CN106683991A - 一种石墨烯/金属复合电极的碳纳米管器件的互连方法 - Google Patents
一种石墨烯/金属复合电极的碳纳米管器件的互连方法 Download PDFInfo
- Publication number
- CN106683991A CN106683991A CN201611130639.7A CN201611130639A CN106683991A CN 106683991 A CN106683991 A CN 106683991A CN 201611130639 A CN201611130639 A CN 201611130639A CN 106683991 A CN106683991 A CN 106683991A
- Authority
- CN
- China
- Prior art keywords
- cnt
- carbon
- graphene
- electrode
- grapheme
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 127
- 238000000034 method Methods 0.000 title claims abstract description 48
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 44
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 43
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 43
- 239000002184 metal Substances 0.000 title claims abstract description 43
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 230000003197 catalytic effect Effects 0.000 claims abstract description 10
- 230000007547 defect Effects 0.000 claims abstract description 7
- 238000003421 catalytic decomposition reaction Methods 0.000 claims abstract description 4
- 229910021389 graphene Inorganic materials 0.000 claims description 68
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 54
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 32
- 239000007789 gas Substances 0.000 claims description 31
- 238000000059 patterning Methods 0.000 claims description 29
- 229910052759 nickel Inorganic materials 0.000 claims description 27
- 239000002905 metal composite material Substances 0.000 claims description 20
- 239000006185 dispersion Substances 0.000 claims description 14
- 239000007800 oxidant agent Substances 0.000 claims description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 239000010949 copper Substances 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 10
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 9
- 238000005516 engineering process Methods 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 125000002837 carbocyclic group Chemical group 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 239000000725 suspension Substances 0.000 claims description 8
- 125000004429 atom Chemical group 0.000 claims description 7
- 150000001721 carbon Chemical group 0.000 claims description 7
- 230000004048 modification Effects 0.000 claims description 7
- 238000012986 modification Methods 0.000 claims description 7
- 238000000137 annealing Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 5
- 238000004720 dielectrophoresis Methods 0.000 claims description 5
- 229910017604 nitric acid Inorganic materials 0.000 claims description 5
- 239000003960 organic solvent Substances 0.000 claims description 5
- 239000001117 sulphuric acid Substances 0.000 claims description 5
- 235000011149 sulphuric acid Nutrition 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052681 coesite Inorganic materials 0.000 claims description 4
- 229910052906 cristobalite Inorganic materials 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 230000006911 nucleation Effects 0.000 claims description 4
- 238000010899 nucleation Methods 0.000 claims description 4
- 150000003254 radicals Chemical class 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 229910052682 stishovite Inorganic materials 0.000 claims description 4
- 229910052905 tridymite Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910000906 Bronze Inorganic materials 0.000 claims description 2
- 239000004215 Carbon black (E152) Substances 0.000 claims description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 2
- 239000005977 Ethylene Substances 0.000 claims description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 239000010974 bronze Substances 0.000 claims description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims description 2
- 150000001723 carbon free-radicals Chemical class 0.000 claims description 2
- 230000008859 change Effects 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims description 2
- 239000007772 electrode material Substances 0.000 claims description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 2
- 229930195733 hydrocarbon Natural products 0.000 claims description 2
- 150000002430 hydrocarbons Chemical class 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 229920006395 saturated elastomer Polymers 0.000 claims description 2
- 229910052723 transition metal Inorganic materials 0.000 claims description 2
- 150000003624 transition metals Chemical class 0.000 claims description 2
- 230000000007 visual effect Effects 0.000 claims 1
- 238000005530 etching Methods 0.000 abstract description 4
- 238000012546 transfer Methods 0.000 abstract description 4
- 239000000969 carrier Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 32
- 239000010409 thin film Substances 0.000 description 13
- 230000008569 process Effects 0.000 description 9
- 238000001259 photo etching Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 6
- 238000003486 chemical etching Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000001755 magnetron sputter deposition Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 102100021470 Solute carrier family 28 member 3 Human genes 0.000 description 3
- 101710186856 Solute carrier family 28 member 3 Proteins 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 229910000570 Cupronickel Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- -1 graphite Alkene Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/174—Derivatisation; Solubilisation; Dispersion in solvents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/184—Preparation
- C01B32/186—Preparation by chemical vapour deposition [CVD]
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0227—Pretreatment of the material to be coated by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
- C25D13/02—Electrophoretic coating characterised by the process with inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/7685—Barrier, adhesion or liner layers the layer covering a conductive structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76871—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
- H01L21/76876—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/742—Carbon nanotubes, CNTs
- Y10S977/743—Carbon nanotubes, CNTs having specified tube end structure, e.g. close-ended shell or open-ended tube
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/843—Gas phase catalytic growth, i.e. chemical vapor deposition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/848—Tube end modifications, e.g. capping, joining, splicing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Electrochemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种石墨烯/金属复合电极的碳纳米管器件的互连方法,包括以下步骤:在衬底上设计并制备预图形化的金属薄膜电极;在图形化的金属薄膜电极之间装配碳纳米管;使与金属薄膜电极接触的碳纳米管两端被金属原子刻蚀,形成缺陷;使碳源分子被金属原子催化分解;使石墨烯与碳纳米管两端通过共价成键实现互连。本发明实现了石墨烯与指定碳纳米管特定位置,即对应电极之间的碳纳米管两端的共价连接,这不同于之前石墨烯与碳纳米管间随机的连接。载流子能够在石墨烯与碳纳米管之间良好地输运,降低了石墨烯与碳纳米管的接触电阻,降低了器件的功耗。同时,在预图形化的金属催化基底生长石墨烯,无需转移和刻蚀。
Description
技术领域
本发明属于半导体器件的互连技术领域,特别地涉及一种无转移预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳共价互连技术。
背景技术
迄今碳纳米管已经在场效应晶体管、传感器、场发射显示器、储能等领域取得了长足的发展。互连电极技术是碳纳米管器件进行系统集成的关键技术之一。现阶段基于碳纳米管的微纳器件通常采用传统金属如金、铂、铜等薄膜电极。但是,金属薄膜电极中电子迁移率较低,同时金属电极与碳纳米管有较大的肖特基势垒,接触电阻较大。这大大地限制了碳纳米管器件在工作电压越来越低的电子系统中的集成应用。
石墨烯具有较高的电子迁移率,能带间隙为零,并且与碳纳米管具有相似的晶格结构,是碳纳米管器件的理想电极。石墨烯通过范德华力与碳纳米管直接接触,可以获得比金属薄膜电极更低的肖特基势垒,接触电阻减小。但是,石墨烯与碳纳米管之间仍属于肖特基接触,接触电阻一般仍远大于碳纳米管本身电阻,而且石墨烯与碳纳米管之间存在的原子级别的物理间隙会引起附加势垒。此外,石墨烯与碳纳米管直接接触的间隙还受到器件工作环境影响,气体吸附等因素也造成接触的不稳定。
现有的石墨烯“加”碳纳米管的复合材料或结构,依其内部的结构特点可分为两类。一类是复合材料中碳纳米管的轴向与石墨烯平面垂直的复合结构,其超大的比表面积特别适用于超级电容器,或者将碳纳米管作为石墨烯与其他材料的层间互连。另一类是复合材料中碳纳米管的轴向与石墨烯平面平行的薄膜,其中的碳纳米管一般都是随机分散地与石墨烯通过范德华力接触。虽然人们正在趋向于尝试经过特别化学处理步骤的基团修饰使碳纳米管与石墨烯之间共价成键,但是,目前已经实现共价连接方法中石墨烯和碳纳米管的连接仍然是随机的。而在碳纳米管器件应用时,其互连需要满足应用所需的特定位置互连的需要。
发明内容
针对现有技术中存在的上述问题和需求,本发明提供了一种预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳互连方法,目的在于降低碳纳米管与石墨烯电极之间的接触电阻,降低器件的功耗,同时在预图形化的金属催化基底生长石墨烯,无需转移和刻蚀,避免引入额外的杂质和缺陷。
本发明所述方法包括如下步骤:
(1)根据碳纳米管器件的布局,在衬底上设计并制备预图形化的金属薄膜电极;
(2)在碳纳米管和易挥发有机溶剂混合的分散悬浮液中,在预图形化的金属薄膜电极之间装配碳纳米管,使碳纳米管两端与金属薄膜电极连接,形成碳纳米管器件;
(3)将碳纳米管器件在氢气与氩气的混合气氛中高温退火,使与金属薄膜电极接触的碳纳米管两端的部分碳原子被金属原子刻蚀掉,形成缺陷;
(4)以包括甲烷、乙烯和乙炔在内的任一种烃类气体作为碳源气体,通过CVD工艺,使碳源气体分子被碳纳米管器件的金属薄膜电极的金属原子催化分解成含碳自由基,吸附在金属薄膜电极表面,或在金属薄膜电极中大量溶解,达到饱和浓度时在金属表面析出成核生长成石墨烯;石墨烯在碳纳米管缺陷处成核,形成碳-碳键并生长成石墨烯薄膜,石墨烯与碳纳米管两端通过共价成键实现互连。
进一步的,所述电极的厚度为200nm~1.64μm,宽度为0.5~5μm,间距为0.5~6μm。
进一步的,所述步骤(1)中的衬底材料为耐高温材料,包括Si、SiO2、SiO2/Si、GaN、GaAs、SiC或BN中的任意一种。
进一步的,所述步骤(1)中的预图形化的金属薄膜电极材料包括镍、铜、铁、钴和铂等具有催化作用的过渡金属或合金之一,优选原子数比为90:10~60:40铜/镍双层金属薄膜。
进一步的,所述步骤(2)中的易挥发有机溶剂为酒精,碳纳米管/酒精混合分散悬浮液的浓度为0.0001~0.001mg/ml。
进一步的,所述步骤(2)中装配碳纳米管的方法为介电电泳技术或具有实时力/视觉反馈的AFM纳米操作方法。
进一步的,在进行步骤(2)之前,选择性地将碳纳米管和包括浓硫酸、浓硝酸或过氧化氢在内的强氧化剂混合处理,使碳纳米管顶端碳环被强氧化剂破坏,形成开口,用于附着氧化剂基团,从而实现修饰;(同时强氧化剂所含的基团会连接在开口处碳原子上,即在开口处引入包括磺酸基、羧基、羟基基团,实现对碳纳米管的顶端端口的修饰)(碳纳米管两端有完整的碳环结构,强氧化剂将部分碳氧化掉,碳纳米管碳环完整性被破坏,并形成“开口”;有了开口,基团才能连接在开口处;而“端口”是指碳纳米管两端的边缘碳环。基团连接到端口,就是对端口的修饰)。
进一步的,通过改变强氧化剂的浓度、混合处理时间,调节碳纳米管端口上基团数量和位置,使石墨烯与碳纳米管两端通过CVD工艺共价成键互连的过程中,实现对成键数量、成键处碳原子位置和碳原子晶向的调节。
进一步的,所述步骤(3)中为700~1020℃下气体流量为200:100~275:450sccm(标准毫升/分钟)的H2气与Ar气的混合气氛退火0.5~5h,优选为200:450sccm。
进一步的,所述步骤(4)中石墨烯生长是在常压下流量为200:100:2~275:450:4sccm的H2/Ar/CH4混合氛围中700~1020℃生长10~15min。
本发明对衬底上的金属薄膜进行图形化,它作为石墨烯生长的催化基底提供了石墨烯的预图形化。预图形化的金属薄膜作为电极用于装配碳纳米管,使碳纳米管两端与金属薄膜连接。退火工艺中碳纳米管两端被连接的金属薄膜刻蚀,形成缺陷;然后通入碳源气体,碳源气体分子被金属薄膜电极催化分解,在碳纳米管两端的缺陷处成核并生长。图形化的石墨烯薄膜作为电极,与碳纳米管两端共价连接,实现了石墨烯与碳纳米管特定位置,即碳纳米管两端的共价连接,这不同于之前石墨烯与碳纳米管间随机的连接。
本发明以石墨烯与特定位置上的单根碳纳米管(或多根碳纳米管)共价成键形成碳纳米管器件的互连电极为目标,提供了一种无转移预图形化石墨烯/金属复合电极的碳纳米管器件的平面内的互连技术,碳纳米管的轴向与石墨烯平面平行。石墨烯/金属复合电极中的石墨烯与碳纳米管两端共价成键,使得载流子能够有效地从石墨烯电极输运到碳纳米管,降低了碳纳米管与石墨烯电极之间的接触电阻,与现有技术相比,本发明具有以下有益效果:
石墨烯/金属复合电极中石墨烯与碳纳米管两端之间形成碳-碳共价键,载流子能够在石墨烯与碳纳米管之间良好地输运,降低了石墨烯与碳纳米管的接触电阻,降低了器件的功耗,实现了碳纳米管器件的良好互连。同时,在预图形化的金属催化基底生长石墨烯,无需转移和刻蚀,是一种良好的碳纳米管器件互连的解决方案。
附图说明
图1是预图形化石墨烯/金属复合电极与碳纳米管的互连结构示意图。
图2是预图形化石墨烯/金属复合电极的碳纳米管器件的互连方法的示意图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:1为衬底,21、22为金属电极,3为碳纳米管,41、42为石墨烯。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明形成的预图形化石墨烯/金属复合电极的碳纳米管器件的互连结构如图1所示。其特征在于:衬底1采用耐高温材料,在衬底上形成两个金属薄膜电极21、22,两个电极的距离为0.5~6μm;单根或多根碳纳米管3架设在两个石墨烯电极41、42之间,碳纳米管长度大于0.5μm;以金属薄膜21、22作为催化剂,以CVD方法原位生长的图形化石墨烯电极41、42,在金属薄膜电极与碳纳米管3接触部分形成共价连接,构成互连结构。
如图2所示,本发明提供的预图形化石墨烯/金属复合电极与碳纳米管互连结构的制备方法即工艺步骤如下:
(1)采用物理气相沉积工艺和光刻工艺在衬底表面1制备出预图形化的金属薄膜电极,如图2(a)、(b)所示;
(2)配置碳纳米管/酒精混合分散悬浮液。选择性地,在配置前将碳纳米管和包括浓硫酸、浓硝酸或过氧化氢在内的强氧化剂混合处理,使碳纳米管顶端碳环被强氧化剂破坏,形成开口,用于附着氧化剂基团,从而实现修饰。
(3)采用介电电泳技术或利用AFM操作在预图形化金属21和22之间间装配碳纳米管3,使碳纳米管3的两端与金属薄膜电极21、22连接,如图2(c)所示;
(4)在H2气与Ar气混合气氛中进行退火处理,退火温度为700~1020℃,退火时间为0.5~5h,使与金属薄膜电极接触的碳纳米管两端被金属原子刻蚀,形成缺陷;
(5)通入碳源气体,通过CVD工艺在图形化的铜镍电极上生长石墨烯41、42,形成预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳共价互连,如图2(d)所示。
本发明提供的预图形化石墨烯/金属复合电极与碳纳米管互连结构的制备方法中利用介电电泳或AFM操作装配碳纳米管的方法都是现有技术。装配碳纳米管时用的是碳纳米管/酒精(挥发性有机溶剂)分散悬浮液,碳纳米管参数的选取取决于具体器件应用的需求。
介电电泳技术需要用到的设备包括:移液器,交流信号发生射器。AFM操作需要用到的设备包括:需要一台原子力显微镜,即AFM。
下面结合附图和实施例对本发明中的预图形化石墨烯/金属复合电极与碳纳米管互连结构的制备方法,即工艺步骤作进一步详细的说明。
实施例1
(1)以生长有氧化层的硅片作为衬底,采用磁控溅射分别淀积厚度为640nm的镍膜、1μm的铜膜,使铜与镍原子数比为60.6:39.4。
(2)采用光刻和化学刻蚀工艺,对铜/镍双层金属薄膜进行图形加工,得到相应的碳纳米管器件用的互连电极布局,电极间距为6μm,电极宽度为5μm。
(3)在图形化铜/镍电极之间加上频率为1MHz、峰峰值为16V的正弦交流电压,用移液器取0.001mg/mL的碳纳米管/酒精分散悬浮液滴在电极之间,待溶剂挥发后撤除外加电场。
(4)在700℃下气体流量为200:100sccm的H2气与Ar气混合气氛中退火5h,然后升温至1020℃,在常压下通入流量为200:100:2sccm的H2/Ar/CH4混合气体,生长15min。CVD工艺在图形化的催化基底上生长石墨烯,实现预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳共价互连。
实施例2
(1)以石英玻璃为衬底,采用光刻工艺,在衬底表面得到催化基底图形的反转图案。
(2)采用电子束蒸发工艺,在衬底上分别淀积厚度110nm的镍膜、1μm的铜膜,使铜与镍原子数比为90:10。
(3)将衬底置于丙酮中超声数分钟,去掉光刻胶上的铜/镍膜部分。依次置于乙醇、去离子水中超声清洗10min,通过剥离工艺得到图形化的铜/镍双层金属薄膜,即相应的碳纳米管器件用的互连电极布局,电极间距为3μm,电极宽度为2μm。
(4)用移液器取0.001mg/mL的碳纳米管/酒精分散悬浮液滴在铜/镍电极之间,待溶剂挥发后用AFM探针推动碳纳米管,使碳纳米管装配在电极之间。
(5)在1020℃下气体流量为275:450sccm的H2气与Ar气混合气氛中退火0.5h,然后在常压下通入流量为275:450:4sccm的H2/Ar/CH4混合气体,生长15min。CVD工艺在图形化的催化基底上生长石墨烯,实现预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳共价互连。
实施例3
(1)以生长有氧化层的硅片作为衬底,采用磁控溅射淀积厚度200nm的镍薄膜。
(2)采用光刻和化学刻蚀工艺,对镍薄膜进行图形加工,得到相应的碳纳米管器件用的互连电极布局,电极间距为0.5μm,电极宽度为0.5μm。
(3)在图形化镍电极之间加上频率为1MHz、峰峰值为16V的正弦交流电压,用移液器取0.0002mg/mL的碳纳米管/酒精分散悬浮液滴在电极之间,待溶剂挥发后撤除外加电场。
(4)气体流量为250:450:2sccm的H2/Ar/CH4混合气体在750℃下预先加热,然后再通入CVD生长区域,在常压700℃下生长10min。CVD工艺在图形化的镍薄膜上生长石墨烯,实现预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳共价互连。
实施例4
(1)以SiC作为衬底,采用磁控溅射分别淀积200nm的镍薄膜。
(2)采用光刻和化学刻蚀工艺,对镍金属薄膜进行图形化,得到相应的碳纳米管器件用的互连电极布局,电极间距为6μm,电极宽度为5μm。
(3)将碳纳米管和浓硫酸混合处理,碳纳米管顶端的碳环被浓硫酸破坏形成开口,磺酸基对单壁碳纳米管的顶端端口进行修饰,配置成0.0001mg/mL的碳纳米管/酒精分散悬浮液,在图形化的镍电极之间加上频率为1MHz、峰峰值为16V的正弦交流电压,用移液器将碳纳米管/酒精分散悬浮液滴在电极之间,待溶剂挥发后撤除外加电场。
(4)升温至1020℃,在气体流量为250:450:2sccm的H2/Ar/CH4混合气氛中生长15min。CVD工艺在图形化的镍薄膜上生长石墨烯,实现预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳共价互连。
实施例5
(1)以SiC作为衬底,采用磁控溅射淀积200nm的镍薄膜。
(2)采用光刻和化学刻蚀工艺,对镍金属薄膜进行图形化,得到相应的碳纳米管器件用的互连电极布局,电极间距为3μm,电极宽度为2μm。
(3)将碳纳米管和浓硝酸混合处理,碳纳米管顶端的碳环被浓硝酸破坏形成开口,采用羧基对单壁碳纳米管的顶端端口进行修饰,配置成0.0001mg/mL的碳纳米管/酒精分散悬浮液,在图形化的镍电极之间加上频率为1MHz、峰峰值为16V的正弦交流电压,用移液器将碳纳米管/酒精分散悬浮液滴在电极之间,待溶剂挥发后撤除外加电场。
(4)升温至1020℃,在气体流量为250:450:2sccm的H2/Ar/CH4混合气氛中生长15min。CVD工艺在图形化的镍薄膜上生长石墨烯,实现预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳共价互连。
实施例6
(1)以SiC作为衬底,采用磁控溅射淀积200nm的镍薄膜。
(2)采用光刻和化学刻蚀工艺,对镍金属薄膜进行图形化,得到相应的碳纳米管器件用的互连电极布局,电极间距为6μm,电极宽度为5μm。
(3)将碳纳米管和过氧化氢混合处理,碳纳米管顶端的碳环被过氧化氢破坏形成开口,羟基对单壁碳纳米管的顶端端口进行修饰,配置成0.0001mg/mL的碳纳米管/酒精分散悬浮液,在图形化的镍电极之间加上频率为1MHz、峰峰值为16V的正弦交流电压,用移液器将碳纳米管/酒精分散悬浮液滴在电极之间,待溶剂挥发后撤除外加电场。
(4)升温至1020℃,在气体流量为250:450:2sccm的H2/Ar/CH4混合气氛中生长15min。CVD工艺在图形化的镍薄膜上生长石墨烯,实现预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳共价互连。
本发明提出来的预图形化石墨烯/金属复合电极的碳纳米管器件的碳-碳共价互连方法,可以降低碳纳米管器件与电极之间的接触电阻,实现碳纳米管器件的良好互连。同时,在预图形化的金属催化薄膜上生长石墨烯可以避免石墨烯的转移、刻蚀,不会额外导致石墨烯缺陷。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种石墨烯/金属复合电极的碳纳米管器件的互连方法,其特征在于,包括如下步骤:
(1)根据碳纳米管器件的布局,在衬底上设计并制备预图形化的金属薄膜电极;
(2)在碳纳米管和易挥发有机溶剂混合的分散悬浮液中,在预图形化的金属薄膜电极之间装配碳纳米管,使碳纳米管两端与金属薄膜电极连接,形成碳纳米管器件;
(3)将碳纳米管器件在氢气与氩气的混合气氛中高温退火,使与金属薄膜电极接触的碳纳米管两端的部分碳原子被金属原子刻蚀掉,形成缺陷;
(4)以包括甲烷、乙烯和乙炔在内的任一种烃类气体作为碳源气体,通过CVD工艺,使碳源气体分子被碳纳米管器件的金属薄膜电极的金属原子催化分解成含碳自由基,吸附在金属薄膜电极表面,或在金属薄膜电极中大量溶解,达到饱和浓度时在金属表面析出成核生长成石墨烯;石墨烯在碳纳米管缺陷处成核,形成碳-碳键并生长成石墨烯薄膜,石墨烯与碳纳米管两端通过共价成键实现互连。
2.根据权利要求1所述的方法,其特征在于,所述电极的厚度为200nm~1.64μm,宽度为0.5~5μm,间距为0.5~6μm。
3.根据权利要求1或2所述的方法,其特征在于,所述步骤(1)中的衬底材料为耐高温材料,包括Si、SiO2、SiO2/Si、GaN、GaAs、SiC或BN中的任意一种。
4.根据权利要求1或2所述的方法,其特征在于,所述步骤(1)中的预图形化的金属薄膜电极材料包括镍、铜、铁、钴和铂等具有催化作用的过渡金属或合金之一,优选原子数比为90:10~60:40铜/镍双层金属薄膜。
碳纳米管/酒精混合分散悬浮液的浓度为0.0001~0.001mg/ml。
5.根据权利要求1或2所述的方法,其特征在于,所述步骤(2)中的易挥发有机溶剂为酒精,碳纳米管/酒精混合分散悬浮液的浓度为0.0001~0.001mg/ml。
6.根据权利要求1或2所述的方法,其特征在于,所述步骤(2)中装配碳纳米管的方法为介电电泳技术或具有实时力/视觉反馈的AFM纳米操作方法。
7.根据权利要求1或2所述的方法,其特征在于,在进行步骤(2)之前,选择性地将碳纳米管和包括浓硫酸、浓硝酸或过氧化氢在内的强氧化剂混合处理,使碳纳米管顶端碳环被强氧化剂破坏,形成开口,用于附着氧化剂基团,从而实现修饰。
8.根据权利要求7所述的方法,其特征在于,通过改变强氧化剂的浓度、混合处理时间,调节碳纳米管端口上基团数量和位置,使石墨烯与碳纳米管两端通过CVD工艺共价成键互连的过程中,实现对成键数量、成键处碳原子位置和碳原子晶向的调节。
9.根据权利要求1所述的方法,其特征在于,所述步骤(3)中为700~1020℃下气体流量为200:100~275:450sccm(标准毫升/分钟)的H2气与Ar气的混合气氛退火0.5~5h,优选为200:450sccm。
10.根据权利要求1所述的方法,其特征在于,所述步骤(4)中石墨烯生长是在常压下流量为200:100:2~275:450:4sccm的H2/Ar/CH4混合氛围中700~1020℃生长10~15min。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611130639.7A CN106683991B (zh) | 2016-12-09 | 2016-12-09 | 一种石墨烯/金属复合电极的碳纳米管器件的互连方法 |
US15/484,134 US20180163299A1 (en) | 2016-12-09 | 2017-04-11 | Method for connecting graphene and metal compound electrodes in carbon nanotube device through carbon-carbon covalent bonds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611130639.7A CN106683991B (zh) | 2016-12-09 | 2016-12-09 | 一种石墨烯/金属复合电极的碳纳米管器件的互连方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106683991A true CN106683991A (zh) | 2017-05-17 |
CN106683991B CN106683991B (zh) | 2019-09-24 |
Family
ID=58868679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611130639.7A Active CN106683991B (zh) | 2016-12-09 | 2016-12-09 | 一种石墨烯/金属复合电极的碳纳米管器件的互连方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20180163299A1 (zh) |
CN (1) | CN106683991B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108548852A (zh) * | 2018-06-27 | 2018-09-18 | 北京镭硼科技有限责任公司 | 一种石墨烯基薄膜型氢气传感器及其制备方法 |
CN109502544A (zh) * | 2018-12-29 | 2019-03-22 | 中国科学技术大学 | 基于零维欧姆接触的硅基纳米线量子点的装置及制备方法 |
CN109682866A (zh) * | 2019-01-07 | 2019-04-26 | 华中科技大学 | 基于磷钼酸分子修饰的碳纳米管气敏传感器 |
CN110190122A (zh) * | 2018-02-23 | 2019-08-30 | 中芯国际集成电路制造(上海)有限公司 | 晶体管及其形成方法 |
CN112938936A (zh) * | 2021-03-17 | 2021-06-11 | 西安交通大学 | 一种金属原子负载的纳米复合材料及其制备方法 |
CN113284970A (zh) * | 2021-05-10 | 2021-08-20 | 福州大学 | 碳纳米管超宽带光电探测器及其制备方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2576293B (en) * | 2018-06-06 | 2022-10-12 | Xtpl S A | Method for removing bottlenecks |
US11302921B2 (en) * | 2018-11-19 | 2022-04-12 | Chongqing Jinkang Powertrain New Energy Co., Ltd. | Lithium-metal free anode for electric vehicle solid state batteries |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080006801A (ko) * | 2006-07-13 | 2008-01-17 | 연세대학교 산학협력단 | 전기화학법으로 제조된 탄소나노튜브/금속산화물 나노복합전극의 제조방법 |
JP2008251963A (ja) * | 2007-03-30 | 2008-10-16 | Fujitsu Ltd | カーボンナノチューブ金属複合材料によるデバイス構造 |
CN104237345A (zh) * | 2014-09-30 | 2014-12-24 | 上海第二工业大学 | 低密度碳纳米管阵列复合电极制备及其在葡萄糖传感器中的应用 |
CN104637697A (zh) * | 2015-02-11 | 2015-05-20 | 中国科学院新疆理化技术研究所 | 一种金属氧化物/碳纳米管复合电极材料的制备方法 |
CN104681801A (zh) * | 2015-03-03 | 2015-06-03 | 华中科技大学 | 一种石墨烯/Cu/Ni复合电极及其制备方法 |
-
2016
- 2016-12-09 CN CN201611130639.7A patent/CN106683991B/zh active Active
-
2017
- 2017-04-11 US US15/484,134 patent/US20180163299A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080006801A (ko) * | 2006-07-13 | 2008-01-17 | 연세대학교 산학협력단 | 전기화학법으로 제조된 탄소나노튜브/금속산화물 나노복합전극의 제조방법 |
JP2008251963A (ja) * | 2007-03-30 | 2008-10-16 | Fujitsu Ltd | カーボンナノチューブ金属複合材料によるデバイス構造 |
CN104237345A (zh) * | 2014-09-30 | 2014-12-24 | 上海第二工业大学 | 低密度碳纳米管阵列复合电极制备及其在葡萄糖传感器中的应用 |
CN104637697A (zh) * | 2015-02-11 | 2015-05-20 | 中国科学院新疆理化技术研究所 | 一种金属氧化物/碳纳米管复合电极材料的制备方法 |
CN104681801A (zh) * | 2015-03-03 | 2015-06-03 | 华中科技大学 | 一种石墨烯/Cu/Ni复合电极及其制备方法 |
Non-Patent Citations (1)
Title |
---|
CHAI Y.ETAL: ""Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer"", 《IEEE TRANSACTIONS ON ELECTRON DEVICES》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110190122A (zh) * | 2018-02-23 | 2019-08-30 | 中芯国际集成电路制造(上海)有限公司 | 晶体管及其形成方法 |
CN110190122B (zh) * | 2018-02-23 | 2022-07-12 | 中芯国际集成电路制造(上海)有限公司 | 晶体管及其形成方法 |
CN108548852A (zh) * | 2018-06-27 | 2018-09-18 | 北京镭硼科技有限责任公司 | 一种石墨烯基薄膜型氢气传感器及其制备方法 |
CN109502544A (zh) * | 2018-12-29 | 2019-03-22 | 中国科学技术大学 | 基于零维欧姆接触的硅基纳米线量子点的装置及制备方法 |
CN109682866A (zh) * | 2019-01-07 | 2019-04-26 | 华中科技大学 | 基于磷钼酸分子修饰的碳纳米管气敏传感器 |
CN109682866B (zh) * | 2019-01-07 | 2020-08-04 | 华中科技大学 | 基于磷钼酸分子修饰的碳纳米管气敏传感器 |
CN112938936A (zh) * | 2021-03-17 | 2021-06-11 | 西安交通大学 | 一种金属原子负载的纳米复合材料及其制备方法 |
CN112938936B (zh) * | 2021-03-17 | 2023-08-15 | 西安交通大学 | 一种金属原子负载的纳米复合材料及其制备方法 |
CN113284970A (zh) * | 2021-05-10 | 2021-08-20 | 福州大学 | 碳纳米管超宽带光电探测器及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20180163299A1 (en) | 2018-06-14 |
CN106683991B (zh) | 2019-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106683991B (zh) | 一种石墨烯/金属复合电极的碳纳米管器件的互连方法 | |
Jung et al. | Mechanism of selective growth of carbon nanotubes on SiO2/Si patterns | |
Katsnelson et al. | Electron scattering on microscopic corrugations in graphene | |
Choudhary et al. | Carbon nanomaterials: a review | |
Goel et al. | Recent advances in ultrathin 2D hexagonal boron nitride based gas sensors | |
Chang et al. | Growth of large single-crystalline monolayer hexagonal boron nitride by oxide-assisted chemical vapor deposition | |
Znidarsic et al. | Spatially resolved transport properties of pristine and doped single-walled carbon nanotube networks | |
US8951609B2 (en) | CNT devices, low-temperature fabrication of CNT and CNT photo-resists | |
Xiao et al. | Alignment controlled growth of single-walled carbon nanotubes on quartz substrates | |
Hong et al. | Controlled van der Waals heteroepitaxy of InAs nanowires on carbon honeycomb lattices | |
Li et al. | Growth of high-density-aligned and semiconducting-enriched single-walled carbon nanotubes: decoupling the conflict between density and selectivity | |
KR100850650B1 (ko) | 금속입자의 고정 방법, 및 이 고정 방법을 각각 사용하는금속입자 함유 기판의 제조 방법, 탄소 나노튜브 함유기판의 제조 방법 및 반도체 결정성 로드 함유 기판의 제조방법 | |
US10385449B2 (en) | Method for graphene and carbon nanotube growth | |
Du et al. | Electronic functionality in graphene-based nanoarchitectures: Discovery and design via first-principles modeling | |
CN102757043B (zh) | 一种制备定向石墨烯纳米带阵列的方法 | |
TWI544645B (zh) | 薄膜電晶體及其製備方法 | |
WO2016065499A1 (zh) | 一种超高密度单壁碳纳米管水平阵列及其可控制备方法 | |
Pham | Hexagon flower quantum dot-like Cu pattern formation during low-pressure chemical vapor deposited graphene growth on a liquid Cu/W substrate | |
Liu et al. | Excellent field-emission properties of P-doped GaN nanowires | |
Zhang et al. | Molecular magnets based on graphenes and carbon nanotubes | |
Lyu et al. | Controlled Synthesis of Sub‐Millimeter Nonlayered WO2 Nanoplates via a WSe2‐Assisted Method | |
Nie et al. | Stable silicene wrapped by graphene in air | |
Xue et al. | Surface engineering of substrates for chemical vapor deposition growth of graphene and applications in electronic and spintronic devices | |
Alabi et al. | Silicon oxide nanowires: facile and controlled large area fabrication of vertically oriented silicon oxide nanowires for photoluminescence and sensor applications | |
Chen et al. | Crystalline silicon nanotubes and their connections with gold nanowires in both linear and branched topologies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |