和氩气继续通入,自然降至室温,得到本发明提供的超高密度单壁碳纳米管水平阵列。
该实施例所得超高密度单壁碳纳米管水平阵列的生长结果如图3-4所示。由图可知,AFM和SEM图片均清晰表明该实施例所得单壁碳纳米管水平阵列的密度超过130根/微米,这是目前世界上已报道直接生长密度最高的单壁碳纳米管水平阵列。
实施例2、生长超高密度单壁碳纳米管水平阵列;
步骤1)同实施例1步骤1;
步骤2)和3)将实施例1所用Fe(OH)3/EtOH溶液换成(NH4)6Mo7O4的浓度为0.01mmol/L的(NH4)6Mo7O4/EtOH溶液后,再按照实施例1步骤3)旋涂在a面α氧化铝单晶基底上,即在该a面α氧化铝单晶基底的表面加载上了含Mo的催化剂。
4)退火
将此基底置于马弗炉中,空气中高温退火,在1.5h内由室温升到1000℃,在1000℃恒温16h,再在10h内降温至300℃,再自然降温至室温,完成退火步骤;
5)利用化学气相沉积方法进行单壁碳纳米管的定向生长:
将步骤4)所得单晶生长基底置于化学气相沉积系统中,在空气中以30℃/min的升温速率升温至生长温度850℃,然后通入300sccmAr排空气5min,继续通入300sccmH25min用来还原析出催化剂纳米颗粒。继而通入150sccmAr/EtOH(Ar/EtOH是指以Ar鼓泡的形式通入乙醇液体)开始定向生长单壁碳纳米管,生长时间为30min,生长完成后,停止通入碳源,保持氢气和氩气继续通入,自然降至室温,得到本发明提供的超高密度单壁碳纳米管水平阵列。
该实施例所得超高密度单壁碳纳米管水平阵列的生长结果如图5所示。由图可知,AFM和SEM图片均清晰表明该实施例所得单壁碳纳米管水平阵列的密度超过130根/微米,这是目前世界上已报道直接生长密度最高的单壁碳纳米管水平阵列。
实施例3、超高密度单壁碳纳米管水平阵列的制备方法的机理分析;
1)超高密度单壁碳纳米管水平阵列的制备方法中融入机制的分析验证;
将实施例1中步骤4)所得退火后的单晶生长基底进行XPS深度分析,如图5所示,在氧化铝单晶基底表面一下发现有Fe元素,显然,Fe催化剂的确能通过上述退火方法,进入到氧化铝单晶基底中而储藏着。
2)超高密度单壁碳纳米管水平阵列的制备方法中释放机制的分析验证;
将实施例1中步骤4)所得单晶生长基底放在管式炉中进行氢气退火处理,氢气流量为100sccm,处理时间(也即氢气还原时间)为0min、5min、10min、30min。如图7b)所示,基底表面上几乎没有任何催化剂颗粒,这也进一步证明催化剂的融入。
如图7c)、7d)、7e)所示,随着氢气还原时间的增加,越来越多的催化剂粒子释放到基底表面,证明催化剂可以并且是逐渐释放的。
3)超高密度单壁碳纳米管水平阵列的制备方法中生长过程的分析验证;
将实施例1中步骤4)所得单晶生长基底放入化学气相沉积体系中进行碳纳米管的生长,生长时间分别为5min、10min、30min。
如图8所示,图8a)为生长时间5min,碳纳米管密度少于1根/微米;
图8b)为生长时间10min,碳纳米管密度为10根/微米;
图8c)为生长时间30min,碳纳米管密度超过100根/微米。
可见,随着生长时间的延长,碳纳米管阵列的密度也逐步增加,结合实施例3步骤2)中随着氢气还原时间的增加,越来越多的催化剂粒子析出,超高密度单壁碳纳米管水平阵列的制备方法中催化剂边析出,边生长的机制得到验证。
实施例4、超高密度单壁碳纳米管水平阵列的电学性能表征;
按照如下制备流程将本发明提供的超高密度单壁碳纳米管水平阵列做成场效应晶体管器件:
利用“U形栅自对准”工艺:首先在布满实施例1所得超高密度碳纳米管阵列的a面α氧化铝单晶基底上旋涂两种灵敏度不同的电子束光刻胶PMMA,利用双层光刻胶灵敏度的差异,通过电子束曝光,显影,定影等标准微纳器件加工流程,在涂有光刻胶的基底表面,实现具有“U”形的沟槽;再通过原子层沉积以及电子束蒸发过程,在沟槽内顺序沉积12nm氧化铪的介电层以及70nm钛电极层,并通过抬离,去胶等标准工艺流程,完成场效应晶体管顶栅的制备;
然后再次通过旋涂光刻胶(单层),电子束曝光,显影,定影等流程,在涂有光刻胶的基底表面,实现源漏电极的图形化,并通过电子束蒸发,在预先图形化的区域顺序沉积0.5nm钛的粘附层,30nm钯的电极层以及50nm金的电极层,再通过抬离,去胶等流程,完成场效应晶体管源极和漏极的制备;
利用如上的标准微纳器件加工流程,在涂有光刻胶的基底表面,实现碳纳米管阵列器件工作区域的图形化,并通过反应离子束刻蚀,将除器件工作区域内的基底其他区域的碳纳米管阵列刻蚀,防止器件在测试过程中出现短路或漏电现象,再通过去胶流程,去除涂布在基底上的电子束光刻胶;
最后再通过电子束蒸发,并利用“U形顶栅”的“自对准”效应,在源极,漏极以及栅极之间的空隙填充10nm钯电极连接层,从而最大消除源极、漏极以及栅极之间的寄生电阻,并最终完成基于碳纳米管阵列的具有顶栅结构的场效应晶体管的制备。
对该场效应晶体管器件的性能进行测试,所得结果如图9所示,其中沟道长度为1.2μm,沟道宽度为12μm,其开电流密度达到380μA/μm,跨导达到102.5μS/μm,均是目前世界上碳纳米管场效应晶体管中的最高水平,这从另一个角度也反映了本发明制备的超高密度单壁碳纳米管水平阵列的高质量和高密度。
特别指出的是,以上所述的实施例仅是本发明的优选实施方式,对于本领域的普通技术人员,源于本发明的技术思想所做的若干改进和修饰,应视为在本发明的专利保护范围之内。

Claims (3)

1.一种制备超高密度单壁碳纳米管水平阵列的方法,包括如下步骤:
在单晶生长基底上加载催化剂,退火后,在化学气相沉积系统中通入氢气进行所述催化剂的还原反应,并保持氢气的通入进行单壁碳纳米管的定向生长,生长完毕即在所述单晶生长基底上得到所述超高密度单壁碳纳米管水平阵列;
构成所述单晶生长基底的材料为ST切石英、R切石英、a面α氧化铝、r面α氧化铝或氧化镁;
所述催化剂选自金属纳米颗粒,其中,所述金属纳米颗粒中的金属元素选自Fe、Co、Ni、Cu、Au、Mo、W、Ru、Rh和Pd中的至少一种;
所述催化剂的粒径为1 nm -3 nm;
在所述加载催化剂步骤之前,对所述单晶生长基底进行预处理;
所述预处理包括如下步骤:将所述单晶生长基底依次在二次水、丙酮、乙醇和二次水中各超声清洗10 min,氮气吹干后,在1.5 h - 3 h内由室温升至1000℃-1500℃后恒温4 h-48 h,再在3 h-10 h内降温至300℃,再自然降温至室温;
所述加载催化剂步骤中,加载方法为将所述催化剂的盐溶液旋涂或滴涂在所述单晶生长基底的表面;
所述催化剂的盐溶液中,溶质为Fe(OH)3或(NH4)6Mo7O4
所述催化剂的盐溶液中,溶剂均选自乙醇、水和丙酮中的至少一种;
所述催化剂的盐溶液中,催化剂的盐的浓度为0.01-0.5 mmol/L ;
所述旋涂法中,旋涂转速为1000-5000 rpm;
旋涂时间为1 - 10 min,
所述退火包括如下步骤:
在空气气氛中,于1.5 h - 3 h内由室温升至退火温度后恒温4 h - 48 h后,再3 h -10 h内降温至300℃,再自然降温至室温;
所述退火的温度为1100℃;
所述催化剂的还原反应步骤中,还原气氛为氢气气氛;氢气的气体流量为30sccm-300sccm;
还原时间为1 min-30 min;
所述单壁碳纳米管的定向生长步骤中,所用碳源为CH4、C2H4或乙醇;
碳源的气体流量为10sccm–200sccm;
所述还原反应步骤和晶格的定向生长步骤中,温度均为830℃-850℃;所用载气均为氩气;所述氩气的气流流量为50 sccm -500 sccm;
所述方法还包括如下步骤:在所述单壁碳纳米管的定向生长步骤之后,将体系降温;
所述降温具体为自然降温或程序控制降温。
2.根据权利要求1所述的方法,其特征在于:
所述催化剂的盐溶液中,催化剂的盐的浓度为0.01-0.05mmol/L;
所述旋涂法中,旋涂转速为2000 rpm;
旋涂时间为1 min。
3.根据权利要求1或2所述的方法,其特征在于:所述催化剂的还原反应步骤中,氢气的气体流量为100 sccm-300sccm;
还原时间为5 min;
所述单壁碳纳米管的定向生长步骤中,
碳源的气体流量为为50sccm–150sccm;
生长时间为10min–30min;
所述氩气的气流流量为300 sccm。
CN201410594881.4A 2014-10-29 2014-10-29 一种超高密度单壁碳纳米管水平阵列及其可控制备方法 Active CN105565292B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410594881.4A CN105565292B (zh) 2014-10-29 2014-10-29 一种超高密度单壁碳纳米管水平阵列及其可控制备方法
PCT/CN2014/001040 WO2016065499A1 (zh) 2014-10-29 2014-11-21 一种超高密度单壁碳纳米管水平阵列及其可控制备方法
US15/523,341 US20170247256A1 (en) 2014-10-29 2014-11-21 Ultra-high density single-walled carbon nanotube horizontal array and its controllable preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410594881.4A CN105565292B (zh) 2014-10-29 2014-10-29 一种超高密度单壁碳纳米管水平阵列及其可控制备方法

Publications (2)

Publication Number Publication Date
CN105565292A CN105565292A (zh) 2016-05-11
CN105565292B true CN105565292B (zh) 2018-04-06

Family

ID=55856328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410594881.4A Active CN105565292B (zh) 2014-10-29 2014-10-29 一种超高密度单壁碳纳米管水平阵列及其可控制备方法

Country Status (3)

Country Link
US (1) US20170247256A1 (zh)
CN (1) CN105565292B (zh)
WO (1) WO2016065499A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993055B2 (en) * 2005-10-27 2015-03-31 Asm International N.V. Enhanced thin film deposition
CN108085656B (zh) * 2016-11-22 2019-11-12 北京大学 一种(n,n-1)型碳纳米管水平阵列及其制备方法
CN108085655B (zh) * 2016-11-22 2019-07-26 北京大学 一种(2m,m)碳纳米管水平阵列及其制备方法
CN107651666A (zh) * 2017-03-27 2018-02-02 江苏超电新能源科技发展有限公司 一种高密度水平定向碳纳米管的制备方法及其应用
CN107601458B (zh) * 2017-09-12 2020-07-28 刘云芳 一种单壁碳纳米管的制备方法
CN107986259B (zh) * 2017-11-30 2019-08-23 深圳市德方纳米科技股份有限公司 单壁碳纳米管及其制备方法和应用
CN111943171B (zh) * 2020-08-21 2022-03-04 温州大学 一种高密度单壁碳纳米管水平阵列的可控制备方法
CN113328038B (zh) * 2021-04-21 2022-08-30 温州大学 一种石墨烯-碳纳米管异质结的制备方法
CN115676805A (zh) * 2021-07-26 2023-02-03 北京大学 单壁碳纳米管水平阵列及其制备方法
CN113788474B (zh) * 2021-11-04 2023-03-17 航天特种材料及工艺技术研究所 一种石墨烯纳米带水平阵列及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1443708A (zh) * 2003-04-17 2003-09-24 浙江大学 一种金属氧化物催化剂及用于制备成束多壁纳米碳管的方法
CN1919728A (zh) * 2006-09-18 2007-02-28 北京大学 一种异径单壁碳纳米管的制备方法
CN101302006A (zh) * 2008-01-14 2008-11-12 浙江大学 管壁层数可控的碳纳米管的制备方法
JP2009062230A (ja) * 2007-09-06 2009-03-26 Bridgestone Corp 気相成長炭素繊維の製造方法および気相成長炭素繊維
CN101701927A (zh) * 2009-10-14 2010-05-05 苏州纳米技术与纳米仿生研究所 碳纳米管阵列有机污染物传感器及用途
CN102249216A (zh) * 2011-06-10 2011-11-23 电子科技大学 一种通过控制水解程度影响碳纳米管生长形貌的方法
CN103265009A (zh) * 2013-05-24 2013-08-28 厦门大学 一种水平阵列碳纳米管的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3537811B2 (ja) * 2002-03-29 2004-06-14 独立行政法人 科学技術振興機構 単層カーボンナノチューブの製造方法
CN103537293B (zh) * 2012-07-12 2015-12-16 北京大学 用于制备手性选择性和导电性选择性单壁碳纳米管的催化剂及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1443708A (zh) * 2003-04-17 2003-09-24 浙江大学 一种金属氧化物催化剂及用于制备成束多壁纳米碳管的方法
CN1919728A (zh) * 2006-09-18 2007-02-28 北京大学 一种异径单壁碳纳米管的制备方法
JP2009062230A (ja) * 2007-09-06 2009-03-26 Bridgestone Corp 気相成長炭素繊維の製造方法および気相成長炭素繊維
CN101302006A (zh) * 2008-01-14 2008-11-12 浙江大学 管壁层数可控的碳纳米管的制备方法
CN101701927A (zh) * 2009-10-14 2010-05-05 苏州纳米技术与纳米仿生研究所 碳纳米管阵列有机污染物传感器及用途
CN102249216A (zh) * 2011-06-10 2011-11-23 电子科技大学 一种通过控制水解程度影响碳纳米管生长形貌的方法
CN103265009A (zh) * 2013-05-24 2013-08-28 厦门大学 一种水平阵列碳纳米管的制备方法

Also Published As

Publication number Publication date
WO2016065499A1 (zh) 2016-05-06
CN105565292A (zh) 2016-05-11
US20170247256A1 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
CN105565292B (zh) 一种超高密度单壁碳纳米管水平阵列及其可控制备方法
Kim et al. Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics
Jung et al. Mechanism of selective growth of carbon nanotubes on SiO2/Si patterns
Krasheninnikov et al. Adsorption and migration of carbon adatoms on carbon nanotubes: Density-functional ab initio and tight-binding studies
JP5737405B2 (ja) グラフェンナノメッシュの製造方法及び半導体装置の製造方法
CN101313092B (zh) 基于纳米结构的互联线和散热器
CN102097297B (zh) 一种电场诱导的在石墨烯表面原子层淀积高k栅介质的方法
CN106683991A (zh) 一种石墨烯/金属复合电极的碳纳米管器件的互连方法
Zhang et al. Synthesis of CdS nanotubes by chemical bath deposition
Zhao et al. Atomic-scale evidence of catalyst evolution for the structure-controlled growth of single-walled carbon nanotubes
Kim et al. Horizontally aligned ZnO nanowire transistors using patterned graphene thin films
KR101363825B1 (ko) 플라즈마 처리를 통한 메탈이 부착된 그래핀 시트 복합체 기반 고감응성 플렉시블 화학센서 제조방법
CN109850873B (zh) 一种单壁碳纳米管分子内结的制备方法
CN104944412A (zh) 一种半导体性单壁碳纳米管的制备方法
JP2005288636A (ja) ナノインデントエッジとアンチドット触媒配列を利用したカーボンナノチューブの形成法
Hong et al. Atomically precise self-organization of perfectly ordered gadolinium–silicide nanomeshes controlled by anisotropic electromigration-induced growth on Si (1 1 0)-16× 2 surfaces
CN1549314A (zh) 一种高性能纳米晶体管的制备方法
Lee et al. Template-assisted assembly of ZnO nanorods with postdeposition growth
TWI398542B (zh) 一種半導體奈米碳管陣列之製備方法
TWI323516B (en) The fabricating method of single electron transistor (set) by employing nano-lithographical technology in the semiconductor process
CN103590099B (zh) 基于mocvd设备的圆片级石墨烯可控外延方法
KR20120097295A (ko) 산 및 염기성 분위기에서 안정한 나노와이어의 제조방법
Kim et al. Ru nanodot synthesis using CO2 supercritical fluid deposition
Jang et al. Controlled epitaxy and patterned growth of one-dimensional crystals via surface treatment of two-dimensional templates
Bai et al. Crystalline boron nanowires grown on the diamond surface

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant