CN106683991A - 一种石墨烯/金属复合电极的碳纳米管器件的互连方法 - Google Patents

一种石墨烯/金属复合电极的碳纳米管器件的互连方法 Download PDF

Info

Publication number
CN106683991A
CN106683991A CN201611130639.7A CN201611130639A CN106683991A CN 106683991 A CN106683991 A CN 106683991A CN 201611130639 A CN201611130639 A CN 201611130639A CN 106683991 A CN106683991 A CN 106683991A
Authority
CN
China
Prior art keywords
cnt
carbon
graphene
electrode
grapheme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611130639.7A
Other languages
English (en)
Other versions
CN106683991B (zh
Inventor
周文利
朱宇
陈昌盛
王耘波
高俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201611130639.7A priority Critical patent/CN106683991B/zh
Priority to US15/484,134 priority patent/US20180163299A1/en
Publication of CN106683991A publication Critical patent/CN106683991A/zh
Application granted granted Critical
Publication of CN106683991B publication Critical patent/CN106683991B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/7685Barrier, adhesion or liner layers the layer covering a conductive structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76876Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/743Carbon nanotubes, CNTs having specified tube end structure, e.g. close-ended shell or open-ended tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/848Tube end modifications, e.g. capping, joining, splicing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Electrochemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种石墨烯/金属复合电极的碳纳米管器件的互连方法,包括以下步骤:在衬底上设计并制备预图形化的金属薄膜电极;在图形化的金属薄膜电极之间装配碳纳米管;使与金属薄膜电极接触的碳纳米管两端被金属原子刻蚀,形成缺陷;使碳源分子被金属原子催化分解;使石墨烯与碳纳米管两端通过共价成键实现互连。本发明实现了石墨烯与指定碳纳米管特定位置,即对应电极之间的碳纳米管两端的共价连接,这不同于之前石墨烯与碳纳米管间随机的连接。载流子能够在石墨烯与碳纳米管之间良好地输运,降低了石墨烯与碳纳米管的接触电阻,降低了器件的功耗。同时,在预图形化的金属催化基底生长石墨烯,无需转移和刻蚀。

Description

一种石墨烯/金属复合电极的碳纳米管器件的互连方法
技术领域
本发明属于半导体器件的互连技术领域,特别地涉及一种无转移预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳共价互连技术。
背景技术
迄今碳纳米管已经在场效应晶体管、传感器、场发射显示器、储能等领域取得了长足的发展。互连电极技术是碳纳米管器件进行系统集成的关键技术之一。现阶段基于碳纳米管的微纳器件通常采用传统金属如金、铂、铜等薄膜电极。但是,金属薄膜电极中电子迁移率较低,同时金属电极与碳纳米管有较大的肖特基势垒,接触电阻较大。这大大地限制了碳纳米管器件在工作电压越来越低的电子系统中的集成应用。
石墨烯具有较高的电子迁移率,能带间隙为零,并且与碳纳米管具有相似的晶格结构,是碳纳米管器件的理想电极。石墨烯通过范德华力与碳纳米管直接接触,可以获得比金属薄膜电极更低的肖特基势垒,接触电阻减小。但是,石墨烯与碳纳米管之间仍属于肖特基接触,接触电阻一般仍远大于碳纳米管本身电阻,而且石墨烯与碳纳米管之间存在的原子级别的物理间隙会引起附加势垒。此外,石墨烯与碳纳米管直接接触的间隙还受到器件工作环境影响,气体吸附等因素也造成接触的不稳定。
现有的石墨烯“加”碳纳米管的复合材料或结构,依其内部的结构特点可分为两类。一类是复合材料中碳纳米管的轴向与石墨烯平面垂直的复合结构,其超大的比表面积特别适用于超级电容器,或者将碳纳米管作为石墨烯与其他材料的层间互连。另一类是复合材料中碳纳米管的轴向与石墨烯平面平行的薄膜,其中的碳纳米管一般都是随机分散地与石墨烯通过范德华力接触。虽然人们正在趋向于尝试经过特别化学处理步骤的基团修饰使碳纳米管与石墨烯之间共价成键,但是,目前已经实现共价连接方法中石墨烯和碳纳米管的连接仍然是随机的。而在碳纳米管器件应用时,其互连需要满足应用所需的特定位置互连的需要。
发明内容
针对现有技术中存在的上述问题和需求,本发明提供了一种预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳互连方法,目的在于降低碳纳米管与石墨烯电极之间的接触电阻,降低器件的功耗,同时在预图形化的金属催化基底生长石墨烯,无需转移和刻蚀,避免引入额外的杂质和缺陷。
本发明所述方法包括如下步骤:
(1)根据碳纳米管器件的布局,在衬底上设计并制备预图形化的金属薄膜电极;
(2)在碳纳米管和易挥发有机溶剂混合的分散悬浮液中,在预图形化的金属薄膜电极之间装配碳纳米管,使碳纳米管两端与金属薄膜电极连接,形成碳纳米管器件;
(3)将碳纳米管器件在氢气与氩气的混合气氛中高温退火,使与金属薄膜电极接触的碳纳米管两端的部分碳原子被金属原子刻蚀掉,形成缺陷;
(4)以包括甲烷、乙烯和乙炔在内的任一种烃类气体作为碳源气体,通过CVD工艺,使碳源气体分子被碳纳米管器件的金属薄膜电极的金属原子催化分解成含碳自由基,吸附在金属薄膜电极表面,或在金属薄膜电极中大量溶解,达到饱和浓度时在金属表面析出成核生长成石墨烯;石墨烯在碳纳米管缺陷处成核,形成碳-碳键并生长成石墨烯薄膜,石墨烯与碳纳米管两端通过共价成键实现互连。
进一步的,所述电极的厚度为200nm~1.64μm,宽度为0.5~5μm,间距为0.5~6μm。
进一步的,所述步骤(1)中的衬底材料为耐高温材料,包括Si、SiO2、SiO2/Si、GaN、GaAs、SiC或BN中的任意一种。
进一步的,所述步骤(1)中的预图形化的金属薄膜电极材料包括镍、铜、铁、钴和铂等具有催化作用的过渡金属或合金之一,优选原子数比为90:10~60:40铜/镍双层金属薄膜。
进一步的,所述步骤(2)中的易挥发有机溶剂为酒精,碳纳米管/酒精混合分散悬浮液的浓度为0.0001~0.001mg/ml。
进一步的,所述步骤(2)中装配碳纳米管的方法为介电电泳技术或具有实时力/视觉反馈的AFM纳米操作方法。
进一步的,在进行步骤(2)之前,选择性地将碳纳米管和包括浓硫酸、浓硝酸或过氧化氢在内的强氧化剂混合处理,使碳纳米管顶端碳环被强氧化剂破坏,形成开口,用于附着氧化剂基团,从而实现修饰;(同时强氧化剂所含的基团会连接在开口处碳原子上,即在开口处引入包括磺酸基、羧基、羟基基团,实现对碳纳米管的顶端端口的修饰)(碳纳米管两端有完整的碳环结构,强氧化剂将部分碳氧化掉,碳纳米管碳环完整性被破坏,并形成“开口”;有了开口,基团才能连接在开口处;而“端口”是指碳纳米管两端的边缘碳环。基团连接到端口,就是对端口的修饰)。
进一步的,通过改变强氧化剂的浓度、混合处理时间,调节碳纳米管端口上基团数量和位置,使石墨烯与碳纳米管两端通过CVD工艺共价成键互连的过程中,实现对成键数量、成键处碳原子位置和碳原子晶向的调节。
进一步的,所述步骤(3)中为700~1020℃下气体流量为200:100~275:450sccm(标准毫升/分钟)的H2气与Ar气的混合气氛退火0.5~5h,优选为200:450sccm。
进一步的,所述步骤(4)中石墨烯生长是在常压下流量为200:100:2~275:450:4sccm的H2/Ar/CH4混合氛围中700~1020℃生长10~15min。
本发明对衬底上的金属薄膜进行图形化,它作为石墨烯生长的催化基底提供了石墨烯的预图形化。预图形化的金属薄膜作为电极用于装配碳纳米管,使碳纳米管两端与金属薄膜连接。退火工艺中碳纳米管两端被连接的金属薄膜刻蚀,形成缺陷;然后通入碳源气体,碳源气体分子被金属薄膜电极催化分解,在碳纳米管两端的缺陷处成核并生长。图形化的石墨烯薄膜作为电极,与碳纳米管两端共价连接,实现了石墨烯与碳纳米管特定位置,即碳纳米管两端的共价连接,这不同于之前石墨烯与碳纳米管间随机的连接。
本发明以石墨烯与特定位置上的单根碳纳米管(或多根碳纳米管)共价成键形成碳纳米管器件的互连电极为目标,提供了一种无转移预图形化石墨烯/金属复合电极的碳纳米管器件的平面内的互连技术,碳纳米管的轴向与石墨烯平面平行。石墨烯/金属复合电极中的石墨烯与碳纳米管两端共价成键,使得载流子能够有效地从石墨烯电极输运到碳纳米管,降低了碳纳米管与石墨烯电极之间的接触电阻,与现有技术相比,本发明具有以下有益效果:
石墨烯/金属复合电极中石墨烯与碳纳米管两端之间形成碳-碳共价键,载流子能够在石墨烯与碳纳米管之间良好地输运,降低了石墨烯与碳纳米管的接触电阻,降低了器件的功耗,实现了碳纳米管器件的良好互连。同时,在预图形化的金属催化基底生长石墨烯,无需转移和刻蚀,是一种良好的碳纳米管器件互连的解决方案。
附图说明
图1是预图形化石墨烯/金属复合电极与碳纳米管的互连结构示意图。
图2是预图形化石墨烯/金属复合电极的碳纳米管器件的互连方法的示意图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:1为衬底,21、22为金属电极,3为碳纳米管,41、42为石墨烯。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明形成的预图形化石墨烯/金属复合电极的碳纳米管器件的互连结构如图1所示。其特征在于:衬底1采用耐高温材料,在衬底上形成两个金属薄膜电极21、22,两个电极的距离为0.5~6μm;单根或多根碳纳米管3架设在两个石墨烯电极41、42之间,碳纳米管长度大于0.5μm;以金属薄膜21、22作为催化剂,以CVD方法原位生长的图形化石墨烯电极41、42,在金属薄膜电极与碳纳米管3接触部分形成共价连接,构成互连结构。
如图2所示,本发明提供的预图形化石墨烯/金属复合电极与碳纳米管互连结构的制备方法即工艺步骤如下:
(1)采用物理气相沉积工艺和光刻工艺在衬底表面1制备出预图形化的金属薄膜电极,如图2(a)、(b)所示;
(2)配置碳纳米管/酒精混合分散悬浮液。选择性地,在配置前将碳纳米管和包括浓硫酸、浓硝酸或过氧化氢在内的强氧化剂混合处理,使碳纳米管顶端碳环被强氧化剂破坏,形成开口,用于附着氧化剂基团,从而实现修饰。
(3)采用介电电泳技术或利用AFM操作在预图形化金属21和22之间间装配碳纳米管3,使碳纳米管3的两端与金属薄膜电极21、22连接,如图2(c)所示;
(4)在H2气与Ar气混合气氛中进行退火处理,退火温度为700~1020℃,退火时间为0.5~5h,使与金属薄膜电极接触的碳纳米管两端被金属原子刻蚀,形成缺陷;
(5)通入碳源气体,通过CVD工艺在图形化的铜镍电极上生长石墨烯41、42,形成预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳共价互连,如图2(d)所示。
本发明提供的预图形化石墨烯/金属复合电极与碳纳米管互连结构的制备方法中利用介电电泳或AFM操作装配碳纳米管的方法都是现有技术。装配碳纳米管时用的是碳纳米管/酒精(挥发性有机溶剂)分散悬浮液,碳纳米管参数的选取取决于具体器件应用的需求。
介电电泳技术需要用到的设备包括:移液器,交流信号发生射器。AFM操作需要用到的设备包括:需要一台原子力显微镜,即AFM。
下面结合附图和实施例对本发明中的预图形化石墨烯/金属复合电极与碳纳米管互连结构的制备方法,即工艺步骤作进一步详细的说明。
实施例1
(1)以生长有氧化层的硅片作为衬底,采用磁控溅射分别淀积厚度为640nm的镍膜、1μm的铜膜,使铜与镍原子数比为60.6:39.4。
(2)采用光刻和化学刻蚀工艺,对铜/镍双层金属薄膜进行图形加工,得到相应的碳纳米管器件用的互连电极布局,电极间距为6μm,电极宽度为5μm。
(3)在图形化铜/镍电极之间加上频率为1MHz、峰峰值为16V的正弦交流电压,用移液器取0.001mg/mL的碳纳米管/酒精分散悬浮液滴在电极之间,待溶剂挥发后撤除外加电场。
(4)在700℃下气体流量为200:100sccm的H2气与Ar气混合气氛中退火5h,然后升温至1020℃,在常压下通入流量为200:100:2sccm的H2/Ar/CH4混合气体,生长15min。CVD工艺在图形化的催化基底上生长石墨烯,实现预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳共价互连。
实施例2
(1)以石英玻璃为衬底,采用光刻工艺,在衬底表面得到催化基底图形的反转图案。
(2)采用电子束蒸发工艺,在衬底上分别淀积厚度110nm的镍膜、1μm的铜膜,使铜与镍原子数比为90:10。
(3)将衬底置于丙酮中超声数分钟,去掉光刻胶上的铜/镍膜部分。依次置于乙醇、去离子水中超声清洗10min,通过剥离工艺得到图形化的铜/镍双层金属薄膜,即相应的碳纳米管器件用的互连电极布局,电极间距为3μm,电极宽度为2μm。
(4)用移液器取0.001mg/mL的碳纳米管/酒精分散悬浮液滴在铜/镍电极之间,待溶剂挥发后用AFM探针推动碳纳米管,使碳纳米管装配在电极之间。
(5)在1020℃下气体流量为275:450sccm的H2气与Ar气混合气氛中退火0.5h,然后在常压下通入流量为275:450:4sccm的H2/Ar/CH4混合气体,生长15min。CVD工艺在图形化的催化基底上生长石墨烯,实现预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳共价互连。
实施例3
(1)以生长有氧化层的硅片作为衬底,采用磁控溅射淀积厚度200nm的镍薄膜。
(2)采用光刻和化学刻蚀工艺,对镍薄膜进行图形加工,得到相应的碳纳米管器件用的互连电极布局,电极间距为0.5μm,电极宽度为0.5μm。
(3)在图形化镍电极之间加上频率为1MHz、峰峰值为16V的正弦交流电压,用移液器取0.0002mg/mL的碳纳米管/酒精分散悬浮液滴在电极之间,待溶剂挥发后撤除外加电场。
(4)气体流量为250:450:2sccm的H2/Ar/CH4混合气体在750℃下预先加热,然后再通入CVD生长区域,在常压700℃下生长10min。CVD工艺在图形化的镍薄膜上生长石墨烯,实现预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳共价互连。
实施例4
(1)以SiC作为衬底,采用磁控溅射分别淀积200nm的镍薄膜。
(2)采用光刻和化学刻蚀工艺,对镍金属薄膜进行图形化,得到相应的碳纳米管器件用的互连电极布局,电极间距为6μm,电极宽度为5μm。
(3)将碳纳米管和浓硫酸混合处理,碳纳米管顶端的碳环被浓硫酸破坏形成开口,磺酸基对单壁碳纳米管的顶端端口进行修饰,配置成0.0001mg/mL的碳纳米管/酒精分散悬浮液,在图形化的镍电极之间加上频率为1MHz、峰峰值为16V的正弦交流电压,用移液器将碳纳米管/酒精分散悬浮液滴在电极之间,待溶剂挥发后撤除外加电场。
(4)升温至1020℃,在气体流量为250:450:2sccm的H2/Ar/CH4混合气氛中生长15min。CVD工艺在图形化的镍薄膜上生长石墨烯,实现预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳共价互连。
实施例5
(1)以SiC作为衬底,采用磁控溅射淀积200nm的镍薄膜。
(2)采用光刻和化学刻蚀工艺,对镍金属薄膜进行图形化,得到相应的碳纳米管器件用的互连电极布局,电极间距为3μm,电极宽度为2μm。
(3)将碳纳米管和浓硝酸混合处理,碳纳米管顶端的碳环被浓硝酸破坏形成开口,采用羧基对单壁碳纳米管的顶端端口进行修饰,配置成0.0001mg/mL的碳纳米管/酒精分散悬浮液,在图形化的镍电极之间加上频率为1MHz、峰峰值为16V的正弦交流电压,用移液器将碳纳米管/酒精分散悬浮液滴在电极之间,待溶剂挥发后撤除外加电场。
(4)升温至1020℃,在气体流量为250:450:2sccm的H2/Ar/CH4混合气氛中生长15min。CVD工艺在图形化的镍薄膜上生长石墨烯,实现预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳共价互连。
实施例6
(1)以SiC作为衬底,采用磁控溅射淀积200nm的镍薄膜。
(2)采用光刻和化学刻蚀工艺,对镍金属薄膜进行图形化,得到相应的碳纳米管器件用的互连电极布局,电极间距为6μm,电极宽度为5μm。
(3)将碳纳米管和过氧化氢混合处理,碳纳米管顶端的碳环被过氧化氢破坏形成开口,羟基对单壁碳纳米管的顶端端口进行修饰,配置成0.0001mg/mL的碳纳米管/酒精分散悬浮液,在图形化的镍电极之间加上频率为1MHz、峰峰值为16V的正弦交流电压,用移液器将碳纳米管/酒精分散悬浮液滴在电极之间,待溶剂挥发后撤除外加电场。
(4)升温至1020℃,在气体流量为250:450:2sccm的H2/Ar/CH4混合气氛中生长15min。CVD工艺在图形化的镍薄膜上生长石墨烯,实现预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳共价互连。
本发明提出来的预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳共价互连方法,可以降低碳纳米管器件与电极之间的接触电阻,实现碳纳米管器件的良好互连。同时,在预图形化的金属催化薄膜上生长石墨烯可以避免石墨烯的转移、刻蚀,不会额外导致石墨烯缺陷。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种石墨烯/金属复合电极的碳纳米管器件的互连方法,其特征在于,包括如下步骤:
(1)根据碳纳米管器件的布局,在衬底上设计并制备预图形化的金属薄膜电极;
(2)在碳纳米管和易挥发有机溶剂混合的分散悬浮液中,在预图形化的金属薄膜电极之间装配碳纳米管,使碳纳米管两端与金属薄膜电极连接,形成碳纳米管器件;
(3)将碳纳米管器件在氢气与氩气的混合气氛中高温退火,使与金属薄膜电极接触的碳纳米管两端的部分碳原子被金属原子刻蚀掉,形成缺陷;
(4)以包括甲烷、乙烯和乙炔在内的任一种烃类气体作为碳源气体,通过CVD工艺,使碳源气体分子被碳纳米管器件的金属薄膜电极的金属原子催化分解成含碳自由基,吸附在金属薄膜电极表面,或在金属薄膜电极中大量溶解,达到饱和浓度时在金属表面析出成核生长成石墨烯;石墨烯在碳纳米管缺陷处成核,形成碳-碳键并生长成石墨烯薄膜,石墨烯与碳纳米管两端通过共价成键实现互连。
2.根据权利要求1所述的方法,其特征在于,所述电极的厚度为200nm~1.64μm,宽度为0.5~5μm,间距为0.5~6μm。
3.根据权利要求1或2所述的方法,其特征在于,所述步骤(1)中的衬底材料为耐高温材料,包括Si、SiO2、SiO2/Si、GaN、GaAs、SiC或BN中的任意一种。
4.根据权利要求1或2所述的方法,其特征在于,所述步骤(1)中的预图形化的金属薄膜电极材料包括镍、铜、铁、钴和铂等具有催化作用的过渡金属或合金之一,优选原子数比为90:10~60:40铜/镍双层金属薄膜。
碳纳米管/酒精混合分散悬浮液的浓度为0.0001~0.001mg/ml。
5.根据权利要求1或2所述的方法,其特征在于,所述步骤(2)中的易挥发有机溶剂为酒精,碳纳米管/酒精混合分散悬浮液的浓度为0.0001~0.001mg/ml。
6.根据权利要求1或2所述的方法,其特征在于,所述步骤(2)中装配碳纳米管的方法为介电电泳技术或具有实时力/视觉反馈的AFM纳米操作方法。
7.根据权利要求1或2所述的方法,其特征在于,在进行步骤(2)之前,选择性地将碳纳米管和包括浓硫酸、浓硝酸或过氧化氢在内的强氧化剂混合处理,使碳纳米管顶端碳环被强氧化剂破坏,形成开口,用于附着氧化剂基团,从而实现修饰。
8.根据权利要求7所述的方法,其特征在于,通过改变强氧化剂的浓度、混合处理时间,调节碳纳米管端口上基团数量和位置,使石墨烯与碳纳米管两端通过CVD工艺共价成键互连的过程中,实现对成键数量、成键处碳原子位置和碳原子晶向的调节。
9.根据权利要求1所述的方法,其特征在于,所述步骤(3)中为700~1020℃下气体流量为200:100~275:450sccm(标准毫升/分钟)的H2气与Ar气的混合气氛退火0.5~5h,优选为200:450sccm。
10.根据权利要求1所述的方法,其特征在于,所述步骤(4)中石墨烯生长是在常压下流量为200:100:2~275:450:4sccm的H2/Ar/CH4混合氛围中700~1020℃生长10~15min。
CN201611130639.7A 2016-12-09 2016-12-09 一种石墨烯/金属复合电极的碳纳米管器件的互连方法 Active CN106683991B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201611130639.7A CN106683991B (zh) 2016-12-09 2016-12-09 一种石墨烯/金属复合电极的碳纳米管器件的互连方法
US15/484,134 US20180163299A1 (en) 2016-12-09 2017-04-11 Method for connecting graphene and metal compound electrodes in carbon nanotube device through carbon-carbon covalent bonds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611130639.7A CN106683991B (zh) 2016-12-09 2016-12-09 一种石墨烯/金属复合电极的碳纳米管器件的互连方法

Publications (2)

Publication Number Publication Date
CN106683991A true CN106683991A (zh) 2017-05-17
CN106683991B CN106683991B (zh) 2019-09-24

Family

ID=58868679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611130639.7A Active CN106683991B (zh) 2016-12-09 2016-12-09 一种石墨烯/金属复合电极的碳纳米管器件的互连方法

Country Status (2)

Country Link
US (1) US20180163299A1 (zh)
CN (1) CN106683991B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108548852A (zh) * 2018-06-27 2018-09-18 北京镭硼科技有限责任公司 一种石墨烯基薄膜型氢气传感器及其制备方法
CN109502544A (zh) * 2018-12-29 2019-03-22 中国科学技术大学 基于零维欧姆接触的硅基纳米线量子点的装置及制备方法
CN109682866A (zh) * 2019-01-07 2019-04-26 华中科技大学 基于磷钼酸分子修饰的碳纳米管气敏传感器
CN110190122A (zh) * 2018-02-23 2019-08-30 中芯国际集成电路制造(上海)有限公司 晶体管及其形成方法
CN112938936A (zh) * 2021-03-17 2021-06-11 西安交通大学 一种金属原子负载的纳米复合材料及其制备方法
CN113284970A (zh) * 2021-05-10 2021-08-20 福州大学 碳纳米管超宽带光电探测器及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2576293B (en) * 2018-06-06 2022-10-12 Xtpl S A Method for removing bottlenecks
US11302921B2 (en) * 2018-11-19 2022-04-12 Chongqing Jinkang Powertrain New Energy Co., Ltd. Lithium-metal free anode for electric vehicle solid state batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080006801A (ko) * 2006-07-13 2008-01-17 연세대학교 산학협력단 전기화학법으로 제조된 탄소나노튜브/금속산화물 나노복합전극의 제조방법
JP2008251963A (ja) * 2007-03-30 2008-10-16 Fujitsu Ltd カーボンナノチューブ金属複合材料によるデバイス構造
CN104237345A (zh) * 2014-09-30 2014-12-24 上海第二工业大学 低密度碳纳米管阵列复合电极制备及其在葡萄糖传感器中的应用
CN104637697A (zh) * 2015-02-11 2015-05-20 中国科学院新疆理化技术研究所 一种金属氧化物/碳纳米管复合电极材料的制备方法
CN104681801A (zh) * 2015-03-03 2015-06-03 华中科技大学 一种石墨烯/Cu/Ni复合电极及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080006801A (ko) * 2006-07-13 2008-01-17 연세대학교 산학협력단 전기화학법으로 제조된 탄소나노튜브/금속산화물 나노복합전극의 제조방법
JP2008251963A (ja) * 2007-03-30 2008-10-16 Fujitsu Ltd カーボンナノチューブ金属複合材料によるデバイス構造
CN104237345A (zh) * 2014-09-30 2014-12-24 上海第二工业大学 低密度碳纳米管阵列复合电极制备及其在葡萄糖传感器中的应用
CN104637697A (zh) * 2015-02-11 2015-05-20 中国科学院新疆理化技术研究所 一种金属氧化物/碳纳米管复合电极材料的制备方法
CN104681801A (zh) * 2015-03-03 2015-06-03 华中科技大学 一种石墨烯/Cu/Ni复合电极及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHAI Y.ETAL: ""Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer"", 《IEEE TRANSACTIONS ON ELECTRON DEVICES》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190122A (zh) * 2018-02-23 2019-08-30 中芯国际集成电路制造(上海)有限公司 晶体管及其形成方法
CN110190122B (zh) * 2018-02-23 2022-07-12 中芯国际集成电路制造(上海)有限公司 晶体管及其形成方法
CN108548852A (zh) * 2018-06-27 2018-09-18 北京镭硼科技有限责任公司 一种石墨烯基薄膜型氢气传感器及其制备方法
CN109502544A (zh) * 2018-12-29 2019-03-22 中国科学技术大学 基于零维欧姆接触的硅基纳米线量子点的装置及制备方法
CN109682866A (zh) * 2019-01-07 2019-04-26 华中科技大学 基于磷钼酸分子修饰的碳纳米管气敏传感器
CN109682866B (zh) * 2019-01-07 2020-08-04 华中科技大学 基于磷钼酸分子修饰的碳纳米管气敏传感器
CN112938936A (zh) * 2021-03-17 2021-06-11 西安交通大学 一种金属原子负载的纳米复合材料及其制备方法
CN112938936B (zh) * 2021-03-17 2023-08-15 西安交通大学 一种金属原子负载的纳米复合材料及其制备方法
CN113284970A (zh) * 2021-05-10 2021-08-20 福州大学 碳纳米管超宽带光电探测器及其制备方法

Also Published As

Publication number Publication date
CN106683991B (zh) 2019-09-24
US20180163299A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
CN106683991B (zh) 一种石墨烯/金属复合电极的碳纳米管器件的互连方法
Jung et al. Mechanism of selective growth of carbon nanotubes on SiO2/Si patterns
Katsnelson et al. Electron scattering on microscopic corrugations in graphene
Goel et al. Recent advances in ultrathin 2D hexagonal boron nitride based gas sensors
Chang et al. Growth of large single-crystalline monolayer hexagonal boron nitride by oxide-assisted chemical vapor deposition
Znidarsic et al. Spatially resolved transport properties of pristine and doped single-walled carbon nanotube networks
Kocabas et al. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors
US8951609B2 (en) CNT devices, low-temperature fabrication of CNT and CNT photo-resists
Xiao et al. Alignment controlled growth of single-walled carbon nanotubes on quartz substrates
Hong et al. Controlled van der Waals heteroepitaxy of InAs nanowires on carbon honeycomb lattices
Li et al. Growth of high-density-aligned and semiconducting-enriched single-walled carbon nanotubes: decoupling the conflict between density and selectivity
Liu et al. Aligned carbon nanotubes: from controlled synthesis to electronic applications
Fu et al. Chemical vapor depositions of single-walled carbon nanotubes catalyzed by uniform Fe2O3 nanoclusters synthesized using diblock copolymer micelles
US10385449B2 (en) Method for graphene and carbon nanotube growth
TWI544645B (zh) 薄膜電晶體及其製備方法
WO2016065499A1 (zh) 一种超高密度单壁碳纳米管水平阵列及其可控制备方法
KR20060033026A (ko) 금속입자의 고정 방법, 및 이 고정 방법을 각각 사용하는금속입자 함유 기판의 제조 방법, 탄소 나노튜브 함유기판의 제조 방법 및 반도체 결정성 로드 함유 기판의 제조방법
CN102757043A (zh) 一种制备定向石墨烯纳米带阵列的方法
Pham Hexagon flower quantum dot-like Cu pattern formation during low-pressure chemical vapor deposited graphene growth on a liquid Cu/W substrate
Liu et al. Excellent field-emission properties of P-doped GaN nanowires
Zhang et al. Molecular magnets based on graphenes and carbon nanotubes
Nie et al. Stable silicene wrapped by graphene in air
Lyu et al. Controlled Synthesis of Sub‐Millimeter Nonlayered WO2 Nanoplates via a WSe2‐Assisted Method
Xue et al. Surface engineering of substrates for chemical vapor deposition growth of graphene and applications in electronic and spintronic devices
Alabi et al. Silicon oxide nanowires: facile and controlled large area fabrication of vertically oriented silicon oxide nanowires for photoluminescence and sensor applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant