CN105453136B - 使用自动聚焦反馈进行立体侧倾校正的系统、方法及设备 - Google Patents

使用自动聚焦反馈进行立体侧倾校正的系统、方法及设备 Download PDF

Info

Publication number
CN105453136B
CN105453136B CN201480042872.2A CN201480042872A CN105453136B CN 105453136 B CN105453136 B CN 105453136B CN 201480042872 A CN201480042872 A CN 201480042872A CN 105453136 B CN105453136 B CN 105453136B
Authority
CN
China
Prior art keywords
depth
imaging sensor
image data
automatic
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480042872.2A
Other languages
English (en)
Other versions
CN105453136A (zh
Inventor
维卡斯·拉马钱德兰
卡林·米特科夫·阿塔纳索夫
鲁本·曼纽尔·维拉尔德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN105453136A publication Critical patent/CN105453136A/zh
Application granted granted Critical
Publication of CN105453136B publication Critical patent/CN105453136B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/246Calibration of cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/571Depth or shape recovery from multiple images from focus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • G06T7/85Stereo camera calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

本发明揭示用于使用自动聚焦反馈来校正立体感图像传感器对的立体侧倾的系统和方法。从由所述图像传感器对的每一传感器捕获的图像之间物体的视差来估计图像中所述物体的立体深度。从自动聚焦透镜位置找到所述物体的自动聚焦深度。如果所述立体深度与所述自动聚焦深度之间的差不为零,那么使所述图像中的一者变形,并重新计算所述视差,直到所述物体的所述立体深度和所述自动聚焦深度实质上相同为止。

Description

使用自动聚焦反馈进行立体侧倾校正的系统、方法及设备
技术领域
本发明的实施例涉及成像装置,且具体来说涉及用以校正立体感图像传感器的未对准的系统、方法和设备。
背景技术
当前,数字成像能力被集成到广泛范围的装置中,所述装置包含数字相机和移动电话。此类装置可包含捕获立体感“3D”图像的功能。装置制造商通过引入集成数字图像处理的装置以支持利用单个或多个数字成像传感器捕获立体感图像对消费者作出响应。广泛范围的电子装置(包含移动无线通信装置、个人数字助理(PDA)、个人音乐系统、数字相机、数字记录装置、视频会议系统等等)可利用立体感成像能力来向其用户提供各种能力和特征。这些包含立体感成像应用(例如3D照片和视频)。
为使观看者对立体感数据回放感到舒适,需要提供其中成像传感器经完美对准或接近完美对准的数字系统。这实现由每一成像传感器捕获的个体图像经更完美对准以提供在观看此类图像时减少眼睛压力和其它问题的立体感图像。然而,立体感图像对的此“完美”图像对准可由于重力、热量、机械装配和使用过程中的磨损而随时间偏移。这些传感器对准不完美(当存在时)可导致捕获未对准的图像,这些图像除非另外被校正否则可引起观看者的视觉不适。在某些情况下,侧倾的偏移引起深度测量误差。在其它情况下,自动聚焦精确性开始随时间偏移。在这两种情况下,都需要对未对准进行校正来提供精确深度测量和改进的立体感图像质量。
发明内容
本发明的系统、方法和装置各具有若干创新方面,所述方面中单个一者不单独负责本文中所揭示的需要的属性。本文中所描述的创新、方面及特征的组合可并入系统、方法及装置的各种实施例中,并且此类组合并不受本文中描述的实施例的实例的限制。
实施例中的某些实施例可包含用于执行立体感图像传感器对的侧倾校正的系统,所述系统包含包括一对立体感图像传感器的成像装置及控制模块。所述控制模块可经配置以使用传感器对来捕获物体的一或多个图像,从一或多个的图像来确定物体的视差,从一或多个图像来估计物体的立体感深度、设置立体感图像传感器对的自动聚焦透镜位置,在物体上执行自动聚焦功能以确定高频自动聚焦位置,从高频自动聚焦位置估计自动聚焦深度,且使用自动聚焦深度与立体感深度之间的差来估计和校正侧倾角度校正。
某些实施例可包含用于使用自动聚焦反馈进行立体感图像传感器对的侧倾校正的方法。在一个方面中,所述方法可包含提供立体感图像传感器对并用传感器对来捕获物体的一或多个图像的步骤。此方法进一步包含从一或多个图像来确定物体的视差,从一或多个图像来估计物体的立体感深度,设置立体感图像传感器对的自动聚焦透镜位置,在物体上执行自动聚焦功能以确定高频自动聚焦位置,从高频自动聚焦位置估计自动聚焦深度,且使用自动聚焦深度与立体感深度之间的差来估计和校正侧倾角度校正。
在另一实施例中,用于使用自动聚焦反馈进行立体感图像传感器对的自动聚焦透镜位置校正的方法可包含以下步骤:提供立体感图像传感器对,用传感器对来捕获物体的一或多个图像,从一或多个图像来确定物体的视差,从一或多个图像来估计物体的立体感深度,设置立体感图像传感器对的自动聚焦透镜位置,在物体上执行自动聚焦功能以确定高频自动聚焦位置,从高频自动聚焦位置来估计自动聚焦深度,且使用自动聚焦深度与立体感深度之间的差来校正自动聚焦透镜位置。
一个方面涉及用于以数字方式校正一对成像传感器的物理未对准的系统,所述系统包含包括第一成像传感器和第二成像传感器的成像装置和控制模块。所述控制模块可经配置以用所述第一成像传感器来捕获物体的第一图像数据,用所述第二成像传感器来捕获物体的第二图像数据,使用所述第一图像数据和所述第二图像数据来估计物体的第一深度,从成像装置的自动聚焦透镜位置来估计物体的第二深度,将第一深度与第二深度进行比较,且使用第一深度与第二深度之间的差来估计并校正第一成像传感器与第二成像传感器之间的未对准。控制模块可进一步经配置以通过将第一图像数据与第二图像数据进行比较来确定物体的视差。在某些方面中,使用第一图像数据和第二图像数据来估计物体的第一深度包括通过将位于第一图像数据和第二图像数据两者中的物体的关键点进行比较来确定立体感深度估计。在某些方面中,控制模块可进一步经配置以在成像装置聚焦于物体上时执行自动聚焦功能,以确定并设置第一成像传感器和第二成像传感器的自动聚焦透镜位置。在某些方面中,从成像装置的自动聚焦透镜位置来估计物体的第二深度包括使用高频图确定第一成像传感器及第二成像传感器的聚焦位置以设置第一成像传感器和第二成像传感器的自动聚焦透镜位置,且从自动聚焦透镜位置来估计自动聚焦深度。在某些方面中,在第一深度与第二深度之间的差不为零的情况下,控制模块可进一步经配置以使第一图像数据及第二图像数据中的一者变形以减少物体的视差。
在另一方面中,一种用于使用自动聚焦反馈以数字方式校正一对成像传感器的物理未对准的方法包含以下步骤:用第一成像传感器来捕获物体的第一图像数据,用第二成像传感器来捕获物体的第二图像数据,使用第一图像数据和第二图像数据来估计物体的立体感深度,从成像装置的自动聚焦透镜位置来估计物体的自动聚焦深度,将立体感深度与自动聚焦深度进行比较,且使用立体感深度与自动聚焦深度之间的差来估计并校正第一成像传感器与第二成像传感器之间的未对准。在某些方面中,所述方法进一步包含通过将第一图像数据与第二图像数据进行比较来确定物体的视差。在某些方面中,使用第一图像数据和第二图像数据来估计物体的立体感深度包含将位于第一图像数据和第二图像数据两者中的物体的关键点进行比较。在某些方面中,所述方法进一步包含当成像装置聚焦在所述物体上时执行自动聚焦功能以确定和设置第一成像传感器及第二成像传感器的自动聚焦透镜位置。在某些方面中,从成像装置的自动聚焦透镜位置来估计物体的自动聚焦深度包含使用高频图来确定第一成像传感器及第二成像传感器的聚焦位置以设置第一成像传感器和第二成像传感器的自动聚焦透镜位置,且从自动聚焦透镜位置来估计自动聚焦深度。在某些方面中,所述方法进一步包含在所述立体感深度与所述自动聚焦深度之间的差不为零的情况下使第一图像数据及第二图像数据中的一者变形以减少物体的视差。
在又一方面中,一种使用自动聚焦反馈来校正具有第一成像传感器及第二成像传感器的成像装置的自动聚焦透镜位置的方法包含以下步骤:用第一成像传感器来捕获物体的第一图像数据,用所述第二成像传感器来捕获物体的第二图像数据,使用第一图像数据和第二图像数据来估计物体的立体感深度,从成像装置的自动聚焦透镜位置来估计物体的自动聚焦深度,将立体感深度与自动聚焦深度进行比较,且使用自动聚焦深度与立体感深度之间的差来校正成像装置的自动聚焦透镜位置。在某些方面中,估计物体的立体感深度进一步包含从第一图像数据和第二图像数据确定物体的视差。在某些方面中,从自动聚焦透镜位置来估计物体的自动聚焦深度进一步包含在物体上执行自动聚焦功能以确定和设置第一成像传感器及第二成像传感器的自动聚焦透镜位置。在某些方面中,设置自动聚焦透镜位置进一步包含使用高频图来确定第一成像传感器及第二成像传感器的聚焦位置。在某些方面中,校正成像装置的自动聚焦透镜位置进一步包含在自动聚焦深度与立体感深度之间的差不为零的情况下校正自动聚焦透镜位置的距离估计。
在某些方面中,一种用于使用自动聚焦反馈以数字方式校正一对成像传感器的物理未对准的设备包含以下装置:用于用第一成像传感器来捕获物体的第一图像数据的装置,用于用第二成像传感器来捕获物体的第二图像数据的装置,用于通过将位于第一图像数据和第二图像数据两者中的物体的关键点进行比较使用第一图像数据和第二图像数据来估计物体的立体感深度的装置,用于通过使用高频图来确定第一成像传感器及第二成像传感器的聚焦位置以设置第一成像传感器及第二成像传感器的自动聚焦透镜位置从成像装置的自动聚焦透镜位置来估计物体的自动聚焦深度且从自动聚焦透镜位置来估计自动聚焦深度的装置,用于将立体感深度与自动聚焦深度进行比较的装置,及用于使用立体感深度与自动聚焦深度之间的差来估计和校正第一成像传感器与第二成像传感器之间的未对准的装置。
在另一方面中,一种用于使用自动聚焦反馈来校正成像装置的自动聚焦透镜位置及校正一对成像传感器的物理未对准的设备包括以下装置:用于用第一成像传感器来捕获物体的第一图像数据的装置,用于用第二成像传感器来捕获物体的第二图像数据的装置,用于通过从第一图像数据及第二图像数据来确定物体的视差使用第一图像数据及第二图像数据来估计物体的立体感深度的装置,用于通过在物体上执行自动聚焦功能以使用高频图确定并设置第一成像传感器和第二成像传感器的自动聚焦透镜位置来从成像装置的自动聚焦透镜位置估计物体的自动聚焦深度的装置,用于将立体感深度与自动聚焦深度进行比较的装置,及用于在自动聚焦深度及与立体感深度之间的差不为零的情况下通过校正自动聚焦透镜位置的距离估计来使用自动聚焦深度与立体感深度之间的差来校正成像装置的自动聚焦透镜位置的装置。在某些方面中,所述设备进一步包含通过将第一图像数据与第二图像数据进行比较来确定物体的视差的装置。在某些方面中,所述设备进一步包含用于在成像装置聚焦在物体上时执行自动聚焦功能以确定和设置第一成像传感器及第二成像传感器的自动聚焦透镜位置的装置。在某些方面中,所述设备进一步包含在立体感深度与自动聚焦深度之间的差不为零的情况下使第一图像数据和第二图像数据中的一者变形以减少物体的视差的装置。在某些方面中,所述设备进一步包含用于使用立体感深度与自动聚焦深度之间的差来估计并校正第一成像传感器与第二成像传感器之间的未对准的装置。
在又一方面中,一种存储指令的非暂时性计算机可读媒体,指令当被执行时,致使至少一个物理计算机处理器执行使用自动聚焦反馈以数字方式校正一对成像传感器的物理未对准的方法。所述方法包含以下步骤:用第一成像传感器来捕获物体的第一图像数据,用第二成像传感器来捕获物体的第二图像数据,使用第一图像数据和第二图像数据来估计物体的立体感深度,从成像装置的自动聚焦透镜位置来估计物体的自动聚焦深度,将立体感深度与自动聚焦深度进行比较,以及使用立体感深度与自动聚焦深度之间的差来估计并校正第一成像传感器与第二成像传感器之间的未对准。在某些方面中,所述方法进一步包含通过将第一图像数据与第二图像数据进行比较来确定物体的视差。在某些方面中,使用第一图像数据和第二图像数据来估计物体的立体感深度包含将位于第一图像数据和第二图像数据两者中的物体的关键点进行比较。在某些方面中,所述方法进一步包含在成像装置聚焦在物体上时执行自动聚焦功能以确定和设置第一成像传感器及第二成像传感器的自动聚焦透镜位置。在某些方面中,从成像装置的自动聚焦透镜位置来估计物体的自动聚焦深度包含使用高频图来确定第一成像传感器及第二成像传感器的聚焦位置以设置第一成像传感器和第二成像传感器的自动聚焦透镜位置,且从自动聚焦透镜位置来估计自动聚焦深度。在某些方面中,所述方法进一步包含在立体感深度与自动聚焦深度之间的差不为零的情况下使第一图像数据和第二图像数据中的一者变形以减少物体的视差。
在又一方面中,一种存储指令的非暂时性计算机可读媒体,指令当被执行时,致使至少一个物理计算机处理器执行使用自动聚焦反馈来校正具有第一成像传感器和第二成像传感器的成像装置的自动聚焦透镜位置的方法,所述方法包含以下步骤:用第一成像传感器来捕获物体的第一图像数据,用第二成像传感器来捕获物体的第二图像数据,使用第一图像数据和第二图像数据来估计物体的立体感深度,从成像装置的自动聚焦透镜位置来估计物体的自动聚焦深度,将立体感深度与自动聚焦深度进行比较,以及使用自动聚焦深度与立体感深度之间的差来校正成像装置的自动聚焦透镜位置。在某些方面中,估计物体的立体感深度包含从第一图像数据及第二图像数据来确定物体的视差。在某些方面中,从自动聚焦透镜位置来估计物体的自动聚焦深度进一步包含在物体上执行自动聚焦功能以确定和设置第一成像传感器及第二成像传感器的自动聚焦透镜位置。在某些方面中,设置自动聚焦透镜位置进一步包含使用高频图来确定第一成像传感器及第二成像传感器的聚焦位置。在某些方面中,校正成像装置的自动聚焦透镜位置包含在自动聚焦深度与立体感深度之间的差不为零的情况下校正自动聚焦透镜位置的距离估计。
附图说明
在下文中,所述揭示的方面将结合附图一起进行描述,提供附图以说明且不限制所述揭示的方面,其中相同标记表示相同元件。
图1A说明立体感成像系统及设备的示意图。
图1B说明安装为成像装置的部分的成像传感器对的示意图。
图1C说明其中一个成像传感器绕侧倾轴旋转(如角度A)的成像传感器对的示意图。
图2是描绘实施对成像传感器的侧倾未对准的数字校正的某些操作元件的系统的框图。
图3是描绘用以校正根据一个实施例的成像传感器的侧倾未对准的过程的高度概述的流程图。
图4说明以固定深度的归因于由立体感成像传感器所观看到的平面物体的侧倾的视差偏移的图。
图5说明用侧倾方向上未对准的立体感成像传感器观看到的矩形的水平和垂直视差。
图6图示说明针对具有侧倾未对准的成像传感器的自动聚焦深度位置与立体感深度位置之间的差。
图7是描绘用以校正根据另一实施例的立体感成像传感器的自动聚焦透镜位置的过程的高度概述的流程图。
具体实施方式
某些视觉实验表明,为了以极少的不适或压力来观看基于立体感图像的三维(3D)呈现(本文中有时称为“立体图像”,“立体感图像”或“立体感图像对”),用以捕获立体图像的“左”和“右”数字传感器应适当地与相互对准。例如,两个数字传感器的光(或传感)轴可以光学方式平行对准或实质上平行对准,例如,它们的区别仅在于已知的或容易确定的水平或垂直偏移,所述水平或垂直偏移容易通过捕获的图像的数字编辑来校正。为了实现需要的立体感效果及图像的可熔性,立体感传感器对中的成像传感器之间的水平距离(在某些实例中)大约为3.25cm。此外,成对的传感器之间优选仅有相对较小的水平或者垂直偏移。然而,在实际实践中,由于机械装配的限制、对准测量装置、重力和/或热对传感器的影响,获得对准的平行成像传感器通常是无法实现的。因此,本文中描述的某些实施例提供用于校正立体感成像传感器的主要归因于侧倾方向的传感器偏移的深度测量误差的系统和方法。
可能需要通过数字图像处理的立体感图像校准以在图像对已被捕获之后对准所述图像对。某些方法可以数字方式处理立体感图像对来产生对准的图像。将立体感图像对准可包含(例如)裁剪一个或两个图像以对立体感图像对的图像之间的水平(x轴)或垂直(y轴)偏移进行校正。立体感图像对的两个图像也可能关于“z”轴未对准,其发生于当一个成像传感器距离一个成像的场景比其它的成像传感器稍微近一些时。由于图像关于x、y或z轴的旋转,可能需要裁剪以对未对准进行校正。最后,还可能需要裁剪以调节立体感图像对中两个图像的汇聚点。
除了上文论述的两个维度x、y及z偏置之外,一对成像传感器的相对位置也可通过测量角度运动的三个轴及偏移的三个轴来描述。出于本发明的目的,x、y和z轴上的位置描述相对偏移。角度旋转可通过关于水平(x)轴(也叫作“纵倾”)、垂直(y)轴(称为“侧滚”)及(z)轴或“侧倾”的旋转来描述。
立体感相机的某些配置可具有非对称传感器,其中一个传感器是低分辨率图像传感器,且另外一个传感器是高分辨率图像传感器。在制造期间,对传感器进行校准以使得传感器图像是平行的。然而,对于某些配置来说(例如,具有高质量自动聚焦系统的相机),相机透镜位置由于重力、热量、机械装配问题或磨损而缓慢偏移。侧倾位置中的透镜位置偏移尤其可引起深度测量误差。在某些配置中,对两个成像传感器之间的侧倾角度的估计可用以校正深度测量。
对于其它配置(例如具有低质量自动聚焦系统的相机)来说,自动聚焦精确度可由于组件的磨损或用以形成组件的材料的老化而随着时间偏移。在某些配置中,使用立体成像传感器估计的场景中物体的距离或深度的测量优于使用装置中的自动聚焦系统所确定的自动聚焦深度估计。因此,在某些配置中,通过使用立体成像传感器所估计的深度可用以校正自动聚焦透镜位置。可能不需要特殊的图表或目标来校正深度误差测量和调节成像传感器的自动聚焦透镜位置。在许多情况下,不需要用户输入来执行校正。此外,在某些实施例中可能不需要立体图像的图像处理(例如关键点检测及匹配)。此外,因为自动聚焦搜索空间通常较小,且侧倾偏移通常较小,所以下文描述的过程是快速的且实时工作的。
系统概述
图1A说明系统100的实施例的示意图,系统100可用以校正由成像装置150执行的深度误差测量。所说明的系统100包含成像装置150,成像装置150包含两个成像传感器105和110。两个成像传感器110和105在本文中可称为传感器“对”,或者“左”和“右”传感器。成像传感器105和110可为可捕获光且将光转换为电信号的任何类型的传感器。在某些配置中,成像传感器105和110可为电荷耦合装置(CCD)或CMOS传感器。在所说明的实施例中,成像传感器105和110彼此邻近地安装在成像装置150上,以使得它们可捕获物体(或场景)的立体感图像。成像传感器110和105可经配置以捕获相同分辨率或不同分辨率的图像。
图1A还说明耦合到成像装置150且与成像装置150进行数据通信的图像分析系统115。参看图2进一步描述图像分析系统115的一个实例。在某些实施方案中,图像分析系统115可与成像装置150容置在一起,而在其它实施方案中,成像装置150与图像分析系统115单独容置。例如,图像分析系统115可并入成像装置150中或可为单独系统。图像分析系统115可经配置且可操作以确定安装在成像装置150上的成像传感器105和110的相对位置并确定和/或提供图像校正信息,例如,深度测量误差校正及由归因于侧倾的成像传感器105和110的视差偏移引起的水平与垂直视差的校正。在某些实施例中,图像分析系统耦合到成像装置以在图像分析系统与成像装置之间传送信息。耦合可为(例如)经由有线或无线连接。
图1B和1C说明安装作为成像装置150的部分的成像传感器105和110。图1B说明传感器105关于侧倾轴的侧倾角度旋转。图1C说明成像传感器105,所述成像传感器105经受过侧倾角度偏移(如角度A所指示的)且因此与成像传感器110相比面向稍微不同的方向。角度A说明成像传感器110与成像传感器105之间的侧倾角度视差。图1B和1C说明并排放置的成像传感器105和110的集合。然而,成像传感器105和110可处于任何方位,包含边对边、顶对底或对角的。此外,一个成像传感器105经显示具有如角度A所指示的从成像传感器110的侧倾视差。在其它实施例中,成像传感器110可具有从成像传感器105的侧倾视差。
图2说明图像分析系统115的一个实施例的框图,所述图像分析系统115具有包含与成像传感器105和110通信的处理器122的组件的集合。图像分析系统115可包含额外组件,例如,为说明的组件的清楚起见图2中未显示出来。图像分析系统115还包含工作存储器130、存储装置135、电子显示器125和存储器120,其也与处理器122通信。
图像分析系统115可为固定装置(如桌面个人计算机)或可为移动装置。在图像分析系统115上多个应用可供用户使用。这些应用可包含传统的摄影应用、高动态范围成像、全景视频或立体感成像(如3D图像或3D视频)。
处理器122可为通用处理单元或专门为成像应用设计的处理器。如所示,处理器122连接到存储器120及工作存储器130。在所说明的实施例中,存储器120存储若干模块,包含图像捕获控制模块140、立体深度计算模块145、自动聚焦控制模块155、自动聚焦深度计算模块160、侧倾角度校正模块162、操作系统165及用户接口模块170。这些模块可包含配置处理器122以执行各种图像处理及装置管理任务的指令。工作存储器130可通过处理器122用以存储包含于存储器120的模块中的工作的处理器指令集合。或者,工作存储器130也可通过处理器122用以存储图像分析系统115操作期间创建的动态数据。
仍参看图2,如上文所提及,处理器122可由存储在存储器120中的若干模块来配置。图像捕获控制模块140可包含配置处理器122以控制成像传感器105和110来捕获场景图像的指令。因此,处理器122连同图像捕获控制模块140、成像传感器105或110和工作存储器130,表示一个用于用一对立体感图像传感器来捕获物体的一或多个图像的装置。立体深度计算模块145提供配置处理器122以确定物体的所捕获的图像中的两者或两者以上内的物体的视差并估计物体的立体或立体感深度的指令,所述深度定义为如以几何方式从由所述一对图像传感器105、110获取的图像数据所确定的物体与所述传感器的距离。因此,处理器122连同立体深度计算模块145和工作存储器130,表示用于从由立体感图像传感器对105和110获取的一或多个图像估计物体的立体感深度的装置的实施例的一个实例。
自动聚焦控制模块155提供配置处理器122以通过使用图像传感器105、110来执行自动聚焦功能以(例如)搜索图像场景的最佳高频图的指令。自动聚焦深度计算模块160提供配置处理器122以基于自动聚焦系统的一或多个特征计算场景中的物体的深度的指令,所述特征例如当通过使用自动聚焦功能确定物体处于焦点中时,图像传感器105、110中每一者的位置。例如,基于自动聚焦功能期间图像传感器105、110的自动聚焦位置,可确定场景中物体的等效“真”深度或等效估计深度。自动聚焦特征可为(例如)在自动聚焦操作期间定位的成像传感器105、110中的每一者或一者的一或多个组件的物理的或光学的位置。自动聚焦位置可基于(例如)通过使用物体或场景的高频信息(例如,噪声)来确定成像传感器105和110的位置以聚焦在所述物体上。因此,处理器122连同自动聚焦控制模块155、自动聚焦深度计算模块160及工作存储器130表示用于在物体上执行自动聚焦功能以确定自动聚焦特征(例如,成像传感器的位置),及从高频自动聚焦位置来估计物体的自动聚焦深度的装置的实施例的一个实例。
侧倾角度校正模块162提供配置处理器122以计算如通过自动聚焦功能测量的深度与基于如由通过立体感成像传感器105和110获取的立体感图像所指示的物体视差的场景中物体的“深度”之间的差的指令。所述差可通过侧倾角度校正模块162用以估计和校正立体感成像传感器105和110的侧倾角度。因此,处理器122连同侧倾角度校正模块162和工作存储器130表示用于通过使用自动聚焦深度与立体感深度之间的差来估计和校正侧倾角度校正的装置的实施例的一个实例。
用户接口模块170可包含配置处理器122以在运行图像分析系统115时,在可供用户接入的电子显示器上显示信息的指令。操作系统模块165可配置处理器122以管理系统115的存储器及处理资源。例如,操作系统模块165可包含装置驱动器以管理硬件资源,例如电子显示器125或成像传感器105和110。在某些实施例中,上文所论述的图像处理模块中所包含的指令可不与这些硬件资源直接交互,但替代地可通过位于操作系统组件165中的标准子例程或API进行交互。然后,操作系统165内的指令可与这些硬件组件直接交互。
处理器122可将数据写入到存储模块130。虽然存储模块130以图形方式表示为传统的磁盘驱动,但是所述领域的技术人员将理解,多个实施例可包含基于磁盘的存储装置或存储媒体中的若干其它类型中的一者,所述存储媒体包含存储器磁盘、USB驱动、快闪驱动、远程连接的存储媒体、虚拟磁盘驱动器等等。
尽管图2描绘具有单独组件以包含处理器、两个成像传感器、电子显示器和存储器的装置的实例实施例,所属领域的技术人员将认识到,这些单独组件可以各种方式组合以实现特定的设计目的。例如,在一个替代实施例中,存储器组件可与处理器组件组合以节省成本并改进性能。
此外,尽管图2说明两个存储器组件,包含包括若干模块的存储器组件120,及包括有工作存储器的单独存储器130,所属领域的技术人员将认识到,可在各种实施例中实施利用不同的存储器架构的若干实施例。例如,设计可利用ROM或静态RAM存储器来存储实施包含于存储器120中的模块的处理器指令。在某些实施例中,处理器指令可在系统启动时从集成到图像分析系统115中或经由外部装置端口连接的磁盘存储装置中读取。接着,处理器指令可被加载到RAM中以利于由处理器执行。例如,工作存储器130可为RAM存储器,其中指令在由处理器122执行之前加载到工作存储器130中。
方法概述
本发明的实施例涉及用于校正由于立体感成像传感器(例如,如上文参看图1B和1C所描述的成像传感器105和110)的未对准的深度测量视差的方法。下文论述并入自动聚焦反馈的方法的两个实施例。对方法的选择可受电子装置的自动聚焦系统的质量影响。例如,对于具有高质量自动聚焦系统的装置,成像装置150的透镜位置可由于重力和热效应以及机械装配的不精确和使用过程中的磨损而缓慢偏移。因此可使用高质量的自动聚焦系统来估计侧倾角度。在另一实例中,对于具有低质量自动聚焦系统的装置,装置的自动聚焦精确度可随时间开始偏移。因此,使用立体成像估计的深度可能好于自动聚焦深度估计且因而,立体成像深度可用以校正成像装置150的自动聚焦透镜位置。
图3说明可在图2中描绘的若干模块中实施的用以校正立体侧倾的过程300的一个实施例。各种实施例可包含图3中未描绘的额外动作和/或仅仅是图3中说明的某些动作。在某些实施例中,过程300可用以估计和校正具有高质量自动聚焦系统的装置的立体感图像对的侧倾角度对准。在某些实例中,过程300可运行于处理器(例如,处理器122(图2))上,且可运行于图2中说明的存储在存储器120中或并入其它硬件或软件中的其它组件上。过程300在开始方框302处开始,并转到其中提供立体感图像传感器对的方框304。图像传感器对可提供于(例如)照相机中,可并入手持式通信装置中(如,蜂窝电话或“智能电话”,或包含平板计算机的移动个人数据助理(PDA))。
然后,过程300转到方框306,其中固定一个成像传感器的焦点(如图2中显示的成像传感器105),且允许其它成像传感器焦点根据需要改变(如图2中显示的成像传感器110)。然而,在其它实施例中,成像传感器110的焦点可为固定的,且其它的成像传感器105的焦点可根据需要改变。任一成像传感器105或110的焦点可为固定的或移动的。然后过程300转到方框308,其中在启用了中心焦点的成像传感器105、110的视场的中心中引入物体。过程300接着转到方框310,其中从由成像传感器105、110获取的图像数据找到物体的视差。在某些实施例中,可通过确定物体的一或多个关键点,且匹配由成像传感器对中的每一传感器所获取的图像中的关键点位置来找到视差。关键点可为物体的特定展现唯一特征的显著区域。例如,展现特定图案或边缘的区域可定义为关键点。关键点匹配可包含一对点,其中一个点是在第一图像中识别的,且第二个点是在第二图像中识别的。
图4中以图形方式显示由于侧倾的视差偏移的一个实例。图4的x轴说明图像传感器105和110视场的部分。图4的y轴说明侧倾视差角度A。当用对准的图像传感器105和110观看平面物体时,平面物体应呈现为单个直线,如线410。换句话说,如果平面物体与照相机在一条直线上且图像传感器105和110是对准的,那么视差应为恒定的。如果图像传感器105和110之间存在某一视差角度A,那么平面物体应呈现为曲线,例如线405。线405表示侧倾角度等于11度的情况下在固定深度下的平面物体的视差偏移。线410说明预期的在两个成像传感器之间没有侧倾角度差的恒定视差。图像传感器之间的视差偏移可导致观看图像的用户的不适。
图5说明当两个成像传感器之间存在侧倾视差时所得的立体感图像。在存在侧倾角度视差时,矩形变为梯形,从而伸展或压缩水平视差,且改变拐角处的垂直视差。
在确定由例如成像传感器105、110的成像传感器对的每一传感器所获取的图像之间的物体的视差之后,过程300转到方框312,其中使用视差来估计物体的立体深度。在某些实施例中,可如下计算立体深度:
Depth_stereo=基线*焦距/视差,
其中基线是立体感成像传感器对的两个成像传感器之间的距离。
再参看图3,在确定物体的立体深度之后,过程300转到方框314,其中处理器122指令成像装置150的自动聚焦特征运行以设置成像传感器105、110的自动聚焦透镜位置。接着过程300转到方框316,其中处理器122指令成像装置150扫过自动聚焦位置以确定产生(例如)最大高频图的成像传感器105、110中的一者或多者的位置(或设置)。接着过程300转到方框318,其中如由自动聚焦特征计算的物体的自动聚焦“深度”可使用自动聚焦信息(例如,在自动聚焦过程期间计算的统计值)来找到。
图6中显示自动聚焦统计值的一个实例。具有最高频自动聚焦分数的聚焦位置(如由图6中所显示的图的y轴所指示)指示其中图像是最清晰的位置。为确定具有最高频分数的自动聚焦深度位置,引导自动聚焦功能以扫过不同聚焦值。使用清晰度检测器,指示图像的清晰度,且自动聚焦统计值将指示在什么自动聚焦位置,图像是最清晰的。基于如由高频分数的最大数目所指示的最佳自动聚焦位置,找到物体的等效“真”深度或自动聚焦深度(Depth_AF)。
在图3中说明的过程300的下一方框320中,将物体的Depth_AF与物体的Depth_stereo进行比较。如果两个深度不相等,那么存在侧倾角度视差,且过程300转到其中估计侧倾角度校正的方框322。过程300接着转到方框324,其中基于两个成像传感器105、110之间的所估计的侧倾角度差来投射由成像传感器105、110中的一个传感器所获取的图像,或使图像变形以针对侧倾角度差进行校正。通过确定视差并估计物体的深度,过程300在方框310处开始重复,直到如由自动聚焦统计值所计算的物体的Depth_AF和物体的Depth_stereo相等为止。当物体的自动聚焦深度和立体深度相等时,侧倾视差已被校正,且过程300转到方框326并且结束。
在可特定用于具有较差或低质量自动聚焦系统的成像装置的另一实施例中,自动聚焦精确性可随时间偏移。在某些实施例中,使用立体深度估计而不是自动聚焦深度估计对成像的场景中的物体的所估计深度的测量更精确。在这些实施例中,立体深度测量可用以校正成像装置150的自动聚焦透镜位置。用以使用所估计的立体深度测量来校正自动聚焦透镜位置的过程的一个实施例显示于图7中。
图7说明如可在图2中所描绘的若干模块中实施的用以校正自动聚焦透镜位置的过程700的一个实施例。过程700可在某些实施例中用以估计和校正带有具有立体感成像传感器对的低质量自动聚焦系统的成像装置的自动聚焦位置。在某些实例中,过程700可在处理器(例如,处理器122(图2))上运行,且可在图2中说明的存储于存储器120中或并入其它硬件或软件中的其它组件上运行。过程700在开始方框702处开始,并转到方框704,其中提供例如具有成像传感器对105、110的成像装置150的成像装置。过程700接着转到方框706,其中固定一个成像传感器105、110的焦点,且允许其它成像传感器焦点改变。任一成像传感器105或110的焦点可为固定的或移动的。过程700接着转到方框708,其中在启用了中心焦点的成像传感器105、110的视场的中心中引入物体。过程700接着转到方框710,其中从由成像传感器对获取的图像数据找到物体的视差。在某些实施例中,可通过确定物体的一或多个关键点并匹配由成像传感器对的每一传感器所获取的图像数据中的关键点位置来找到视差。关键点可为物体的特定展现唯一特征的显著区域。例如,可将展现特定图案或边缘的区域定义为关键点。关键点匹配可包含一对点,其中一个点是在第一图像中识别的,且第二个点是在第二图像中识别的。
在确定由成像传感器对中的每一传感器获取的图像数据之间的物体的视差之后,过程700转到方框712,其中使用视差来估计物体的立体深度。在某些实施例中,立体深度可计算如下:
Depth_stereo=基线*焦距/视差,
其中基线是立体感成像传感器对的两个成像传感器之间的距离。
在确定物体的立体深度之后,过程700转到方框714,其中可启动成像装置的自动聚焦特征以确定自动聚焦透镜位置。过程700接着转到方框716,其中成像装置可扫过成像传感器的两个或两个以上自动聚焦位置,以搜索最佳高频图。过程700接着转到方框718,其中如由自动聚焦特征所计算的物体的自动聚焦深度可从自动聚焦统计值找到。如上文所论述,自动聚焦统计值的一个实例显示于图6中。基于由高频分数的最大数目所指示的最佳自动聚焦位置,找到物体的等效“真”深度或Depth_AF。
在图7中显示的过程700的下一方框720中,将Depth_AF与Depth_stereo进行比较。如果两个深度不相等,那么可校正自动聚焦透镜位置,且过程700转到方框714,其中通过设置成像传感器的新自动聚焦位置来继续进行过程700,且重复过程700,直到如使用如由自动聚焦统计值确定的最佳自动聚焦位置所计算的物体的Depth_AF与从成像传感器的图像数据之间的视差所计算的物体的Depth_stereo相等为止。当自动聚焦深度和立体深度相等(或基本上相等)时,过程700转到方框726并结束。
关于术语的阐释
除非由其上下文明确限制,术语“信号”在本文中用以指示其普通含义中的任何含义,包含如在线、总线或者其它传输媒体上表达的存储器位置(或存储器位置集合)的状态。除非由其上下文明确限制,否则术语“产生”在本文中用以指示其普通含义中的任何含义,例如计算或者以其它方式生成。除非由其上下文明确限制,否则术语“计算”在本文中用以指示其普通含义中的任何含义,例如计算、评估、平滑、及/或从多个值中进行选择。除非由其上下文明确限制,否则术语“获得”用以指示其普通含义中的任何含义,例如计算、推导、接收(例如,从外部装置),及/或检索(例如,从存储元件的阵列)。除非由其上下文明确限制,否则术语“选择”用以指示其普通含义中的任何含义,例如识别、指示、施加及/或使用两个或两个以上组成的集合中的至少一者及一些而不是全部。当在本说明书和权利要求书中使用术语“包括”时,其不排除其它元件或操作。术语“基于”(如在“A基于B”中)用以指示其普通含义中的任何含义,包括以下情况(i)“从…推导”(例如,“B是A的前导”),(ii)“至少基于”(如,“A至少基于B”)及,如果在特定上下文中恰当的话,(iii)“等于”(如,“A等于B”)。类似地,术语“响应于”用以指示其普通含义中的任何含义,包括“响应于至少”。
除非另外指示,否则对具有特定特征的设备的操作的任何揭示同样明确意在揭示具有类似特征的方法(且反之亦然),且对根据特定配置的设备的操作的任何揭示同样明确意在揭示根据类似配置的方法(且反之亦然)。术语“配置”可参考地用于如由其特定上下文所指示的方法、设备及/或系统。术语“方法”、“过程”、“程序”和“技术”一般且互换使用,除非另外由特定上下文所指示。术语“设备”和“装置”同样一般且互换使用,除非另外由特定上下文所指示。术语“元件”和“模块”通常用以指示较大配置的一部分。除非由其上下文明确限制,术语“系统”在本文中用以指示其普通含义中的任何含义,包含“互相作用以服务共同目的的元件的群组”。通过参考一份文件的一部分的任何并入均应被理解为并入所述部分内所参考的术语或变量的定义(其中此类定义在文件中任何其它地方出现)以及所并入部分中所参考的任何图式。
所属领域的技术人员将进一步了解,结合本文中所揭示的实施方案所描述的各种说明性逻辑块、模块、电路和过程步骤可实施为电子硬件、计算机软件或者两者的组合。为清楚地说明硬件和软件的此可互换性,上文已在其功能性方面大体描述了各种说明性组件、块、模块、电路和步骤。此功能性是实施为硬件还是软件取决于施加于整个系统上的特定应用和设计约束。技术人员可针对每一特定应用以各种方式实施所描述的功能性,但此类实施方案决策不应被阐释为导致脱离本发明的范围。所属领域的技术人员将认识到,一部分可包括比全部少一些的事物,或者等于全部。例如,像素的集合的一部分可指那些像素的子集合。
结合本文中所揭示的实施方案所描述的各种说明性逻辑块、模块和电路可用以下各项来实施或执行:通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑装置、离散门或晶体管逻辑、离散硬件组件、或经设计以执行本文中所描述功能的其任何组合。通用处理器可为微处理器,但替代地,处理器可为任何常规的处理器、控制器、微控制器或状态机。处理器也可实施为计算装置的组合,如,DSP和微处理器、多个微处理器、结合DSP核心的一或多个微处理器,或任何其它此配置的组合。
结合本文中所揭示的实施方案所描述的方法或过程的步骤可直接在硬件、由处理器执行的软件模块或两者的组合中实施。软件模块可驻留在RAM存储器、快闪存储器、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬磁盘、可移除磁盘、CD-ROM、或所属领域中已知的任何其它形式的非暂时性存储媒体中。示范性计算机可读存储媒体耦合到处理器,所述处理器可从计算机可读存储媒体读取信息,并将信息写入到计算机可读存储媒体。替代地,存储媒体可与处理器为一体。处理器和存储媒体可驻留在ASIC中。ASIC可驻留在用户终端、相机或其它装置中。替代地,处理器和存储媒体可作为离散组件驻留在用户终端、相机或其它装置中。
本文中包括标题用于参考,且为辅助定位各种章节。这些标题无意限制关于其所描述的概念的范围。此类概念可具有贯穿整个说明书的适用性。
提供所揭示的实施方案的先前描述以使所属领域的任何技术人员能够制作或使用本发明。这些实施方案的各种修改对于所属领域的技术人员来说将显而易见,且本文中所定义的一般原理可应用于其它实施方案而不脱离本发明的精神或范围。因此,本发明无意受限于本文中所显示的实施方案,而是将被赋予与本文中所揭示的原理和新颖特征相一致的最广范围。

Claims (9)

1.一种用于以数字方式校正一对成像传感器之间的侧倾角视差的系统,其包括:
控制模块,其经配置以:
从第一成像传感器获得物体的第一图像数据;
从第二成像传感器获得所述物体的第二图像数据;
使用所述第一图像数据及所述第二图像数据来确定所述物体的立体感第一深度;
从所述第一成像传感器和所述第二成像传感器的自动聚焦透镜位置来确定所述物体的自动聚焦第二深度;
将所述第一深度与所述第二深度进行比较;且
经由以下操作基于所述第一深度与所述第二深度之间的差来以数字方式校正所述第一成像传感器与所述第二成像传感器之间的所述侧倾角视差:通过基于所述第一深度和所述第二深度之间的所述差反复估计侧倾角校正,且基于所估计的侧倾角校正而投射或变形由所述对成像传感器中的一者所捕获的图像数据,直到所述第一深度和所述第二深度相等为止。
2.根据权利要求1所述的系统,其中所述控制模块进一步经配置以通过将所述第一图像数据与所述第二图像数据进行比较来确定所述物体的视差。
3.根据权利要求1所述的系统,其中使用所述第一图像数据和所述第二图像数据来估计所述物体的所述第一深度包括通过将位于所述第一图像数据和所述第二图像数据两者中的所述物体的关键点进行比较来确定立体感深度估计。
4.根据权利要求1所述的系统,其进一步包括成像装置,其包括所述第一成像传感器及所述第二成像传感器。
5.根据权利要求4所述的系统,其中所述控制模块进一步经配置以在所述成像装置聚焦于所述物体上时执行自动聚焦功能,来确定并设置所述第一成像传感器和所述第二成像传感器的所述自动聚焦透镜位置。
6.根据权利要求1所述的系统,其中估计所述物体的所述第二深度包括使用高频图来确定所述第一成像传感器及所述第二成像传感器的聚焦位置以设置所述第一成像传感器和所述第二成像传感器的所述自动聚焦透镜位置,以及从所述自动聚焦透镜位置来估计自动聚焦深度。
7.根据权利要求1所述的系统,其中所述控制模块进一步经配置以在所述第一深度与所述第二深度之间的所述差不为零的情况下使所述第一图像数据和所述第二图像数据中的一者变形以减少所述物体的所述视差。
8.一种用于使用自动聚焦反馈以数字方式校正一对成像传感器的侧倾角视差的方法,其包括:
从第一成像传感器获得物体的第一图像数据;
从第二成像传感器获得所述物体的第二图像数据;
使用所述第一图像数据和所述第二图像数据来确定所述物体的立体感深度;
从所述第一成像传感器和所述第二成像传感器的自动聚焦透镜位置来确定所述物体的自动聚焦深度;
将所述立体感深度与所述自动聚焦深度进行比较;以及
经由以下操作使用所述立体感深度与所述自动聚焦深度之间的差来以数字方式校正所述第一成像传感器与所述第二成像传感器之间的所述侧倾角视差:基于所述立体感深度和所述自动聚焦深度之间的所述差反复估计侧倾角校正,且基于所估计的侧倾角校正而投射或变形由所述对成像传感器中的一者所捕获的图像数据,直到所述立体感深度和所述自动聚焦深度相等为止。
9.一种存储指令的非易失性计算机可读媒体,所述指令在执行时可导致根据权利要求1所述的系统来执行根据权利要求8所述的方法。
CN201480042872.2A 2013-08-16 2014-08-05 使用自动聚焦反馈进行立体侧倾校正的系统、方法及设备 Active CN105453136B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361866950P 2013-08-16 2013-08-16
US61/866,950 2013-08-16
US14/250,798 US10178373B2 (en) 2013-08-16 2014-04-11 Stereo yaw correction using autofocus feedback
US14/250,798 2014-04-11
PCT/US2014/049776 WO2015023475A1 (en) 2013-08-16 2014-08-05 Stereo yaw correction using autofocus feedback

Publications (2)

Publication Number Publication Date
CN105453136A CN105453136A (zh) 2016-03-30
CN105453136B true CN105453136B (zh) 2019-08-09

Family

ID=52466554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480042872.2A Active CN105453136B (zh) 2013-08-16 2014-08-05 使用自动聚焦反馈进行立体侧倾校正的系统、方法及设备

Country Status (6)

Country Link
US (1) US10178373B2 (zh)
EP (1) EP3033733B1 (zh)
JP (1) JP2016533105A (zh)
KR (1) KR20160043995A (zh)
CN (1) CN105453136B (zh)
WO (1) WO2015023475A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9485495B2 (en) 2010-08-09 2016-11-01 Qualcomm Incorporated Autofocus for stereo images
US9438889B2 (en) 2011-09-21 2016-09-06 Qualcomm Incorporated System and method for improving methods of manufacturing stereoscopic image sensors
US9398264B2 (en) 2012-10-19 2016-07-19 Qualcomm Incorporated Multi-camera system using folded optics
US9374516B2 (en) 2014-04-04 2016-06-21 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US9383550B2 (en) 2014-04-04 2016-07-05 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US10013764B2 (en) 2014-06-19 2018-07-03 Qualcomm Incorporated Local adaptive histogram equalization
US9549107B2 (en) 2014-06-20 2017-01-17 Qualcomm Incorporated Autofocus for folded optic array cameras
US9541740B2 (en) 2014-06-20 2017-01-10 Qualcomm Incorporated Folded optic array camera using refractive prisms
US9819863B2 (en) 2014-06-20 2017-11-14 Qualcomm Incorporated Wide field of view array camera for hemispheric and spherical imaging
US9386222B2 (en) 2014-06-20 2016-07-05 Qualcomm Incorporated Multi-camera system using folded optics free from parallax artifacts
US9294672B2 (en) 2014-06-20 2016-03-22 Qualcomm Incorporated Multi-camera system using folded optics free from parallax and tilt artifacts
TWI554098B (zh) * 2014-10-07 2016-10-11 緯創資通股份有限公司 錄影裝置與錄影方法
US9832381B2 (en) 2014-10-31 2017-11-28 Qualcomm Incorporated Optical image stabilization for thin cameras
US20160295097A1 (en) * 2015-03-31 2016-10-06 Qualcomm Incorporated Dual camera autofocus
US9609242B2 (en) * 2015-06-25 2017-03-28 Intel Corporation Auto-correction of depth-sensing camera data for planar target surfaces
WO2017197630A1 (en) * 2016-05-19 2017-11-23 SZ DJI Technology Co., Ltd. Autofocus initialization based on target detection
US10321114B2 (en) * 2016-08-04 2019-06-11 Google Llc Testing 3D imaging systems
KR102529928B1 (ko) 2016-09-22 2023-05-09 삼성전자주식회사 스테레오 카메라의 교정 방법 및 이를 수행하는 전자 장치
KR102672599B1 (ko) 2016-12-30 2024-06-07 삼성전자주식회사 Af 방법 및 이를 수행하는 전자 장치
US11463677B2 (en) 2017-07-13 2022-10-04 Samsung Electronics Co., Ltd. Image signal processor, image processing system and method of binning pixels in an image sensor
US10412362B2 (en) * 2017-07-27 2019-09-10 Qualcomm Incorporated Active alignment correction for optical systems
JP6970577B2 (ja) * 2017-09-29 2021-11-24 株式会社デンソー 周辺監視装置および周辺監視方法
CN108057645B (zh) * 2018-02-07 2024-01-23 合肥美亚光电技术股份有限公司 色选机的相机调准装置及其控制方法
EP3718302B1 (en) * 2018-04-02 2023-12-06 Samsung Electronics Co., Ltd. Method and system for handling 360 degree image content
US10410368B1 (en) * 2018-09-27 2019-09-10 Qualcomm Incorporated Hybrid depth processing
US11818462B2 (en) * 2019-08-30 2023-11-14 Qualcomm Incorporated Phase detection autofocus sensor apparatus and method for depth sensing
US11284018B1 (en) * 2020-09-15 2022-03-22 Applied Materials, Inc. Smart camera substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902657A (zh) * 2010-07-16 2010-12-01 浙江大学 一种基于深度图分层的虚拟多视点图像的生成方法

Family Cites Families (316)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA927646A (en) 1970-09-09 1973-06-05 Watanuki Toshio Camera for taking hemispherical motion picture
US4114171A (en) 1976-04-06 1978-09-12 Vivitar Corporation Reflex camera with internal zoom lens
US4437745A (en) 1982-09-30 1984-03-20 Stephen Hajnal Three dimensional camera system
JPS60213178A (ja) 1984-04-06 1985-10-25 Olympus Optical Co Ltd 撮像装置
GB8430980D0 (en) 1984-12-07 1985-01-16 Robinson M Generation of apparently three-dimensional images
US4639586A (en) 1985-02-06 1987-01-27 The United States Of America As Represented By The Secretary Of The Air Force Optically phased laser transmitter
US4740780A (en) 1985-06-24 1988-04-26 Gec Avionics, Inc. Head-up display for automobile
US5012273B1 (en) 1986-05-12 1996-10-01 Asahi Optical Co Ltd Lens shutter type of camera including zoom lens
US4890314A (en) 1988-08-26 1989-12-26 Bell Communications Research, Inc. Teleconference facility with high resolution video display
US6031892A (en) 1989-12-05 2000-02-29 University Of Massachusetts Medical Center System for quantitative radiographic imaging
US5194959A (en) 1989-12-21 1993-03-16 Ricoh Company, Ltd. and Nippon Telegraph and Telephone Corporation Image forming apparatus for forming image corresponding to subject, by dividing optical image corresponding to the subject into plural adjacent optical image parts
US5016109A (en) 1990-07-02 1991-05-14 Bell South Corporation Apparatus and method for segmenting a field of view into contiguous, non-overlapping, vertical and horizontal sub-fields
US5142357A (en) 1990-10-11 1992-08-25 Stereographics Corp. Stereoscopic video camera with image sensors having variable effective position
US5063441A (en) 1990-10-11 1991-11-05 Stereographics Corporation Stereoscopic video cameras with image sensors having variable effective position
US5207000A (en) 1991-06-14 1993-05-04 Industrial Technology Research Institute Method and apparatus useful for determining an angle between a virtual optical axis and a planar surface
US5231461A (en) 1991-12-09 1993-07-27 Hughes Danbury Optical Systems, Inc. Solar monochromator for filter calibration
US5926411A (en) 1991-12-30 1999-07-20 Ioptics Incorporated Optical random access memory
US5686960A (en) 1992-01-14 1997-11-11 Michael Sussman Image input device having optical deflection elements for capturing multiple sub-images
DE4212271C1 (zh) 1992-04-11 1993-07-08 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V., 5300 Bonn, De
US5243413A (en) 1992-09-02 1993-09-07 At&T Bell Laboratories Color parallax-free camera and display
US5313542A (en) 1992-11-30 1994-05-17 Breault Research Organization, Inc. Apparatus and method of rapidly measuring hemispherical scattered or radiated light
JP2888713B2 (ja) 1993-01-14 1999-05-10 キヤノン株式会社 複眼撮像装置
DE69312257T2 (de) 1993-02-11 1998-01-29 Agfa Gevaert Nv Strahlungsfelderkennungsverfahren
US5586063A (en) 1993-09-01 1996-12-17 Hardin; Larry C. Optical range and speed detection system
US5614941A (en) 1993-11-24 1997-03-25 Hines; Stephen P. Multi-image autostereoscopic imaging system
GB2284273B (en) 1993-11-29 1997-01-08 Hadland Photonics Limited Electronic high speed camera incorporating a beam splitter
JPH089424A (ja) 1994-06-20 1996-01-12 Sanyo Electric Co Ltd 立体画像撮像制御装置
JP3186448B2 (ja) 1994-08-01 2001-07-11 ミノルタ株式会社 立体テレビカメラ
JP3458486B2 (ja) 1994-10-25 2003-10-20 松下電器産業株式会社 全方位撮影装置及び全方位画像合成装置
KR100235343B1 (ko) 1994-12-29 1999-12-15 전주범 영역분할 기법을 이용한 동영상신호 부호화기의 움직임 벡터 측정장치
JPH08194274A (ja) 1995-01-13 1996-07-30 Olympus Optical Co Ltd 立体撮像装置
US5606627A (en) 1995-01-24 1997-02-25 Eotek Inc. Automated analytic stereo comparator
US5990934A (en) 1995-04-28 1999-11-23 Lucent Technologies, Inc. Method and system for panoramic viewing
US5745305A (en) 1995-04-28 1998-04-28 Lucent Technologies Inc. Panoramic viewing apparatus
US5793527A (en) 1995-06-30 1998-08-11 Lucent Technologies Inc. High resolution viewing system
US5539483A (en) 1995-06-30 1996-07-23 At&T Corp. Panoramic projection apparatus
JPH0946729A (ja) 1995-08-01 1997-02-14 Olympus Optical Co Ltd 立体撮像装置
US5903306A (en) 1995-08-16 1999-05-11 Westinghouse Savannah River Company Constrained space camera assembly
US6115176A (en) 1995-11-30 2000-09-05 Lucent Technologies Inc. Spherical viewing/projection apparatus
US6111702A (en) 1995-11-30 2000-08-29 Lucent Technologies Inc. Panoramic viewing system with offset virtual optical centers
US6141034A (en) 1995-12-15 2000-10-31 Immersive Media Co. Immersive imaging method and apparatus
JPH09214992A (ja) 1996-02-06 1997-08-15 Asahi Optical Co Ltd 撮像装置
US5640222A (en) 1996-03-15 1997-06-17 Paul; Eddie Method and apparatus for producing stereoscopic images
US6850279B1 (en) 1996-06-18 2005-02-01 Sony Corporation Optical image recording system, and associated processing system
US5721585A (en) 1996-08-08 1998-02-24 Keast; Jeffrey D. Digital video panoramic image capture and display system
JPH10142490A (ja) 1996-11-15 1998-05-29 Canon Inc 環境認識装置及びカメラ
WO1998047291A2 (en) 1997-04-16 1998-10-22 Isight Ltd. Video teleconferencing
US7028899B2 (en) 1999-06-07 2006-04-18 Metrologic Instruments, Inc. Method of speckle-noise pattern reduction and apparatus therefore based on reducing the temporal-coherence of the planar laser illumination beam before it illuminates the target object by applying temporal phase modulation techniques during the transmission of the plib towards the target
DE19903807A1 (de) 1998-05-05 1999-11-11 Zeiss Carl Fa Beleuchtungssystem insbesondere für die EUV-Lithographie
JP3745117B2 (ja) 1998-05-08 2006-02-15 キヤノン株式会社 画像処理装置及び画像処理方法
US6144501A (en) 1998-08-28 2000-11-07 Lucent Technologies Inc. Split mirrored panoramic image display
US6195204B1 (en) 1998-08-28 2001-02-27 Lucent Technologies Inc. Compact high resolution panoramic viewing system
US6285365B1 (en) 1998-08-28 2001-09-04 Fullview, Inc. Icon referenced panoramic image display
US6141145A (en) 1998-08-28 2000-10-31 Lucent Technologies Stereo panoramic viewing system
US6128143A (en) 1998-08-28 2000-10-03 Lucent Technologies Inc. Panoramic viewing system with support stand
US6992700B1 (en) 1998-09-08 2006-01-31 Ricoh Company, Ltd. Apparatus for correction based upon detecting a camera shaking
US7271803B2 (en) 1999-01-08 2007-09-18 Ricoh Company, Ltd. Method and system for simulating stereographic vision
US6611289B1 (en) 1999-01-15 2003-08-26 Yanbin Yu Digital cameras using multiple sensors with multiple lenses
US7015954B1 (en) 1999-08-09 2006-03-21 Fuji Xerox Co., Ltd. Automatic video system using multiple cameras
JP3587506B2 (ja) 1999-08-30 2004-11-10 富士重工業株式会社 ステレオカメラの調整装置
GB2354389A (en) 1999-09-15 2001-03-21 Sharp Kk Stereo images with comfortable perceived depth
GB2354390A (en) 1999-09-16 2001-03-21 Ibm Wide-angle image capture apparatus
US6650774B1 (en) 1999-10-01 2003-11-18 Microsoft Corporation Locally adapted histogram equalization
US6862364B1 (en) 1999-10-27 2005-03-01 Canon Kabushiki Kaisha Stereo image processing for radiography
US6782137B1 (en) 1999-11-24 2004-08-24 General Electric Company Digital image display improvement system and method
JP2001194114A (ja) 2000-01-14 2001-07-19 Sony Corp 画像処理装置および画像処理方法、並びにプログラム提供媒体
JP2001209037A (ja) 2000-01-26 2001-08-03 Olympus Optical Co Ltd 可変ホログラム素子及びそれらを用いた光学装置
US6823021B1 (en) 2000-10-27 2004-11-23 Greenwich Technologies Associates Method and apparatus for space division multiple access receiver
US6701081B1 (en) 2000-06-06 2004-03-02 Air Controls, Inc. Dual camera mount for stereo imaging
US6768509B1 (en) 2000-06-12 2004-07-27 Intel Corporation Method and apparatus for determining points of interest on an image of a camera calibration object
AU2002226873A1 (en) 2000-07-14 2002-04-08 Applied Wdm, Inc. Optical waveguide transmission devices
JP2002040584A (ja) 2000-07-28 2002-02-06 Hamamatsu Photonics Kk 高速撮像カメラ
JP2002158913A (ja) 2000-11-16 2002-05-31 Canon Inc 撮像装置及び撮像方法
IL139995A (en) 2000-11-29 2007-07-24 Rvc Llc System and method for spherical stereoscopic photographing
EP1231780A3 (en) 2001-02-07 2004-01-14 Sony Corporation Image pickup apparatus
GB2372659A (en) 2001-02-23 2002-08-28 Sharp Kk A method of rectifying a stereoscopic image
JP2002277736A (ja) 2001-03-21 2002-09-25 Olympus Optical Co Ltd 撮像装置
US6421185B1 (en) 2001-04-16 2002-07-16 The United States Of America As Represented By The Secretary Of The Air Force Wide field-of-view imaging system using a spatial light modulator
JP2004532526A (ja) 2001-05-03 2004-10-21 マシモ・コーポレイション フレックス回路シールド光学センサ及び該フレックス回路シールド光学センサを製造する方法
US6628897B2 (en) 2001-06-20 2003-09-30 Sony Corporation Camera system
EP1427191A4 (en) 2001-08-17 2006-08-16 Sony Corp PICTURE SETUP
US20030038814A1 (en) 2001-08-27 2003-02-27 Blume Leo R. Virtual camera system for environment capture
US7116351B2 (en) 2001-10-29 2006-10-03 Sony Corporation Imaging device
JP4198449B2 (ja) 2002-02-22 2008-12-17 富士フイルム株式会社 デジタルカメラ
JP2003260025A (ja) 2002-03-08 2003-09-16 Olympus Optical Co Ltd カプセル型内視鏡
US6768598B2 (en) 2002-04-02 2004-07-27 Sony Corporation Image pickup system
US6861633B2 (en) 2002-06-20 2005-03-01 The Aerospace Corporation Microelectromechanical system optical sensor providing bit image data of a viewed image
US7298392B2 (en) 2003-06-26 2007-11-20 Microsoft Corp. Omni-directional camera design for video conferencing
US7209161B2 (en) 2002-07-15 2007-04-24 The Boeing Company Method and apparatus for aligning a pair of digital cameras forming a three dimensional image to compensate for a physical misalignment of cameras
KR100996094B1 (ko) 2002-07-18 2010-11-22 소니 주식회사 촬상 데이터 처리 방법, 촬상 데이터 처리 장치, 및 컴퓨터 프로그램이 기록된 기록 매체
JP2004072349A (ja) 2002-08-05 2004-03-04 Canon Inc 撮像装置、及びその制御方法
US7893957B2 (en) 2002-08-28 2011-02-22 Visual Intelligence, LP Retinal array compound camera system
JP2004260787A (ja) 2002-09-09 2004-09-16 Rohm Co Ltd イメージセンサモジュール
US7084904B2 (en) 2002-09-30 2006-08-01 Microsoft Corporation Foveated wide-angle imaging system and method for capturing and viewing wide-angle images in real time
AU2003302166A1 (en) 2003-01-02 2004-07-29 Covi Technologies, Inc. Optical block assembly
US6933493B2 (en) 2003-04-07 2005-08-23 Kingpak Technology Inc. Image sensor having a photosensitive chip mounted to a metal sheet
IL155525A0 (en) 2003-04-21 2009-02-11 Yaron Mayer System and method for 3d photography and/or analysis of 3d images and/or display of 3d images
JP3709879B2 (ja) 2003-05-01 2005-10-26 日産自動車株式会社 ステレオ画像処理装置
US7463280B2 (en) 2003-06-03 2008-12-09 Steuart Iii Leonard P Digital 3D/360 degree camera system
WO2004109359A1 (ja) 2003-06-09 2004-12-16 Olympus Corporation 可変ミラー
US6809887B1 (en) 2003-06-13 2004-10-26 Vision Technologies, Inc Apparatus and method for acquiring uniform-resolution panoramic images
US20050117015A1 (en) 2003-06-26 2005-06-02 Microsoft Corp. Foveated panoramic camera system
US7495694B2 (en) 2004-07-28 2009-02-24 Microsoft Corp. Omni-directional camera with calibration and up look angle improvements
US7336299B2 (en) 2003-07-03 2008-02-26 Physical Optics Corporation Panoramic video system with real-time distortion-free imaging
KR100541028B1 (ko) 2003-07-21 2006-01-11 주식회사 옵토메카 이미지 센서 및 그 제조 방법
US20050057659A1 (en) 2003-09-16 2005-03-17 Takami Hasegawa Camera image shake correcting device
US7028546B2 (en) 2003-10-21 2006-04-18 Instrumented Sensor Technology, Inc. Data recorder
US20050111106A1 (en) 2003-10-31 2005-05-26 Kazuhiro Matsumoto Optical element assembly formed of multiple optical elements such as prisms, and image pickup apparatus using the same in image pickup function section
JPWO2005081020A1 (ja) 2004-02-19 2008-05-15 キヤノン株式会社 光学機器およびビームスプリッター
US20050185711A1 (en) 2004-02-20 2005-08-25 Hanspeter Pfister 3D television system and method
GB0406730D0 (en) 2004-03-25 2004-04-28 1 Ltd Focussing method
US7593057B2 (en) 2004-07-28 2009-09-22 Microsoft Corp. Multi-view integrated camera system with housing
US8248458B2 (en) 2004-08-06 2012-08-21 University Of Washington Through Its Center For Commercialization Variable fixation viewing distance scanned light displays
EP1812968B1 (en) 2004-08-25 2019-01-16 Callahan Cellular L.L.C. Apparatus for multiple camera devices and method of operating same
US7039292B1 (en) 2004-09-09 2006-05-02 Rockwell Collins, Inc. Optical system for vehicle flight control
DE102004045430A1 (de) 2004-09-18 2006-05-18 Deutsche Telekom Ag Vorrichtung zur Bildstabilisierung
CN100556076C (zh) 2004-10-01 2009-10-28 利兰·斯坦福青年大学托管委员会 成像装置及其方法
JP3791847B1 (ja) 2005-08-10 2006-06-28 京セラ株式会社 カメラモジュールおよび該カメラモジュールを搭載した情報端末
US20080001727A1 (en) 2004-11-15 2008-01-03 Hitachi, Ltd. Stereo Camera
US7372996B2 (en) 2004-12-27 2008-05-13 Trw Automotive U.S. Llc Method and apparatus for determining the position of a vehicle seat
JP4742190B2 (ja) 2005-01-13 2011-08-10 国立大学法人 奈良先端科学技術大学院大学 3次元オブジェクト計測装置
US7512262B2 (en) 2005-02-25 2009-03-31 Microsoft Corporation Stereo-based image processing
US20060215054A1 (en) 2005-03-23 2006-09-28 Eastman Kodak Company Wide angle camera with prism array
JP4177826B2 (ja) 2005-03-23 2008-11-05 株式会社東芝 画像処理装置および画像処理方法
JP2006279538A (ja) 2005-03-29 2006-10-12 Sony Corp 撮像装置
US20060238441A1 (en) 2005-04-25 2006-10-26 The Boeing Company Method and apparatus for displaying a stereoscopic image
US20070102622A1 (en) 2005-07-01 2007-05-10 Olsen Richard I Apparatus for multiple camera devices and method of operating same
WO2007014293A1 (en) 2005-07-25 2007-02-01 The Regents Of The University Of California Digital imaging system and method to produce mosaic images
JP5364965B2 (ja) 2005-07-26 2013-12-11 コニカミノルタ株式会社 撮像光学系、撮像レンズ装置及びデジタル機器
JP2007081473A (ja) 2005-09-09 2007-03-29 Eastman Kodak Co 複数光学系を有する撮像装置
TW200721803A (en) 2005-10-17 2007-06-01 Via Tech Inc 3-D stereoscopic image display system
US20070164202A1 (en) 2005-11-16 2007-07-19 Wurz David A Large depth of field line scan camera
JP4979928B2 (ja) 2005-11-28 2012-07-18 株式会社トプコン 三次元形状演算装置及び三次元形状演算方法
US8059185B2 (en) 2005-12-28 2011-11-15 Canon Kabushiki Kaisha Photographing apparatus, image display method, computer program and storage medium for acquiring a photographed image in a wide range
US7215479B1 (en) 2006-02-10 2007-05-08 Micron Technology, Inc. Integrated lens system for image sensor and method for manufacturing the same
GB2435360B (en) 2006-02-16 2009-09-23 Imagination Tech Ltd Method and apparatus for determining motion between video images
JP4844177B2 (ja) 2006-03-07 2011-12-28 株式会社ニコン ブレ補正装置及びカメラ
JP2007274542A (ja) 2006-03-31 2007-10-18 Sony Corp 撮像装置および携帯電話機
CN101055342A (zh) 2006-04-12 2007-10-17 鸿富锦精密工业(深圳)有限公司 自动对焦镜头模组
US8433157B2 (en) 2006-05-04 2013-04-30 Thomson Licensing System and method for three-dimensional object reconstruction from two-dimensional images
WO2007129147A1 (en) 2006-05-05 2007-11-15 Nokia Corporation Optical image recording device with small height and high resolution
US8836693B2 (en) 2006-05-09 2014-09-16 Kabushiki Kaisha Sega Image processing apparatus and image processing program
US20080007617A1 (en) 2006-05-11 2008-01-10 Ritchey Kurtis J Volumetric panoramic sensor systems
JP4972779B2 (ja) 2006-05-30 2012-07-11 コニカミノルタアドバンストレイヤー株式会社 光学ユニットおよび撮像装置
JP5067021B2 (ja) 2006-06-01 2012-11-07 富士ゼロックス株式会社 画像形成装置、画像形成装置の組立方法及び解体方法並びに画像形成装置に用いられる仮止め部材
JP4851239B2 (ja) 2006-06-05 2012-01-11 株式会社トプコン 画像処理装置及びその処理方法
JP2008048293A (ja) 2006-08-18 2008-02-28 Kyocera Corp 撮像装置、およびその製造方法
US20080058629A1 (en) 2006-08-21 2008-03-06 University Of Washington Optical fiber scope with both non-resonant illumination and resonant collection/imaging for multiple modes of operation
DE102006044786A1 (de) 2006-09-14 2008-03-27 Schefenacker Vision Systems Germany Gmbh Kamerasystem, Verfahren zum Betreiben eines Kamerasystems und Sensoreinrichtung eines Kamerasystems
EP1912098B1 (en) 2006-10-12 2012-04-25 Carl Zeiss SMT GmbH Unit magnification projection objective
US7817354B2 (en) 2006-10-25 2010-10-19 Capsovision Inc. Panoramic imaging system
JP5040493B2 (ja) 2006-12-04 2012-10-03 ソニー株式会社 撮像装置及び撮像方法
KR100866491B1 (ko) 2007-01-30 2008-11-03 삼성전자주식회사 영상 처리 방법 및 장치
JP4917060B2 (ja) 2007-02-26 2012-04-18 Hoya株式会社 撮像ユニット及び携帯用電子機器
US7683962B2 (en) 2007-03-09 2010-03-23 Eastman Kodak Company Camera using multiple lenses and image sensors in a rangefinder configuration to provide a range map
US8356035B1 (en) 2007-04-10 2013-01-15 Google Inc. Association of terms with images using image similarity
JP4582423B2 (ja) 2007-04-20 2010-11-17 富士フイルム株式会社 撮像装置、画像処理装置、撮像方法、及び画像処理方法
JP5013078B2 (ja) 2007-04-24 2012-08-29 コニカミノルタアドバンストレイヤー株式会社 レンズ鏡胴及び撮像装置
US20080290435A1 (en) 2007-05-21 2008-11-27 Micron Technology, Inc. Wafer level lens arrays for image sensor packages and the like, image sensor packages, and related methods
JP2008294819A (ja) 2007-05-25 2008-12-04 Sony Corp 撮像装置
US7860214B1 (en) 2007-06-13 2010-12-28 The United States Of America As Represented By Secretary Of Agriculture Correction of x-ray images
US20090005112A1 (en) 2007-06-29 2009-01-01 Samsung Electronics Co., Ltd. Optical imaging system configurations for handheld devices
US20090003646A1 (en) 2007-06-29 2009-01-01 The Hong Kong University Of Science And Technology Lossless visible watermarking
WO2009011153A1 (ja) 2007-07-13 2009-01-22 Mitsubishi Electric Corporation 画像読取装置
JP4900118B2 (ja) 2007-07-31 2012-03-21 コニカミノルタオプト株式会社 カメラモジュールおよび電子機器
TWI383666B (zh) 2007-08-21 2013-01-21 Sony Taiwan Ltd 多重鏡頭相機系統之先進式動態接圖方法
JP5000428B2 (ja) 2007-08-22 2012-08-15 Hoya株式会社 撮像装置
US7973834B2 (en) 2007-09-24 2011-07-05 Jianwen Yang Electro-optical foveated imaging and tracking system
KR20090032261A (ko) 2007-09-27 2009-04-01 삼성전자주식회사 움직임 추정에 기초하여 움직임 보상을 수행하는 영상 처리장치 및 그 방법
JP5152483B2 (ja) 2007-10-05 2013-02-27 ソニー株式会社 撮像装置
EP2208354A4 (en) 2007-10-10 2010-12-22 Gerard Dirk Smits IMAGE PROJECTOR WITH REFLECTIVE LIGHT TRACKING
KR101484487B1 (ko) 2007-10-11 2015-01-28 코닌클리케 필립스 엔.브이. 깊이-맵을 프로세싱하는 방법 및 디바이스
CN101843106B (zh) 2007-11-01 2015-11-25 柯尼卡美能达控股株式会社 摄像装置
KR100927347B1 (ko) 2007-11-13 2009-11-24 파워옵틱스 주식회사 줌렌즈 광학계
JP4831514B2 (ja) 2007-11-13 2011-12-07 独立行政法人情報通信研究機構 設定パラメータ最適化装置およびそのプログラム
US8791984B2 (en) 2007-11-16 2014-07-29 Scallop Imaging, Llc Digital security camera
US9118850B2 (en) 2007-11-27 2015-08-25 Capso Vision, Inc. Camera system with multiple pixel arrays on a chip
CN100465699C (zh) 2007-12-05 2009-03-04 浙江大学 利用棱镜分光渐晕补偿实现多ccd无缝拼接的光电系统
KR101349589B1 (ko) 2007-12-13 2014-01-10 엘지이노텍 주식회사 카메라 모듈
US8300086B2 (en) 2007-12-20 2012-10-30 Nokia Corporation Image processing for supporting a stereoscopic presentation
US20090185067A1 (en) 2007-12-21 2009-07-23 Stereo Display, Inc. Compact automatic focusing camera
CN101952762B (zh) 2008-01-02 2012-11-28 加利福尼亚大学董事会 高数值孔径远程显微镜设备
US7978222B2 (en) 2008-03-01 2011-07-12 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Systems and methods for image stabilization
WO2009111642A1 (en) 2008-03-05 2009-09-11 Contrast Optical Design & Engineering, Inc. Multiple image camera and lens system
US20110043623A1 (en) 2008-03-26 2011-02-24 Konica Minolta Opto, Inc. Imaging device
WO2009120928A2 (en) 2008-03-28 2009-10-01 The Trustees Of Columbia University In The City Of New York Generalized assorted pixel camera systems and methods
US7864336B2 (en) 2008-04-28 2011-01-04 Agilent Technologies, Inc. Compact Littrow encoder
CN101571666A (zh) 2008-04-28 2009-11-04 鸿富锦精密工业(深圳)有限公司 成像设备
US8280194B2 (en) * 2008-04-29 2012-10-02 Sony Corporation Reduced hardware implementation for a two-picture depth map algorithm
US9001187B2 (en) 2009-05-11 2015-04-07 CapsoVision, Inc. Capsule imaging system having a folded optical axis
US9171221B2 (en) 2010-07-18 2015-10-27 Spatial Cam Llc Camera to track an object
JP4435867B2 (ja) 2008-06-02 2010-03-24 パナソニック株式会社 法線情報を生成する画像処理装置、方法、コンピュータプログラム、および、視点変換画像生成装置
JP5223486B2 (ja) 2008-06-18 2013-06-26 ソニー株式会社 電子双眼鏡
KR101567107B1 (ko) 2008-07-24 2015-11-06 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 카메라 구동 장치
JP2010041381A (ja) 2008-08-05 2010-02-18 Nikon Corp 電子カメラ、ステレオ画像生成方法およびステレオ画像生成システム
KR100942925B1 (ko) 2008-08-11 2010-02-22 한국전자통신연구원 스테레오 비전 시스템 및 그 제어방법
CN102177468A (zh) 2008-08-14 2011-09-07 远程保真公司 三反射镜全景相机
TWI419551B (zh) 2008-08-22 2013-12-11 固態全景影像擷取裝置
JP2010067014A (ja) 2008-09-11 2010-03-25 Ricoh Co Ltd 画像分類装置及び画像分類方法
WO2010035223A1 (en) * 2008-09-25 2010-04-01 Koninklijke Philips Electronics N.V. Three dimensional image data processing
WO2010044223A1 (ja) 2008-10-14 2010-04-22 日本電産サンキョー株式会社 撮影用光学装置
US8267601B2 (en) 2008-11-04 2012-09-18 James Cameron Platform for stereoscopy for hand-held film/video camera stabilizers
JP4852591B2 (ja) 2008-11-27 2012-01-11 富士フイルム株式会社 立体画像処理装置、方法及び記録媒体並びに立体撮像装置
CN101770059B (zh) 2008-12-27 2012-06-20 鸿富锦精密工业(深圳)有限公司 相机模组
US9395617B2 (en) 2009-01-05 2016-07-19 Applied Quantum Technologies, Inc. Panoramic multi-scale imager and method therefor
US8326036B2 (en) 2009-02-20 2012-12-04 Qylur Security Systems, Inc. Automated image separation method
GB0903689D0 (en) 2009-03-03 2009-04-15 Sigmavision Ltd Vehicle tyre measurement
JP5316118B2 (ja) 2009-03-12 2013-10-16 オムロン株式会社 3次元視覚センサ
US20100265313A1 (en) 2009-04-17 2010-10-21 Sony Corporation In-camera generation of high quality composite panoramic images
US20100278423A1 (en) 2009-04-30 2010-11-04 Yuji Itoh Methods and systems for contrast enhancement
US8503778B2 (en) 2009-05-14 2013-08-06 National University Of Singapore Enhancing photograph visual quality using texture and contrast data from near infra-red images
US8170408B2 (en) 2009-05-18 2012-05-01 Invensense, Inc. Optical image stabilization in a digital still camera or handset
US8194170B2 (en) 2009-06-02 2012-06-05 Algonquin College Axicon lens array
US9124874B2 (en) 2009-06-05 2015-09-01 Qualcomm Incorporated Encoding of three-dimensional conversion information with two-dimensional video sequence
US8405750B2 (en) 2009-06-08 2013-03-26 Aptina Imaging Corporation Image sensors and image reconstruction methods for capturing high dynamic range images
US9479768B2 (en) 2009-06-09 2016-10-25 Bartholomew Garibaldi Yukich Systems and methods for creating three-dimensional image media
CN101581828B (zh) 2009-06-09 2011-06-22 苏州大学 环形孔径超薄光学成像系统
JP5293463B2 (ja) 2009-07-09 2013-09-18 ソニー株式会社 画像処理装置、画像処理方法およびプログラム
US8228417B1 (en) 2009-07-15 2012-07-24 Adobe Systems Incorporated Focused plenoptic camera employing different apertures or filtering at different microlenses
JP5450200B2 (ja) 2009-07-17 2014-03-26 富士フイルム株式会社 撮像装置、方法およびプログラム
TWI389559B (zh) 2009-08-14 2013-03-11 Ind Tech Res Inst 前景影像分離方法
US8294073B1 (en) 2009-10-01 2012-10-23 Raytheon Company High angular rate imaging system and related techniques
US9063345B2 (en) 2009-10-19 2015-06-23 Pixar Super light-field lens with doublet lenslet array element
JP5539818B2 (ja) 2009-10-20 2014-07-02 富士フイルム株式会社 撮像レンズおよび撮像装置
TWM399332U (en) 2009-10-20 2011-03-01 Fujifilm Corp Photographic lens and photographic device
US8325187B2 (en) 2009-10-22 2012-12-04 Samsung Electronics Co., Ltd. Method and device for real time 3D navigation in panoramic images and cylindrical spaces
US8457398B2 (en) 2009-10-27 2013-06-04 Himax Media Solutions, Inc. Image enhancement method and apparatuses utilizing the same
WO2011063347A2 (en) 2009-11-20 2011-05-26 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
WO2011066275A2 (en) 2009-11-25 2011-06-03 Massachusetts Institute Of Technology Actively addressable aperture light field camera
US8400555B1 (en) 2009-12-01 2013-03-19 Adobe Systems Incorporated Focused plenoptic camera employing microlenses with different focal lengths
WO2011081646A1 (en) 2009-12-15 2011-07-07 Thomson Licensing Stereo-image quality and disparity/depth indications
US8442392B2 (en) 2009-12-22 2013-05-14 Nokia Corporation Method and apparatus for operating the automatic focus or the optical imaging stabilizing system
US9128281B2 (en) 2010-09-14 2015-09-08 Microsoft Technology Licensing, Llc Eyepiece with uniformly illuminated reflective display
US20110213664A1 (en) 2010-02-28 2011-09-01 Osterhout Group, Inc. Local advertising content on an interactive head-mounted eyepiece
US9128367B2 (en) 2010-03-05 2015-09-08 Panasonic Intellectual Property Management Co., Ltd. 3D imaging device and 3D imaging method
WO2011132364A1 (ja) 2010-04-19 2011-10-27 パナソニック株式会社 立体画像撮影装置および立体画像撮影方法
JP5593118B2 (ja) 2010-04-30 2014-09-17 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
CN102934020B (zh) 2010-06-08 2016-01-27 日本电产三协株式会社 抖动修正装置、拍摄用光学装置及透镜驱动装置
JP5622443B2 (ja) 2010-06-08 2014-11-12 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
JP5138734B2 (ja) 2010-06-15 2013-02-06 シャープ株式会社 撮像レンズ、および撮像モジュール
US9485495B2 (en) 2010-08-09 2016-11-01 Qualcomm Incorporated Autofocus for stereo images
TWI409577B (zh) 2010-08-20 2013-09-21 Primax Electronics Ltd 光學影像系統
US20120056987A1 (en) 2010-09-03 2012-03-08 Luke Fedoroff 3d camera system and method
WO2012039043A1 (ja) 2010-09-22 2012-03-29 富士通株式会社 ステレオ画像生成装置、ステレオ画像生成方法及びステレオ画像生成用コンピュータプログラム
WO2012041390A1 (en) 2010-10-01 2012-04-05 Contex A/S Signal intensity matching of image sensors
JP4956658B2 (ja) 2010-10-12 2012-06-20 シャープ株式会社 立体映像変換装置及び立体映像表示装置
TW201222288A (en) 2010-11-22 2012-06-01 Inst Information Industry Image retrieving system and method and computer program product thereof
SG190730A1 (en) 2010-12-09 2013-07-31 Univ Nanyang Tech Method and an apparatus for determining vein patterns from a colour image
JP5716465B2 (ja) 2011-03-09 2015-05-13 ソニー株式会社 撮像装置
US9030550B2 (en) 2011-03-25 2015-05-12 Adobe Systems Incorporated Thin plenoptic cameras using solid immersion lenses
US9087375B2 (en) 2011-03-28 2015-07-21 Sony Corporation Image processing device, image processing method, and program
US9172856B2 (en) 2011-03-29 2015-10-27 Microsoft Technology Licensing, Llc Folded imaging path camera
US8928988B1 (en) 2011-04-01 2015-01-06 The Regents Of The University Of California Monocentric imaging
WO2012136388A1 (en) 2011-04-08 2012-10-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Capturing panoramic or semi-panoramic 3d scenes
EP2703865B1 (en) 2011-04-28 2020-05-13 FUJIFILM Corporation Imaging lens and imaging device
JP5778260B2 (ja) 2011-04-28 2015-09-16 富士フイルム株式会社 撮像レンズおよび撮像装置
CN203551875U (zh) 2011-04-28 2014-04-16 富士胶片株式会社 成像镜头和成像设备
JP5891440B2 (ja) 2011-05-16 2016-03-23 パナソニックIpマネジメント株式会社 レンズユニット及び撮像装置
US20120293607A1 (en) 2011-05-17 2012-11-22 Apple Inc. Panorama Processing
CN103597810B (zh) 2011-05-27 2017-02-15 诺基亚技术有限公司 图像拼接
EP2721828B1 (en) 2011-06-15 2015-07-15 Microsoft Technology Licensing, LLC High resolution multispectral image capture
TWI507807B (zh) * 2011-06-24 2015-11-11 Mstar Semiconductor Inc 自動對焦方法與裝置
US20130265459A1 (en) 2011-06-28 2013-10-10 Pelican Imaging Corporation Optical arrangements for use with an array camera
US8896890B2 (en) 2011-06-30 2014-11-25 Lexmark International, Inc. Image capture system having a folded optical path
JP5848052B2 (ja) 2011-07-21 2016-01-27 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
US8784301B2 (en) 2011-08-12 2014-07-22 Intuitive Surgical Operations, Inc. Image capture unit and method with an extended depth of field
US20130057655A1 (en) 2011-09-02 2013-03-07 Wen-Yueh Su Image processing system and automatic focusing method
US8988564B2 (en) 2011-09-09 2015-03-24 Apple Inc. Digital camera with light splitter
JPWO2013039035A1 (ja) 2011-09-14 2015-03-26 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末並びにデジタル機器
US9438889B2 (en) 2011-09-21 2016-09-06 Qualcomm Incorporated System and method for improving methods of manufacturing stereoscopic image sensors
US8855476B2 (en) 2011-09-28 2014-10-07 DigitalOptics Corporation MEMS MEMS-based optical image stabilization
WO2013059399A1 (en) 2011-10-20 2013-04-25 Monsanto Technology Llc Plant stand counter
US9692991B2 (en) 2011-11-04 2017-06-27 Qualcomm Incorporated Multispectral imaging system
JP2013117568A (ja) 2011-12-01 2013-06-13 Olympus Corp 視差画像取得装置、携帯情報端末及び視差画像取得方法
US8582220B2 (en) 2011-12-05 2013-11-12 Himax Technologies Limited Lens module
CN202405984U (zh) 2011-12-10 2012-08-29 东莞市旭业光电科技有限公司 一种用于音圈马达的垫片
KR101975893B1 (ko) 2012-03-21 2019-09-10 엘지이노텍 주식회사 카메라 모듈
US9210405B2 (en) * 2012-03-22 2015-12-08 Qualcomm Technologies, Inc. System and method for real time 2D to 3D conversion of video in a digital camera
KR101818778B1 (ko) 2012-03-23 2018-01-16 한국전자통신연구원 실감 파노라마 영상 생성을 위한 3d 데이터 포맷 생성/소비 장치 및 방법
US20130260823A1 (en) 2012-03-31 2013-10-03 Ashutosh Y. Shukla Compact Portable Electronic Device Having Augmented Back Volume for Speaker
NL2008639C2 (en) 2012-04-13 2013-10-16 Cyclomedia Technology B V Device, system and vehicle for recording panoramic images, and a device and method for panoramic projection thereof.
JP2013238848A (ja) 2012-04-20 2013-11-28 Hoya Corp 撮像装置
US9571818B2 (en) * 2012-06-07 2017-02-14 Nvidia Corporation Techniques for generating robust stereo images from a pair of corresponding stereo images captured with and without the use of a flash device
EP2677733A3 (en) 2012-06-18 2015-12-09 Sony Mobile Communications AB Array camera imaging system and method
EP2677734A3 (en) 2012-06-18 2016-01-13 Sony Mobile Communications AB Array camera imaging system and method
US9134503B2 (en) 2012-07-06 2015-09-15 Apple Inc. VCM OIS actuator module
US9634051B2 (en) 2012-07-17 2017-04-25 Heptagon Micro Optics Pte. Ltd. Optical devices, in particular computational cameras, and methods for manufacturing the same
EP2748792B1 (en) 2012-08-08 2016-12-21 Dolby Laboratories Licensing Corporation Image processing for hdr images
US9398264B2 (en) 2012-10-19 2016-07-19 Qualcomm Incorporated Multi-camera system using folded optics
JP2014112302A (ja) 2012-12-05 2014-06-19 Ricoh Co Ltd 所定領域管理システム、通信方法、及びプログラム
US9857470B2 (en) 2012-12-28 2018-01-02 Microsoft Technology Licensing, Llc Using photometric stereo for 3D environment modeling
US9547160B2 (en) 2013-01-05 2017-01-17 Light Labs Inc. Methods and apparatus for capturing and/or processing images
US9171355B2 (en) 2013-04-12 2015-10-27 Qualcomm Incorporated Near infrared guided image denoising
US9602806B1 (en) * 2013-06-10 2017-03-21 Amazon Technologies, Inc. Stereo camera calibration using proximity data
JP2015036716A (ja) 2013-08-12 2015-02-23 ソニー株式会社 像ぶれ補正装置及び撮像装置
EP2860699A1 (en) 2013-10-11 2015-04-15 Telefonaktiebolaget L M Ericsson (Publ) Technique for view synthesis
US9223118B2 (en) 2013-10-31 2015-12-29 Apple Inc. Small form factor telephoto camera
CN203745777U (zh) 2014-01-10 2014-07-30 瑞声声学科技(深圳)有限公司 阵列式镜头装置
WO2015121707A1 (en) 2014-02-13 2015-08-20 Sony Corporation Method and system for adjusting camera settings using corneal reflection
US9557627B2 (en) 2014-03-07 2017-01-31 Apple Inc. Folded camera lens systems
US9316810B2 (en) 2014-03-07 2016-04-19 Apple Inc. Folded telephoto camera lens system
US9383550B2 (en) 2014-04-04 2016-07-05 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US9374516B2 (en) 2014-04-04 2016-06-21 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US10013764B2 (en) 2014-06-19 2018-07-03 Qualcomm Incorporated Local adaptive histogram equalization
US9541740B2 (en) 2014-06-20 2017-01-10 Qualcomm Incorporated Folded optic array camera using refractive prisms
US9819863B2 (en) 2014-06-20 2017-11-14 Qualcomm Incorporated Wide field of view array camera for hemispheric and spherical imaging
US9549107B2 (en) 2014-06-20 2017-01-17 Qualcomm Incorporated Autofocus for folded optic array cameras
US9386222B2 (en) 2014-06-20 2016-07-05 Qualcomm Incorporated Multi-camera system using folded optics free from parallax artifacts
US9294672B2 (en) 2014-06-20 2016-03-22 Qualcomm Incorporated Multi-camera system using folded optics free from parallax and tilt artifacts
US20150373269A1 (en) 2014-06-20 2015-12-24 Qualcomm Incorporated Parallax free thin multi-camera system capable of capturing full wide field of view images
US9832381B2 (en) 2014-10-31 2017-11-28 Qualcomm Incorporated Optical image stabilization for thin cameras
US10334158B2 (en) 2014-11-03 2019-06-25 Robert John Gove Autonomous media capturing
US10070055B2 (en) 2015-03-25 2018-09-04 Massachusetts Institute Of Technology Devices and methods for optically multiplexed imaging
US10142113B2 (en) 2015-06-18 2018-11-27 Bank Of America Corporation Identifying and maintaining secure communications
US20170038502A1 (en) 2015-08-06 2017-02-09 Qualcomm Incorporated Methods and apparatus having a two-surface microlens array for low f-number plenoptic cameras
JP6505215B2 (ja) 2015-09-03 2019-04-24 スリーエム イノベイティブ プロパティズ カンパニー 光学システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902657A (zh) * 2010-07-16 2010-12-01 浙江大学 一种基于深度图分层的虚拟多视点图像的生成方法

Also Published As

Publication number Publication date
EP3033733A1 (en) 2016-06-22
JP2016533105A (ja) 2016-10-20
KR20160043995A (ko) 2016-04-22
US20150049172A1 (en) 2015-02-19
WO2015023475A1 (en) 2015-02-19
EP3033733B1 (en) 2018-09-19
CN105453136A (zh) 2016-03-30
US10178373B2 (en) 2019-01-08

Similar Documents

Publication Publication Date Title
CN105453136B (zh) 使用自动聚焦反馈进行立体侧倾校正的系统、方法及设备
US11570423B2 (en) System and methods for calibration of an array camera
US9998650B2 (en) Image processing apparatus and image pickup apparatus for adding blur in an image according to depth map
JP5472328B2 (ja) ステレオカメラ
US20160050372A1 (en) Systems and methods for depth enhanced and content aware video stabilization
TWI511081B (zh) 影像擷取裝置及其影像形變校正方法
JP2017022694A (ja) ユーザのデバイスに明視野ベースの画像を表示するための方法および装置ならびに対応するコンピュータプログラム製品
WO2012146127A1 (en) Obtaining distance between different points on an imaged object
CN105791801A (zh) 图像处理装置、图像拾取装置和图像处理方法
JP6071257B2 (ja) 画像処理装置及びその制御方法、並びにプログラム
CN105791663B (zh) 距离估算系统及距离估算方法
JP2016122444A (ja) 焦点スタックから適応スライス画像を生成する方法および装置
EP3067860B1 (en) Hybrid depth estimation
JP2016217944A (ja) 計測装置、および計測方法
JP5996233B2 (ja) 画像撮像装置
JP5925109B2 (ja) 画像処理装置、その制御方法、および制御プログラム
CN104811688B (zh) 图像获取装置及其图像形变检测方法
JP2017103695A (ja) 画像処理装置、画像処理方法、及びそのプログラム
US10084950B2 (en) Image capturing apparatus
CN111292380A (zh) 图像处理方法及装置
JP6292785B2 (ja) 画像処理装置、画像処理方法およびプログラム
TWI516744B (zh) 距離估算系統、距離估算方法及電腦可讀取媒體
JP6730029B2 (ja) 画像処理装置、画像処理方法、画像処理プログラム、および撮像装置
CN104977795A (zh) 立体摄影系统及其方法
JP2012060512A (ja) 多眼撮像装置およびプログラム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant