CN105542772A - 一种水溶性过渡金属掺杂ZnSe量子点的合成方法 - Google Patents

一种水溶性过渡金属掺杂ZnSe量子点的合成方法 Download PDF

Info

Publication number
CN105542772A
CN105542772A CN201510966336.8A CN201510966336A CN105542772A CN 105542772 A CN105542772 A CN 105542772A CN 201510966336 A CN201510966336 A CN 201510966336A CN 105542772 A CN105542772 A CN 105542772A
Authority
CN
China
Prior art keywords
znse
mnse
nanoparticle
quantum dot
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510966336.8A
Other languages
English (en)
Other versions
CN105542772B (zh
Inventor
刘义
周志强
蒋风雷
杨立云
刘雨奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201510966336.8A priority Critical patent/CN105542772B/zh
Publication of CN105542772A publication Critical patent/CN105542772A/zh
Application granted granted Critical
Publication of CN105542772B publication Critical patent/CN105542772B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/89Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing mercury
    • C09K11/892Chalcogenides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种水溶性过渡金属掺杂ZnSe量子点的合成方法,属于材料制备技术领域。本发明使用核壳结构纳米材料,采用离子置换的思路来合成掺杂量子点。该掺杂方法分为两步,第一步在氮气保护的条件下合成MnSe/ZnSe的核壳结构纳米颗粒,第二步分别向MnSe/ZnSe纳米颗粒溶液中加入不同的掺杂元素,随后在室温或者100℃加热的条件下反应即可得到不同元素掺杂的ZnSe量子点。本发明合成的掺杂量子点具有丰富的光学性质,能够合成多种荧光颜色的产品。通过简单的改变第二步反应所加入的掺杂元素的含量,可以调控掺杂元素的掺杂量,同时可以调控量子点的荧光峰位置,Ag:ZnSe量子点的荧光峰可由454nm红移至486nm,Pb:ZnSe量子点的荧光峰可由498nm红移至522nm。

Description

一种水溶性过渡金属掺杂ZnSe量子点的合成方法
技术领域
本发明涉及一种量子点的制备方法,特别涉及一种水溶性过渡金属掺杂ZnSe量子点的制备方法,属于纳米技术领域。
背景技术
量子点(quantumdots,QDs),是一种由Ⅱ-Ⅵ族或者Ⅲ-Ⅴ族元素组成的半导体纳米晶。由于其独特的光学性能和在生物探针、生物传感器、LED以及太阳能电池方面的潜在应用,量子点已经成为科研的焦点。在众多的量子点中,镉系量子点以其高的量子产率、荧光可调、粒径可调等优点获得了广大科研工作者的关注。但是,镉系量子点不可避免的毒性限制了其在各个领域的应用,尤其是在生物方面的应用。
考虑到重金属元素组成的量子点对生物体的毒性问题,科研工作者努力的寻找一种新的无毒的同时又可以媲美镉系量子点光学性能的量子点。水溶性ZnSe量子点是为数不多的具有较高荧光量子产率的量子点,但是其蓝光容易被生物体的自发蓝色荧光干扰。掺杂能够改变材料的光学性能和磁性等性能,在掺杂量子点中,掺入的杂质元素作为发光中心,而主体的壳层材料则作为能量的吸收区域。掺杂量子点克服了镉系量子点的毒性问题,与此同时,也改变了量子点的光学性能。
由于掺杂对于材料改性方面的作用,掺杂引起了人们越来越多的关注。1994年,Bhargava等人首次报道了掺入Mn的ZnS量子点,所制备量子点的尺寸从3.5-7.5nm可调,并且观察到了微弱的Mn的特征荧光。2001年,Norris等人采用高温有机金属盐法合成了掺杂Mn的ZnSe量子点,得到了量子产率高达22%的掺杂量子点,同时通过电子顺磁共振波谱仪证实了Mn存在于ZnSe内部。基于合成过程中掺杂元素的掺入方式的不同,彭笑刚等人将掺杂过程分为成核掺杂与生长掺杂,此后掺杂合成多采用成核与生长掺杂两种方法。目前掺杂多在有机相中合成,且反应温度一般为200-300℃,对于反应条件要求较为严格,有机相合成中使用的溶剂大多具有毒性,对环境不太友好。更为重要的是,有机相中合成的量子点生物相容性较差,而生物体系则要求量子点具有较好的水溶性,若要实现在水体系的可溶,必须经过配体交换这一步,而配体交换这一步会导致量子点量子产率的降低,甚至聚沉,所以对于生物体系而言在水溶液中合成量子点就显得尤为重要。到现在为止,许多文献报道以水为介质合成掺杂量子点,但是主要都集中在Mn,Cu掺杂ZnSe(ZnS)量子点,其它的过渡金属元素掺杂虽然采用成核掺杂或者生长掺杂模式,但结果仍然不理想。
发明内容
本发明所要解决的技术问题是提供一种水溶性过渡金属掺杂ZnSe量子点的合成方法,本发明方法是一种普适性方法,并且其反应条件更加温和,最终的产品具有更加丰富的荧光性能。
本发明提供的一种水溶性过渡金属掺杂ZnSe量子点的合成方法,包括以下步骤:
(1)选用Mn(OAc)2作为Mn源,Zn(OAc)2作为Zn源,NaHSe为硒源,巯基丙酸为配体,锌源、锰源、硒源和配体的摩尔比为1:0.02:0.5:12,合成核壳结构的MnSe/ZnSe纳米粒子;
(2)向MnSe/ZnSe纳米粒子的水溶液中,添加过渡金属离子,反应一段时间后,得到水溶性过渡金属掺杂ZnSe量子点。
具体地,步骤(1)中,向Mn(OAc)2的水溶液中加入巯基丙酸并调节溶液的pH至8.0,然后转入密闭反应器中通氮气保护30min,随后加入Se源,在室温反应5min得到MnSe纳米颗粒;加入Zn(OAc)2,在氮气保护的条件下转移到100℃油浴锅中反应30min,得到MnSe/ZnSe纳米粒子。
其中硒源由Se粉和NaBH4制备得到,具体为将Se粉与NaBH4按照1:2的摩尔比反应,在室温下反应1h得到无色透明的NaHSe溶液。
MnSe/ZnSe纳米粒子的纯化方法为:向MnSe/ZnSe纳米粒子的水溶液中加入丙酮,离心后取下层沉淀重新分散于超纯水中,随后将溶液透析得到纯化后的MnSe/ZnSe纳米粒子的水溶液。
具体地,步骤(2)中,
向MnSe/ZnSe纳米粒子的水溶液中加入CdCl2或HgCl2溶液,在室温的条件下搅拌1h,得到水溶性的Cd:ZnSe或Hg:ZnSe量子点。
其中CdCl2和MnSe/ZnSe纳米粒子的摩尔量之比为10~50:1,HgCl2和MnSe/ZnSe纳米粒子的摩尔量之比为10~30:1。
向MnSe/ZnSe纳米粒子的水溶液中加入AgNO3、CuCl2或Pb(NO3)2溶液,通入氮气30min,随后将溶液转移至100℃油浴中,反应半小时以上即得水溶性的Ag:ZnSe或Cu:ZnSe或Pb:ZnSe量子点。
其中AgNO3和MnSe/ZnSe纳米粒子的摩尔比为10~50:1,CuCl2和MnSe/ZnSe纳米粒子的摩尔比为10~70:1,Pb(NO3)2和MnSe/ZnSe纳米粒子的摩尔比为10~30:1。
本发明提供了一种新的掺杂合成的普适性方法和掺杂理念,即使用核壳结构纳米材料,采用离子置换的思路来合成掺杂量子点。传统的成核或者生长掺杂方法是通过纳米粒子的生长来包裹掺杂元素,从而实现掺杂,而本发明的合成方法则是先使纳米粒子生长完全,随后通过离子置换实现掺杂元素的自外而内掺杂。该方法分为两步,第一步为MnSe/ZnSe纳米粒子的合成,第二步向MnSe/ZnSe纳米粒子中加入阳离子盐,Cd、Hg掺杂量子点在室温下反应数小时即可得到,在加热的反应条件下可得到Ag、Cu和Pb掺杂量子点,操作简单。与传统的成核或者生长掺杂相比,该方法操作更简单,普适性更强,合成的量子点量子产率较高。
本发明的合成方法的反应温度极为温和,部分掺杂量子点在室温条件下即可合成,而且反应时间极短,可以大大降低反应的成本。
本发明的合成方法合成的掺杂量子点的掺杂量可由第二步反应加入的阳离子盐的量控制。
本发明的合成方法合成的量子点具有较高的量子产率,Ag:ZnSe量子点的量子产率可达到14%。与传统的成核或者生长掺杂相比,该方法操作更简单,普适性更强,合成的量子点量子产率较高。
本发明方法成功的把多种元素通过一种方法分别掺杂到ZnSe的晶格中,改良了量子点的光学性能。合成的掺杂量子点波长和荧光颜色可调,Ag:ZnSe量子点的荧光发射峰可由454nm红移到486nm,荧光颜色可由蓝色调到绿色。
附图说明
图1是实施例1Cd:ZnSe量子点的荧光光谱图。
图2是实施例2Hg:ZnSe量子点的荧光光谱图。
图3是实施例3Ag:ZnSe量子点的荧光光谱图。
图4是实施例4Cu:ZnSe量子点的荧光光谱图。
图5是实施例5Pb:ZnSe量子点的荧光光谱图。
具体实施方式
下面通过具体的实施例对本发明方法做进一步的详细说明,应理解,这些实施例仅是一些优选方案,权利要求书请求保护的范围并不局限于实施例。
实施例1:水相合成Cd:ZnSe量子点
将31.6mgSe粉和37.8mgNaBH4混合,注入2ml超纯水,在25℃下搅拌反应1h得到无色透明的NaHSe溶液。
将0.002mmolMn(OAc)2和1.2mmol巯基丙酸溶于40mL超纯水,然后用1mol/LNaOH调节溶液的pH至8.0,随后将混合液转入三口烧瓶中。在室温中通氮气30min以保证反应体系的惰性气氛,随后加入0.3mLNaHSe溶液,室温反应5min得到MnSe纳米粒子,接着加入0.1mmolZn(OAc)2溶液,升温至100℃,加热30min得到MnSe/ZnSe纳米粒子。
待溶液冷却至室温后,向溶液中加入CdCl2溶液,室温搅拌1h即可得到Cd:ZnSe量子点,该量子点的荧光发射峰位于503纳米。按照CdCl2:MnSe/ZnSe摩尔比为0:1,10:1,30:1和50:1的比例加入CdCl2溶液,随着CdCl2溶液加入量的增加,503nm处的荧光峰逐渐增强,这是由于CdCl2加入量的增加导致离子交换强度的增加,从而导致掺入的Cd元素量的增加。
实施例2:水相合成Hg:ZnSe量子点
将31.6mgSe粉和37.8mgNaBH4混合,注入2ml超纯水,在25℃下搅拌反应1h得到无色透明的NaHSe溶液。
将0.002mmolMn(OAc)2和1.2mmol巯基丙酸溶于40mL超纯水,然后用1mol/LNaOH调节溶液的pH至8.0,随后将混合液转入三口烧瓶中。在室温中通氮气30min以保证反应体系的惰性气氛,随后加入0.3mLNaHSe溶液,室温反应5min得到MnSe纳米粒子,接着0.1mmolZn(OAc)2溶液,升温至100℃,加热30min得到MnSe/ZnSe纳米粒子。
待溶液冷却至室温后,向溶液中加入HgCl2溶液,室温搅拌1h即可得到Hg:ZnSe量子点,该量子点的荧光发射峰位于602纳米。按照HgCl2:MnSe/ZnSe摩尔比为0:1,10:1,20:1和30:1的比例加入HgCl2溶液,随着HgCl2溶液加入量的增加,602nm处的荧光峰逐渐增强,这是由于HgCl2加入量的增加导致离子交换强度的增加,从而导致掺入的Hg元素量的增加。
实施例3:水相合成Ag:ZnSe量子点
将31.6mgSe粉和37.8mgNaBH4混合,注入2ml超纯水,在25℃下搅拌反应1h得到无色透明的NaHSe溶液。
将0.002mmolMn(OAc)2和1.2mmol巯基丙酸溶于40mL超纯水,然后用1mol/LNaOH调节溶液的pH至8.0,随后将混合液转入三口烧瓶中。在室温中通氮气30min以保证反应体系的惰性气氛,随后加入0.3mLNaHSe溶液,室温反应5min得到MnSe纳米粒子,接着0.1mmolZn(OAc)2溶液,升温至100℃,加热30min得到MnSe/ZnSe纳米粒子。
向上述反应体系中的MnSe/ZnSe纳米粒子的溶液中按照AgNO3:MnSe/ZnSe摩尔比为10:1的比例加入AgNO3溶液,并在100℃的条件下反应,每隔一段时间取样,进行光谱测定,观测反应进程。选取反应至0h,1h,2h,4h的样品测定其荧光光谱,随着反应时间的延长,Ag:ZnSe量子点的荧光峰逐渐由454nm红移到486nm,这主要是由于加热条件下Ag+进入量子点,使其在量子点中的相对位置发生改变,荧光峰位置的改变可实现荧光颜色由蓝光调节至绿光。
实施例4:水相合成Cu:ZnSe量子点
将31.6mgSe粉和37.8mgNaBH4混合,注入2ml超纯水,在25℃下搅拌反应1h得到无色透明的NaHSe溶液。
将0.002mmolMn(OAc)2和1.2mmol巯基丙酸溶于40mL超纯水,然后用1mol/LNaOH调节溶液的pH至8.0,随后将混合液转入三口烧瓶中。在室温中通氮气30min以保证反应体系的惰性气氛,随后加入0.3mLNaHSe溶液,室温反应5min得到MnSe纳米粒子,接着0.1mmolZn(OAc)2溶液,升温至100℃,加热30min得到MnSe/ZnSe纳米粒子。
向上述反应体系中的MnSe/ZnSe纳米粒子的溶液中按照CuCl2:MnSe/ZnSe摩尔比为10:1的比例加入CuCl2溶液,并在100℃的条件下反应,每隔一段时间取样,进行光谱测定,观测反应进程。选取反应至0h,0.5h,1h,2h的样品测定其荧光光谱,随着反应时间的延长其481nm处荧光峰位置不变,荧光强度显著增强。这是由于CuSe的溶度积较小,离子交换的能力较弱,在置换出Mn2+后,Cu2+难以进入更深的位置。
实施例5:水相合成Pb:ZnSe量子点
将31.6mgSe粉和37.8mgNaBH4混合,注入2ml超纯水,在25℃下搅拌反应1h得到无色透明的NaHSe溶液。
将0.002mmolMn(OAc)2和1.2mmol巯基丙酸溶于40mL超纯水,然后用1mol/LNaOH调节溶液的pH至8.0,随后将混合液转入三口烧瓶中。在室温中通氮气30min以保证反应体系的惰性气氛,随后加入0.3mLNaHSe溶液,室温反应5min得到MnSe纳米粒子,接着0.1mmolZn(OAc)2溶液,升温至100℃,加热30min得到MnSe/ZnSe纳米粒子。
向上述反应体系中的MnSe/ZnSe纳米粒子的溶液中按照Pb(NO3)2:MnSe/ZnSe摩尔比为10:1的比例加入Pb(NO3)2溶液,并在100℃的条件下反应,每隔一段时间取样,进行光谱测定,观测反应进程。选取反应至0h,1h,2h,3h的样品测定其荧光光谱,随着反应时间的延长其荧光峰由498nm红移至522nm。

Claims (7)

1.一种水溶性过渡金属掺杂ZnSe量子点的合成方法,其特征在于包括以下步骤:
(1)选用Mn(OAc)2作为Mn源,Zn(OAc)2作为Zn源,NaHSe为硒源,巯基丙酸为配体,锌源、锰源、硒源和配体的摩尔比为1:0.02:0.5:12,合成核壳结构的MnSe/ZnSe纳米粒子;
(2)向MnSe/ZnSe纳米粒子的水溶液中,添加过渡金属离子,反应一段时间后,得到水溶性过渡金属掺杂ZnSe量子点。
2.根据权利要求1所述的合成方法,其特征在于,步骤(1)中,向Mn(OAc)2的水溶液中加入巯基丙酸并调节溶液的pH至8.0,然后转入密闭反应器中通氮气保护30min,随后加入Se源,在室温反应5min得到MnSe纳米颗粒;加入Zn(OAc)2,在氮气保护的条件下转移到100℃油浴锅中反应30min,得到MnSe/ZnSe纳米粒子。
3.根据权利要求1所述的合成方法,其特征在于,其中硒源由Se粉和NaBH4制备得到,具体为将Se粉与NaBH4按照1:2的摩尔比反应,在室温下反应1h得到无色透明的NaHSe溶液。
4.根据权利要求1所述的合成方法,其特征在于,步骤(2)中,向MnSe/ZnSe纳米粒子的水溶液中加入CdCl2或HgCl2溶液,在室温的条件下搅拌1h,得到水溶性的Cd:ZnSe或Hg:ZnSe量子点。
5.根据权利要求4所述的合成方法,其特征在于,其中CdCl2和MnSe/ZnSe纳米粒子的摩尔量之比为10~50:1,HgCl2和MnSe/ZnSe纳米粒子的摩尔量之比为10~30:1。
6.根据权利要求1所述的合成方法,其特征在于,向MnSe/ZnSe纳米粒子的水溶液中加入AgNO3、CuCl2或Pb(NO3)2溶液,通入氮气30min,随后将溶液转移至100℃油浴中,反应半小时以上即得水溶性的Ag:ZnSe或Cu:ZnSe或Pb:ZnSe量子点。
7.根据权利要求6所述的合成方法,其特征在于,其中AgNO3和MnSe/ZnSe纳米粒子的摩尔比为10~50:1,CuCl2和MnSe/ZnSe纳米粒子的摩尔比为10~70:1,Pb(NO3)2和MnSe/ZnSe纳米粒子的摩尔比为10~30:1。
CN201510966336.8A 2015-12-22 2015-12-22 一种水溶性过渡金属掺杂ZnSe量子点的合成方法 Expired - Fee Related CN105542772B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510966336.8A CN105542772B (zh) 2015-12-22 2015-12-22 一种水溶性过渡金属掺杂ZnSe量子点的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510966336.8A CN105542772B (zh) 2015-12-22 2015-12-22 一种水溶性过渡金属掺杂ZnSe量子点的合成方法

Publications (2)

Publication Number Publication Date
CN105542772A true CN105542772A (zh) 2016-05-04
CN105542772B CN105542772B (zh) 2017-05-10

Family

ID=55822344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510966336.8A Expired - Fee Related CN105542772B (zh) 2015-12-22 2015-12-22 一种水溶性过渡金属掺杂ZnSe量子点的合成方法

Country Status (1)

Country Link
CN (1) CN105542772B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111909698A (zh) * 2019-05-07 2020-11-10 纳晶科技股份有限公司 一种铜掺杂合金量子点及其制备方法、量子点光电器件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986731A (zh) * 2006-12-12 2007-06-27 天津理工大学 Mn(1-X)S:AX/ZnS核/壳结构量子点及其制备方法
US20080107590A1 (en) * 2004-05-24 2008-05-08 Drexel University Water soluble quantum dots
CN101503624A (zh) * 2009-03-19 2009-08-12 吉林大学 过渡金属Mn掺杂的ZnSe量子点的水相合成方法
CN101597495A (zh) * 2009-07-21 2009-12-09 济南大学 一种ZnSe:Cu量子点的制备方法
CN102618289A (zh) * 2012-02-29 2012-08-01 东南大学 水相无毒多层核壳结构白光量子的制备方法
CN103320133A (zh) * 2013-06-19 2013-09-25 上海大学 ZnSe: Ag量子点的水相制备方法
CN103881723A (zh) * 2012-12-20 2014-06-25 深圳先进技术研究院 银掺杂硒化锌量子点、其制备方法及应用
CN104327847A (zh) * 2014-09-30 2015-02-04 东南大学 一种纯黄色荧光水溶性掺杂硒化锌量子点的制备方法
CN105018069A (zh) * 2014-04-21 2015-11-04 深圳先进技术研究院 一种具有长荧光寿命的核壳结构量子点及其水相制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080107590A1 (en) * 2004-05-24 2008-05-08 Drexel University Water soluble quantum dots
CN1986731A (zh) * 2006-12-12 2007-06-27 天津理工大学 Mn(1-X)S:AX/ZnS核/壳结构量子点及其制备方法
CN101503624A (zh) * 2009-03-19 2009-08-12 吉林大学 过渡金属Mn掺杂的ZnSe量子点的水相合成方法
CN101597495A (zh) * 2009-07-21 2009-12-09 济南大学 一种ZnSe:Cu量子点的制备方法
CN102618289A (zh) * 2012-02-29 2012-08-01 东南大学 水相无毒多层核壳结构白光量子的制备方法
CN103881723A (zh) * 2012-12-20 2014-06-25 深圳先进技术研究院 银掺杂硒化锌量子点、其制备方法及应用
CN103320133A (zh) * 2013-06-19 2013-09-25 上海大学 ZnSe: Ag量子点的水相制备方法
CN105018069A (zh) * 2014-04-21 2015-11-04 深圳先进技术研究院 一种具有长荧光寿命的核壳结构量子点及其水相制备方法
CN104327847A (zh) * 2014-09-30 2015-02-04 东南大学 一种纯黄色荧光水溶性掺杂硒化锌量子点的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NARAYAN PRADHAN,ET AL.: "An Alternative of CdSe Nanocrystal Emitters: Pure and Tunable Impurity Emissions in ZnSe Nanocrystals", 《J. AM. CHEM. SOC.》 *
YANBIN WANG,ET AL.: "One-pot synthesis of multicolor MnSe:ZnSe nanocrystals for optical coding", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
ZHIYANG HU,ET AL.: "Co-doping of Ag into Mn:ZnSe Quantum Dots: Giving Optical Filtering effect with Improved Monochromaticity", 《SCIENTIFIC REPORTS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111909698A (zh) * 2019-05-07 2020-11-10 纳晶科技股份有限公司 一种铜掺杂合金量子点及其制备方法、量子点光电器件
CN111909698B (zh) * 2019-05-07 2023-02-10 纳晶科技股份有限公司 一种铜掺杂合金量子点及其制备方法、量子点光电器件

Also Published As

Publication number Publication date
CN105542772B (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN100572500C (zh) 环糊精修饰的CdTe量子点的水相制备方法
CN105236383B (zh) 波长可调的碳量子点及其制备方法和应用
Che et al. Aqueous synthesis of high bright and tunable near-infrared AgInSe2–ZnSe quantum dots for bioimaging
CN101503624B (zh) 过渡金属Mn掺杂的ZnSe量子点的水相合成方法
CN101805606B (zh) 一种单分散近红外量子点的制备方法
CN103265948A (zh) 一种掺杂型四元多色荧光Ag-Zn-In-S量子点的制备方法
CN100572501C (zh) 近红外荧光CdTe/CdSe核壳量子点的水相层层组装制备方法
CN109761275B (zh) 一种硫化铋银空心纳米球及其制备方法
CN107350483A (zh) 一种梯度合金量子点及其制备方法
CN102643641A (zh) 水溶性Ag2S量子点的制备方法
CN105883909A (zh) 一种CsPbBrxI3-x纳米棒的制备方法
CN106833610A (zh) 一种核壳结构量子点及其制备方法
CN106905959B (zh) 一种含锰氟化物纳米晶体的制备方法
CN102031106B (zh) 一种量子点及其制备方法
CN102719240B (zh) 一种水溶性硫化物量子点的制备方法
CN103897696A (zh) 一种Cr掺杂的纳米近红外长余辉材料及其制备方法
CN103881723A (zh) 银掺杂硒化锌量子点、其制备方法及应用
CN105315996A (zh) ZnTe/ZnSe核壳型量子点及其制备方法
CN105542772A (zh) 一种水溶性过渡金属掺杂ZnSe量子点的合成方法
Che et al. Aqueous synthesis of high bright Ag2SeZnSe quantum dots with tunable near-infrared emission
CN102517339B (zh) 一种可控合成近红外Ag2Se纳米晶体的方法
CN102086397A (zh) 水相快速制备硫醇包覆的可溶性近红外CdTe量子点的方法
CN112209427B (zh) 一种锌镓酸盐介孔纳米球的制备方法
Rajashekharaiah et al. Hierarchical Bi2Zr2O7: Dy3+ architectures fabricated by bio-surfactant assisted hydrothermal route for anti-oxidant, anti-bacterial and anti-cancer activities
CN103694997B (zh) 一种合成蓝紫色发光ZnCdS/ZnS核壳结构纳米晶的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170510

Termination date: 20171222

CF01 Termination of patent right due to non-payment of annual fee