JP3745117B2 - 画像処理装置及び画像処理方法 - Google Patents

画像処理装置及び画像処理方法 Download PDF

Info

Publication number
JP3745117B2
JP3745117B2 JP12626498A JP12626498A JP3745117B2 JP 3745117 B2 JP3745117 B2 JP 3745117B2 JP 12626498 A JP12626498 A JP 12626498A JP 12626498 A JP12626498 A JP 12626498A JP 3745117 B2 JP3745117 B2 JP 3745117B2
Authority
JP
Japan
Prior art keywords
image
depth
viewpoint position
depth image
scene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12626498A
Other languages
English (en)
Other versions
JPH11331874A (ja
Inventor
清秀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12626498A priority Critical patent/JP3745117B2/ja
Priority to EP99301827A priority patent/EP0955606A3/en
Priority to US09/266,859 priority patent/US6445815B1/en
Publication of JPH11331874A publication Critical patent/JPH11331874A/ja
Application granted granted Critical
Publication of JP3745117B2 publication Critical patent/JP3745117B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/593Depth or shape recovery from multiple images from stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/221Image signal generators using stereoscopic image cameras using a single 2D image sensor using the relative movement between cameras and objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/296Synchronisation thereof; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/537Motion estimation other than block-based
    • H04N19/54Motion estimation other than block-based using feature points or meshes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32014Augmented reality assists operator in maintenance, repair, programming, assembly, use of head mounted display with 2-D 3-D display and voice feedback, voice and gesture command
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/246Calibration of cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0081Depth or disparity estimation from stereoscopic image signals

Description

【0001】
【発明の属する技術分野】
本発明は、現実空間の奥行き情報を得するために必要な画像処理技術に関する。本発明は更に矛盾のない複合現実感を観察者に提供するために必要な画像融合処理技術に関する。本発明は更に画像処理のためのプログラムの記憶媒体にも関する。
【0002】
【従来の技術】
例えば、光学シー・スルー方式のHMD(head mount display)等を用いた複合現実感提示システムにおいて、現実世界と仮想世界を3次元的に整合のとれた形で融合しようとした場合、現実の物体と仮想物体の前後関係を正しく認識して、その前後関係に矛盾しない形で仮想物体を描画することが必要となる。そのためには、現実世界の奥行き情報(三次元情報)を獲得する必要があり、さらに、その獲得は、実時間に近い速度で行われる必要がある。
【0003】
奥行き画像を形成するには無視できない時間を要するために、現実世界と、その所定時間後の奥行き画像に基づいて観察者に提示された映像世界にはズレが発生する。このズレは観察者に違和感として認識される。
【0004】
このようなズレを解消するために、従来では、処理の高速化によりズレ時間を最小化する試みを行っている。例えば、"CMU Video-Rate Stereo Machine", Mobile Mapping Symposium, May 24-26, 1995, Columbus, OHは5台のカメラからの画像をパイプライン処理を行って高速化を図っている。
【0005】
【発明が解決しようとする課題】
しかしながら、このような高速化によっても数フレーム程度の遅れが発生してしまう。この、数フレーム遅れで得られる奥行き画像は、その間に生じた現実世界の変化(物体の移動や観測者の移動)を反映していないため、実際の(つまり現時点での)現実世界の奥行き情報を正確に表していない。従って、この奥行き画像を用いて現実世界と仮想世界の前後判定を行った場合、現実世界と仮想世界の前後関係は矛盾したものとなってしまい、観察者に耐え難い違和感を与えてしまう。また、パイプラインの高速化は限界があり、原理的に遅れをゼロにすることはできない。
【0006】
第1図を用いて、この問題を詳しく説明する。ただしここでは説明を簡略化するために、観察者はカメラと同一の視点によって現実世界を観測しているものと仮定する。
【0007】
第1図に於いて、400を実空間中の物体(例えば三角柱形状のブロック)とすると、不図示の複合現実感提示システムは、観察者(不図示)に、この実物体400の例えば背後に仮想物体410(例えば円柱形状のブロック)を融合させて見せるための複合現実感画像を提示するものとする。複合現実感提示システムは、観察者と共に移動するカメラが撮像した画像から実物体400の奥行き画像を生成し、仮想物体410の画像を提示するに際して、実物体400と仮想物体410との前後関係をこの奥行き画像から判定する。
【0008】
観察者は、視点位置を、P1,P2,P3,P4と順に移動させてきて、現在、視点位置P5にいるとする。すると、視点位置P5では、観察者にはシーン5005が見えるはずである。
【0009】
もし仮に、シーン5005の奥行き画像(視点位置P5から観測して得たシーン5005の奥行き画像5105)が得られているとすれば、複合現実感提示システムは、第2図のような、一部分600が隠れられされるような仮想画像4105を生成し、物体400の背後に仮想物体410の一部が隠れているようなシーン5205(第3図)を正しい隠れの関係で描画することができる筈である。
【0010】
しかし、この複合現実感提示システムは内部の処理にΔt時間だけ要するために、複合現実感提示のために視点位置P5で用いようとする奥行き画像は、視点位置P5からΔtだけ遡った過去の視点位置(これを便宜上第1図における視点位置P2とする)での奥行き画像である。即ち、現在時刻においては(即ち、第1図における視点位置P5では)、Δtだけ過去の視点位置P2でのシーン5002に対応した奥行き画像5102しか得ることができない。
【0011】
物体400は、視点位置P2では、シーン5002に示すように、シーン5005と比べてより右側の位置に観測されていた筈であり、その奥行き画像5102もシーン5002に対応したものになっていた筈である。従って、視点位置P5における現実世界と仮想世界の前後判定をこの奥行き画像5102に従って行うと、第4図のように、一部610が隠れられされた仮想画像4102が生成されるために、提示される複合現実世界では、第5図に示されるように、前方にある筈の実物体400が後方にある筈の仮想物体410の仮想画像4102に隠され、反対に、仮想物体410は隠される筈のない一部610が欠けたものととして観察者に提示されることになる。
【0012】
このように、奥行き画像を生成するのに要する時間を無視して複合現実感を提示すると、不自然な矛盾のある世界が提示される。ところで、ハードウエアによる処理の高速化に基づく実時間ステレオ処理による問題点を指摘した従来技術に、「複合現実感のためのRealtime Delay-free Stereoの提案」(菅谷保之、大田友一)という論文がある。
【0013】
この論文は、未来の奥行き画像を予測するというアイデアを提示している。即ち、ステレオ法による視差推定を行うとの並列に、過去のステレオ結果を利用し、時系列方向の相関を活用した高速な視差推定手法を実行することで、入力から出力までの遅延をできるだけ短くするアルゴリズムを提案している。
しかしながら、この論文は固定されたカメラを前提としており、カメラ自体(即ち観察者の視点位置)が移動するような場合に対応することはできない。
【0014】
【課題を解決するための手段】
本発明の目的は、観察者の視点位置が移動する場合においても、三次元的に整合のとれた複合現実感画像を提示することのできる画像処理装置及び画像処理方法を提案することにある。
【0015】
すなわち、本発明の要旨は、情景の奥行き情報を連続的に獲得するための奥行き画像処理装置であって、連続的に移動する視点位置から情景の画像を連続的な時系列で入力する画像入力手段と、連続的に移動する視点位置の位置情報を連続的な時系列で取得する位置情報取得手段と、入力手段により入力した情景画像から、奥行き画像を生成する奥行き画像生成手段と、所定時間後の視点位置を、位置情報取得手段によって取得した位置情報群から推定する推定手段と、推定された所定時間後の視点位置に応じて、生成された奥行き画像を修正し、所定時間後に入力する情景の画像の奥行き画像として求める奥行き画像修正手段とを有し、奥行き画像修正手段は、生成された奥行き画像を空間に逆投影し、推定された所定時間後の視点位置に想定した撮像面に再度投影することにより、生成された奥行き画像を修正することを特徴とする画像処理装置に存する。
【0016】
また、本発明の別の要旨は、情景の奥行き情報を連続的に獲得するための奥行き画像処理方法であって、連続的に移動する視点位置から情景の画像を連続的な時系列で入力し、連続的に移動する視点位置の位置情報を連続的な時系列で取得し、入力手段により入力した情景画像から、奥行き画像を生成し、所定時間後の視点位置を、位置情報取得手段によって取得した位置情報群から推定し、生成された奥行き画像を空間に逆投影し、推定された所定時間後の視点位置に想定した撮像面に再度投影することにより、推定された所定時間後の視点位置に応じて、生成された奥行き画像を修正し、所定時間後に入力する情景の画像の奥行き画像として求めることを特徴とする画像処理方法に存する。
【0017】
また、本発明の別の要旨は、コンピュータ装置に、情景の奥行き情報を連続的に獲得するための奥行き画像処理方法であって、連続的に移動する視点位置から情景の画像を連続的な時系列で入力する工程と、連続的に移動する視点位置の位置情報を連続的な時系列で取得する工程と、入力手段により入力した情景画像から、奥行き画像を生成する工程と、所定時間後の視点位置を、位置情報取得手段によって取得した位置情報群から推定する工程と、生成された奥行き画像を空間に逆投影し、推定された所定時間後の視点位置に想定した撮像面に再度投影することにより、推定された所定時間後の視点位置に応じて、生成された奥行き画像を修正し、所定時間後に入力する情景の画像の奥行き画像として求める工程とを実現させるコンピュータプログラムを格納したコンピュータ装置読み取り可能な記録媒体に存する。
【0018】
【発明の実施の形態】
以下、添付図面を参照しながら、本発明を適用した好適な実施形態に係る奥行き画像生成のための画像処理装置を説明する。
【0019】
〈実施形態〉
第6図は、実施形態の原理的構成を示すもので、台座100に装着された2台のカメラ102R,102Lを有する、画像処理装置200を主に示す。
台座100は、前方のシーンをステレオ撮影するための2台のカメラ102R,102Lを有する。時刻t0において夫々のカメラで撮影された実空間の環境シーンを表す画像信号はIR,ILとして画像処理装置200に送られる。画像処理装置200は、この画像信号IR,ILを入力して環境シーンの奥行き画像ID(三次元形状情報Z)を抽出する奥行き推定モジュール202と、カメラ102Rの未来時刻tF(=t0+Δt)における視点の相対的な位置を推定するモジュール201と、モジュール202が推定した奥行き画像をこの視点位置における奥行き画像IDWに変形する奥行き修正モジュール203とを有する。
【0020】
視点位置推定モジュール201は、時刻t0における視点位置からみた時刻tFにおける視点の相対的な位置を奥行き修正モジュール203に出力する。
【0021】
視点位置推定モジュール201は2つの入力経路を有する。1つは、台座100に装着された三次元位置方位センサ101からの位置情報(x,y,z)と方位情報(ω,ψ,κ)である。尚、位置情報(x,y,z)と方位情報(ω,ψ,κ)とまとめて、以下「位置情報V」と呼ぶ。他方の視点位置方位推定モジュール201への入力経路はカメラ102Rからの画像信号IRである。
【0022】
三次元位置方位センサ101は台座100に装着され、カメラ102Rの視点位置を出力するようにキャリブレーションされている。即ち、センサ自身とカメラ102Rとの相対的な位置関係(オフセット)をあらかじめ計測し、センサ本来の出力であるセンサ自身の位置情報に、このオフセットを付加することにより、カメラ102Rの位置情報Vが出力される。
【0023】
視点位置推定モジュール201がセンサ101から位置情報V(x,y,z,ω,ψ,κ)を入力するときは、その位置情報Vがカメラ102Rの視点位置を表す。他方、視点位置推定モジュール201が画像信号IRを入力するときは、視点位置推定モジュール201はこの画像信号IRからカメラ102Rの位置情報Vを抽出する。このように、視点位置推定モジュール201は、時系列で入力されるセンサ101あるいはカメラ102Rのいずれからの信号に基づいて、カメラ102Rの位置情報Vを時系列で抽出する。
【0024】
視点位置推定モジュール201はさらに、時系列で入力されたカメラ102Rの位置情報Vに基づいて、時刻t0におけるカメラ102Rの視点位置からみた、時刻tFにおけるカメラ102Rの相対的な視点位置の変化ΔVを推定し、これを出力する。
【0025】
第6図の画像処理装置200の特徴は、任意の未来の時刻tFにおける視点位置の変化ΔVを推定し、この視点位置における奥行き画像IDWを生成する点にある。奥行き修正モジュール203は、奥行き推定モジュール202が推定した奥行き画像IDに変形処理(warping)を施し、奥行き画像IDWを生成する。この変形処理(warping)の具体的動作については後述する。
【0026】
時刻Δtの設定は任意である。今、カメラ102による画像取り込みが処理時間δ1を要し、奥行き推定モジュール202が処理時間δ2を要し、奥行き修正モジュール203が処理時間δ3を必要とするとする。例えば、ここで時刻tFを、
F=t0+δ1+δ2+δ3=t0+Δt …(1)
(但し、Δt≡δ1+δ2+δ3と定義した)に設定することで、奥行き画像IDWが出力される時刻を、時刻tFと一致させることができる(即ち、遅れのない奥行き画像を得ることができる)。
以上が、本発明の実施形態の基本原理の説明である。
【0027】
第6図に示された実施形態の画像処理装置は、そのハード構成上、パイプライン処理を行うことにより処理効率を上げることができる。
第7図は、第6図の画像処理装置にパイプライン処理を適用した場合のそのパイプラインの順序を示す。
即ち、任意の時刻t0(現時点とする)において、2台のカメラ102が左右2つの画像信号IR,ILを入力する。この入力処理に時間δ1を要するとする。
【0028】
時刻t0+δ1において画像信号IR,ILを入力した奥行き推定モジュール202は、時刻t0における奥行き推定を行う。この処理に時間δ2だけ要するとする。すると、時刻t0+δ1+δ2に、奥行き推定モジュール202は時刻t0における奥行き画像IDを奥行き修正モジュール203に出力する。
【0029】
一方、視点位置推定モジュール201は、その画像信号(或いは位置センサの信号)から現在の視点位置Vt0を求め、併せて、現時点までの視点位置の軌跡からΔt時間後の視点位置VtFを推定して、この間の視点位置の変化ΔVを出力する。視点位置推定モジュール201は、この推定処理にδ0時間(第7図参照)必要とするとする(このとき、時間δ0は時間δ2と比べて十分小さいとする)。従って、この視点位置推定処理を時刻t0+δ1+δ2−δ0に開始することで、時刻t0+δ1+δ2に(即ち奥行き推定モジュールの出力と同時に)、視点位置の変化ΔVが奥行き修正モジュール203に出力される。
【0030】
尚、視点位置推定モジュール201が推定結果を出力するタイミングと、奥行き修正モジュール203が推定結果を入力できるタイミングとの同期を取ることができない場合には、推定結果を一時的に蓄えるバッファメモリを視点位置推定モジュール201または奥行き修正モジュール203に設ければよい。
【0031】
奥行き修正モジュール203は、時刻t0+δ1+δ2に修正(warp)処理を開始する。即ち、奥行き修正モジュール203は、奥行き推定モジュール202が推定した時刻t0における奥行き画像IDを、視点位置推定モジュール201が推定した時刻t0+Δtにおける視点位置における奥行き画像に変形する処理を開始する。この処理に、奥行き修正モジュール203は時間δ3だけかかるとすると、奥行き修正モジュール203は、時刻t0+δ1+δ2+δ3において、変形された(warpされた)奥行き画像IDWを出力する。
【0032】
第7図に示すように、視点位置推定モジュール201と奥行き推定モジュール202の処理とは並列処理となる。
一方、奥行き推定モジュール202と奥行き修正モジュール203とは、パイプライン処理結合が可能である。
【0033】
即ち、実施形態の画像処理装置200を、連続的に入力する複数のフレーム画像に適用する場合には、奥行き推定モジュール202は、連続的に順次画像を入力することになる。例えば30フレーム/秒で画像を入力する場合には、奥行き推定モジュール202において、上記処理に要する時間δ2内に、
30×δ2フレーム
が処理されなければならない。そこで、奥行き推定モジュール202を更に複数のモジュールユニットに分割する。この分割を、モジュール202における処理が、最大30×δ2個のユニットモジュールによる分散処理によって行われるようにすれば、奥行き推定モジュール202は、30フレーム/秒で奥行き画像を連続的に推定することができる。同様に、奥行き修正モジュールもその処理に必要な時間δ3に従って分割する。このようなモジュールユニットの分割により、実施形態の画像処理装置200は、30フレーム/秒の画像について、奥行き推定処理、奥行き修正処理の2つの処理をパイプライン的に連続的に行うことができる。
【0034】
尚、分割したユニットモジュール間で同期を取る必要がある場合には、前述したように、バッファメモリを適宜追加すればよい。
尚、第6図に於いて、奥行き推定モジュール202や奥行き修正モジュール203は、一方のカメラからの画像について奥行き画像を生成しているが、用途によっては夫々のカメラからの画像について奥行き画像を生成するようにしてもよい。
また、第6図に於いてカメラ102の数は2個に限られることはない。奥行き推定の精度を上げるためには、2個以上の方が好ましい。
【0035】
また、第6図の画像処理装置200における視点推定の時間幅Δtはδ1+δ2+δ3と設定していた。しかし理想的には、奥行き画像を利用するアプリケーションがどの時刻における奥行き画像を必要としているかによって、Δtの値は決定されるべきである。しかしながら、視点位置推定モジュール201における推定は、時間幅Δtが大きくなるにつれて誤差が増大し、その傾向は、観察者の移動速度が高い場合や移動方向がランダムな場合に特に顕著となる。
【0036】
即ち、Δtを小さくしすぎても、また大きくしすぎても、誤差の増大を招く結果となる。即ち、最適なΔtの値は、そのシステムの使用環境や、出力される奥行き画像を利用するアプリケーションの目的に応じて適宜調整しなくてはならない。言い換えれば、最適なΔtをユーザが自由に設定できるようにすることで、最も誤差の少ない奥行き画像を出力する事ができる。
【0037】
第1図に関して説明した従来技術にまつわる前後判定において発生する矛盾が、第6図の実施形態装置によりどのように解決されるかを説明する。
前後判定に矛盾のない複合現実感を提示するには、生成された複合現実感画像が観測者に提示される時刻における観測者の視点位置(第1図の例では位置P5)での奥行き画像でなくてはならない。即ち、第6図の画像処理装置は、変形(ワープ)した奥行き画像を出力した時点から、その奥行きを考慮した複合現実感画像が観測者に提示されるまでに要する処理時刻をδ4とすると、Δtは理想的には
Δt=δ1+δ2+δ3+δ4 …(2)
に設定すればよいことになる。
【0038】
そこで、第6図の画像処理装置の視点位置推定モジュール201は、第1図における時刻t2+δ1+δ2−δ0において、Δt時間後の視点位置(第1図の例では位置P5)を予測する。また、奥行き修正モジュール203は、奥行き推定モジュール202によって得られた視点位置P2における奥行き画像5102を、上記のΔt時間後の予測視点位置(即ち視点位置P5)で得られるであろう奥行き画像に変形(warp)する。従って、時刻t5−δ4には、奥行き修正モジュール203は、上記変形した奥行き画像(この奥行き画像は奥行き画像5105に類似することとなる)を出力するはずである。従って、この変形奥行き画像に基づいて前後関係を判定しながら仮想物体を描画して観察者に提示することで、時刻t5(視点位置P5)において、仮想物体410が実物体400と正しい前後関係にあるように、複合現実感画像を観察者の眼に映ずることができる。
【0039】
即ち、移動するカメラにより奥行き画像を計測してズレのない複合現実感を得るためには、時刻t5よりも上記内部処理に要する時間幅Δtだけ過去の時刻t2において奥行き画像5105を推定し始めなければならず、換言すれば、時刻t2においてカメラから画像を入力した時点で、時刻t5における実空間の奥行き画像5105を推定し始める必要があるのである。第6図の画像処理装置200は、時刻t2においてカメラから入力した画像の奥行き画像5102を変形し、この変形した奥行き画像を時刻t5における実空間の奥行き画像5105と見なすのである。
【0040】
〈実施例〉
以下に、上記第6図乃至第7図に関連して説明した実施形態の原理を適用した更に具体的な実施例装置を3つあげて説明する。
第1実施例の装置は、第6図と第7図に示した実施形態の原理をより具体的に説明した奥行き画像生成装置である。
第2実施例と第3実施例の装置は、奥行き画像を実空間とズレなくリアルタイムで生成する実施形態の原理を複合現実感提示システムに適用したものである。即ち、第2実施例は、光学シー・スルー方式のHMDを用いた光学シー・スルー方式の複合現実感提示システムであり、第3実施例は、ビデオ・シー・スルー方式のHMDを用いたビデオ・シー・スルー方式の複合現実感提示システムである。
【0041】
〈第1実施例〉
第1実施例の構成および動作について第6図を援用して説明する。
第1実施例の装置は、前述の実施形態と比べ、視点位置をカメラ102Rの視点位置に設定している。
第6図は、第1実施例の奥行き画像生成装置のブロック図を示す。実施形態では、三次元位置方位センサ101を利用する場合と利用しない場合の可能性を示唆したが、第1実施例は三次元位置方位センサ101を利用する場合について説明する。
【0042】
〈視点位置推定モジュール201の動作〉…第1実施例
第1実施例の視点位置推定モジュール201の動作を説明する。位置センサ101は、カメラ102Rの視点位置情報Vtsをセンサ101の時間軸tsに沿って連続的に出力する。センサの時間軸tsに沿った位置情報Vtsを、
【0043】
【数1】
Figure 0003745117
【0044】
で表す。尚、ω,ψ,κは第8図に示すように夫々X軸,Y軸,Z軸周りの回転角度である。これらの視点位置Vtsに対応するビューイング変換行列(即ち世界座標系からカメラ座標系への変換行列)Mtsは、
【0045】
【数2】
Figure 0003745117
で表される。
【0046】
第5図は視点位置推定モジュール201の制御手順を示す。
ステップS2において、センサの時間軸に沿った現時刻tsmにおける位置情報Vtsmをセンサ101から入力する。これにより、過去に入力した位置情報と共に、位置情報列
ts0,Vts1,Vts2,…,Vtsm
が得られる。
【0047】
位置センサ101からの出力は時間軸tsに従って出力される。カメラ102と位置センサ101の同期がとれている場合には、カメラ102によって画像が取り込まれた時刻t0の位置情報をそのまま用いることができる。一方、両者の位相が一致していない場合には、その前後の時刻にセンサから得られた位置情報の補間処理によって時刻t0の位置情報を算出する。この補間処理は、例えば簡単な1次補間によって行うことができる。即ち、時刻t0がセンサ101の時刻tsと第10図に示すような関係にある場合に、ステップS4において、t0は、tsnとtsn+1と、
【0048】
【数3】
Figure 0003745117
【0049】
(但し、0≦k≦1)によって表され、式(5)からkを求めることができる。即ち、kがカメラの時刻系とセンサの時刻系との関係を表す。ステップS6において、時刻t0でのカメラ102Rの位置Vt0は、求められたkを用いて次の式4に従って求められる。
【0050】
【数4】
Figure 0003745117
【0051】
次に、ステップS8で、時刻tF(=t0+Δt)におけるカメラ102Rの位置情報VtFを推定する。
今、カメラ102Rの位置情報は、位置系列として、第10図に示すように、tsm迄求められているとする。時刻tFが、
【0052】
【数5】
Figure 0003745117
【0053】
(但し、Δts=tsm−tsm-1)であるならば、この関係からαを決定することができる。ステップS8において、時刻tFにおけるカメラ102Rの視点位置VtFを、例えば一次線形予測によって、
【0054】
【数6】
Figure 0003745117
によって表される。
【0055】
尚、視点位置VtFの推定は、2次の線形予測や、その他の予測手法によって行っても良い。
【0056】
最後に、ステップS10で、時刻t0から時刻tFまでのカメラの視点位置の三次元運動を推定する。この三次元運動は、次式で表される行列ΔMを求めることに帰結する。即ち、
【0057】
【数7】
Figure 0003745117
【0058】
である。ここで、Mt0は、時刻t0における、世界座標系からカメラ102Rのカメラ座標系への変換行列を意味し、MtFは、時刻tFにおける、世界座標系からカメラ102Rのカメラ座標系への変換行列を意味する。また、(Mt0-1はMt0の逆行列を意味する。即ち、ΔMは、時刻t0におけるカメラ102Rのカメラ座標系から、時刻tFにおけるカメラ102Rのカメラ座標系への変換行列を意味している。
ステップS12ではこの変換行列ΔMを出力する。
【0059】
〈奥行き推定モジュール202〉…第1実施例
奥行き推定モジュール202は、カメラ102Rとカメラ102Lとから入力した画像信号IR,ILをそれぞれ入力して、周知の三角測量の原理で奥行き情報を演算する。
【0060】
第11図は奥行き推定モジュール202の制御手順である。即ち、ステップS20で2つの画像IR,ILの間で対応点を各々の画像内で抽出する。1対の対応点は対象物体の同じ点の画素である。このような対応点の対は、画像IR,IL内で全ての画素または特徴的な画素について探索される必要がある。ステップS22では、画像IR,IL内のそれぞれが対応点である一対の画素(XRi,YRi)と(XLi,YLi)について三角測量を適用し、カメラ102Rから見たその点の奥行きの値Ziを求める。そして、ステップS24では、得られた奥行き値Ziを奥行き画像IDの座標(XRi,YRi)に格納する。
【0061】
ステップS20〜ステップS26のループで、全ての点についての奥行き値を求める、即ち、奥行き画像IDを生成する。生成された奥行き画像IDは、奥行き修正モジュール203に出力される。
【0062】
また、奥行き推定モジュール202は、上記三角測量を用いるほかに、例えば、前述の"CMU Video-Rate Stereo Machine"に開示されている方法、或いはアクティブなレンジファインダによっても、或いは、「複合現実感のためのRealtimeDelay-free Stereoの提案」(菅谷保之他)による手法によっても可能である。
【0063】
〈奥行き修正モジュール203〉…第1実施例
第6図に示すように、奥行き修正モジュール203は、奥行き推定モジュール202から受け取った視点位置Vt0における奥行き画像IDを、視点位置VtFにおける奥行き画像IDWに変形(warping)する。
【0064】
奥行き修正モジュール203における処理の原理は次ぎのようである。即ち、視点位置Vt0で獲得された奥行き画像IDを空間に逆投影して、視点位置VtFに想定した撮像面に再度投影することが(即ち、奥行き画像IDWに対応する出力画像上の点(xi’,yi’)に奥行き値ZDiを与えることが)、奥行き修正モジュール203の基本的な動作である。
【0065】
カメラ102の焦点距離をfCとする。奥行き画像IDの任意の点の値がZi=ID(xi,yi)であったとすると、この点(xi,yi)は次式に従って、即ち、第12図から明らかなように、カメラ102の撮像面上の点(xi,yi,fC)から視点位置Vt0におけるカメラ102Rのカメラ座標系における3次元空間中の点(Xi,Yi,Zi
【0066】
【数8】
Figure 0003745117
【0067】
に変換される。この点(Xi,Yi,Zi)は、カメラ102Rが視点位置Vt0から視点位置VtFへと移動するような三次元運動ΔMにより、視点位置VtFにおけるカメラ102Rのカメラ座標系において、
【0068】
【数9】
Figure 0003745117
【0069】
で表される位置(XDi,YDi,ZDi)に移動する筈である。視点位置VtFでのカメラ座標系の点(XDi,YDi,ZDi)は、このカメラが焦点距離fCを有するものであることから、第13図に示すように、下記(12)式で表される画像面上の点(xi’,yi’)に投影されるはずである。
【0070】
【数10】
Figure 0003745117
【0071】
奥行き修正モジュール203は、変形された奥行き画像IDWとして、IDW(xi,yi)=ZDiを出力する。
【0072】
第14図は奥行き修正モジュール203の処理手順を説明する。
まず、ステップS30において、奥行き画像IDの1つの点(xi,yi)を取り出し、ステップS32で、式(10)に従って、この点を視点位置Vt0におけるカメラ102のカメラ座標系に射影する。即ち、点(xi,yi)のカメラ座標系における座標(Xi,Yi,Zi)を求める。ステップS34では、点(Xi,Yi,Zi)の、視点位置VtFにおけるカメラ102のカメラ座標系からみた座標(XDI,YDI,ZDI)を式(11)に従って求める。次に、ステップS36で(12)式に従って奥行き画像の変形後の位置(xi’,yi’)を求め、ステップS38では、この出力画像上の画素(xi’,yi’)をZDiで埋める。これらの処理を奥行き画像ID上の全ての点に対して施すことにより、warping処理、即ち、奥行き画像の変形が達成される。
【0073】
尚、変形前の奥行き画像IDの一点は変形後の奥行き画像IDWの点に一対一に対応するものであるから、変形奥行き画像IDWが「穴あき」状態になってしまうおそれがある。この「穴あき」状態は、値の欠落した画素の画素値を値の得られている周辺の画素の画素値の線形補間で補うことで、解消することができる。また、例えば、"View Interpolation for Image Synthesis" (Shenchang Eric ChenとLance williams, In Computer Graphics Annual Coference Series(Proceedings of SIGGRAPH 93), pages 279-288, Anaheim, California, August 1993)の手法を用いることによっても、この穴あき状態を解消することができる。
【0074】
〈第1実施例の動作タイミング〉
第15図は第1実施例の画像処理装置の動作タイミングを示す。
奥行き推定モジュールと奥行き修正モジュールのフレームレートは独立して設定可能である。同図に示すように、奥行き修正モジュールのフレームレートを、奥行き推定モジュールのフレームレートよりも高速に(第15図の例では6倍)に設定することにより、1つの入力画像から複数(第15図の例では6枚)の変形奥行き画像IDWをより高速に(第15図の例では6倍)得ることができる。
【0075】
〈第1実施例の変形例〉
第1実施例では右側のカメラ102Rを処理の対象として説明したが、同様の処理によって、左側カメラ102Lによって撮影される画像に対応した奥行き画像を出力するようにしてもよい。また、左右のカメラ双方の奥行き画像を出力するようにしてもよい。
【0076】
〈第2実施例〉
第2実施例は、第6図の実施形態の原理を光学シー・スルー方式の複合現実感提示システムに適用したものである。
第16図は、第2実施例のシステムを示すブロック図であり、第6図と同じ番号の要素は実施形態の要素と同じである。ただし、要素100は光学シー・スルー方式のHMDを表すものとする。第2実施例は、HMD100、画像処理装置200、画像生成モジュール300、三次元CGデータベース301によって構成される。
【0077】
HMD100は、光学シー・スルー方式であるために、右目用画像を表示するLCD103Rと左目用画像を表示するLCD103Lが設けられている。また、視点位置を精度よく検出するために、三次元位置方位センサ101がHMD100に設けられている。
【0078】
第2実施例の画像処理装置200(第16図)は、前述の実施形態の画像処理装置200(第6図)に比して以下の点が異なっている。即ち、第2実施例は、まず第1に、カメラ102Rの視点位置における奥行き画像ではなく、観察者(不図示)の視点位置における奥行き画像を必要とする。第2に、観察者の左右の視点のそれぞれに対して、奥行き画像を生成する必要がある。更に、第2の実施例の視点位置推定モジュール201の出力は、奥行き修正モジュール203のみならず画像生成モジュール300にも出力されている点で、第1実施例と異なっており、視点位置推定モジュール201は、画像提示時における観察者の視点位置を画像生成モジュール300に対して出力する。
【0079】
画像生成モジュール300は、視点位置推定モジュール201から入力した視点位置をCG描画のための視点位置として用いる。そして、奥行き画像が表現する現実世界の物体までの距離にしたがって、三次元CGデータベースを用いて複合現実感画像を生成し、これをLCD103へと提示する。
尚、三次元CGデータベース301は、例えば第1図に示した仮想物体410のCGデータを記憶する。
【0080】
〈視点位置推定モジュール201の動作〉…第2実施例
第2実施例の視点位置推定モジュール201の動作を説明する。
第2実施例における視点位置推定モジュール201は、時刻t0におけるカメラ102Rの視点位置Vt0 CRから、時刻tFにおける観察者の左右の視点位置VtF UR,VtF ULまでの三次元運動を表す行列ΔMR,ΔMLを奥行き修正モジュール203に出力する。ここで、添え字をCはカメラを、Uはユーザ(観察者)を、Rは右を、Lは左を表すものとする。
【0081】
視点位置推定モジュール201は、時刻tFにおける観察者の左右の視点位置VtF UR,VtF ULを、画像生成モジュール300に出力する。第16図に示すように、第2実施例における位置センサ101は、第1実施例と異なり、カメラ102Rの視点位置情報Vts CRのみではなく、観察者の左右の視点位置情報Vts UR,Vts ULを出力する。
【0082】
第2実施例の、時刻t0でのカメラ102Rの位置Vt0 CR(と、これに対応するビューイング変換行列Mt0 CR)の算出方法は、第1実施例と同じである。
【0083】
一方、時刻tF(=t0+Δt)における観察者の左右の視点位置VtF UR, VtF UL(と、これに対応するビューイング変換行列MtF UR,MtF UL)も第1実施例と同様に式(8)によって推定できる。ただし、視点位置がカメラから観察者になったことのみが異なっている。
【0084】
三次元運動を表す行列ΔMR,ΔMLも、式(9)と同様に求める事ができ、即ち、(13)式を得る。
【0085】
【数11】
Figure 0003745117
【0086】
尚、第2実施例の奥行き推定モジュール202の処理は第1実施例のそれと同じであるので、説明を省略する。
【0087】
尚、位置センサ101はVts CRのみを出力するものであっても良い。この場合、視点位置推定モジュール201は、既知の情報であるカメラ102Rと観察者の左右の視点位置の相対的な位置関係を利用して、内部でVts UR,Vts ULを算出する構成をとする。
【0088】
〈奥行き修正モジュール203〉…第2実施例
第1実施例と異なり、第2実施形態における変形後の奥行き画像は、観察者の視点位置からLCD103を通して観測される現実世界の奥行き画像である。即ち、観察者の視点に等価な仮想的なカメラを想定し、その仮想カメラの焦点距離をfU(Uはユーザ(観察者)を表す)で表わした場合に、視点位置Vt0で獲得された奥行き画像IDを空間に逆投影して、視点位置VtFに想定した焦点距離fUの仮想カメラの撮像面に再度投影することが、第2実施例における奥行き修正モジュール203の動作である。この動作は、奥行き画像IDWへの投影を表す式(12)で、カメラ102の焦点距離fCの値を仮想カメラの焦点距離fUに置き換えることによって達成される。
【0089】
さらに、第1実施例に比して、第2実施例の奥行き修正モジュールは以下の点が異なっている。即ち、第2実施例の奥行き修正モジュールは、視点位置の三次元運動を表す行列ΔMとして、左右の視点位置に対応する2つの三次元運動を表す行列ΔMR,ΔMLを入力し、奥行き画像IDWとして、左右の視点位置に対応する2つの奥行き画像IDW R,IDW Lを出力する。これは、左右の視点に対してそれぞれ独立に上記の奥行き修正処理を行うことで実現される。
【0090】
〈画像生成モジュール300〉…第2実施例
第16図は第2実施例の画像生成モジュール300の構成を示す。
まず、観察者の右眼に提示されるLCD103Rへの表示画像の生成について説明する。
画像生成モジュール300は、三次元CGデータベース301からのCGデータと、視点位置推定モジュール201から入力した観察者の右眼の視点位置VtF URに基づいて、そのCGの濃淡画像(或いはカラー画像)と奥行き画像を生成する。生成された濃淡画像(或いはカラー画像)はマスク処理部303に、奥行き画像は前後判定処理部304に送られる。前後判定処理部304は、奥行き修正モジュール203からの変形された奥行き画像IDW Rをも入力する。この奥行き画像IDW Rは実空間の奥行き情報を表す。従って、前後判定処理部304は、表示されるべきCG画像の奥行きと実空間の奥行きとを画素ごとに比較して、現実の奥行きがCGの奥行きより手前になる全ての画素に“0”を、手前にならない画素に“1”を設定したマスク画像を生成して、マスク処理部303に出力する。
【0091】
マスク画像上のある座標の画素値が0であるということは、CG画像上の同一座標に描画されたCG図形が現実空間の物体より後ろにあり、CG図形は隠されていて見えないはずであると判断されたことに相当する。マスク処理部303は、マスク画像に基づいて、CG画像をマスク処理する。即ち、マスク画像上の各々の座標について、その座標の画素値が0であれば、CG画像上の同一座標の画素値を0に設定する。マスク処理部303からの出力はデイスプレイ103Rに出力される。観察者の左眼に提示されるLCD103Lへの表示画像の生成も、同様の過程で行われる。
【0092】
かくして、第2実施例の装置によれば、ステレオ処理によって生じる遅れの影響を受けることなく、観察者に提示されるべきCG画像の生成の際に、時刻tFで観測されるであろう奥行き画像に基づいてマスク処理が施されるので、現実空間とCG画像との矛盾のない複合現実感を与えることができる。
【0093】
〈第2実施例の変形例〉
第2実施例においては、奥行き画像の修正は、極力、観察者に複合現実感画像が提示される時点での観察者の視点位置を目的の視点位置として行われることが理論上好ましい。この目的のために、画像生成モジュール300が奥行き画像IDWを入力してからLCD103へ複合現実感画像が提示されるまでに要する処理時刻をδ4とする。理論的には、画像処理装置200における視点推定の時間幅Δtを、
Δt=δ1+δ2+δ3+δ4 …(14)
に設定することで、LCD103に提示される1フレーム毎の複合現実感画像は、観察者が現在見ている現実空間と同期がとれたものとなる。
【0094】
また、第2実施例では、カメラ102の視点位置や焦点距離と観察者の左右の視点位置や焦点距離を別個に扱うようにしているが、観察者の視点がカメラと一致するような構成であれば、これらを同一のものとして扱うことができる。
【0095】
また、第2実施例では、観察者の左右の眼に別個の映像を提示する例を示したが、単眼の表示系をもつ光学シー・スルー方式の複合現実感提示システムの場合には、観察者の一方の眼にのみ対応した処理を行えばよい。
【0096】
〈第3実施例〉
第3実施例は、第6図の実施形態の原理をビデオ・シー・スルー方式の複合現実感提示システムに適用したもので、その構成は第18図に示される。
第18図に示された第3実施例のシステムの構成要素を第16図の第2実施例のシステム構成と比較すれば、前者は、頭部センサ101を有さない点と、視点位置推定モジュール201がカメラ102が取得した画像から、視点位置の移動を推定できるようにした点で、後者と異なる。
【0097】
また、第3実施例はビデオ・シー・スルー方式のHMDを採用することから、画像生成モジュール300の構成も後述するように第2実施例と異なる。
また、ビデオ・シー・スルー方式であることから、第3実施例では、LCD103に表示すべき画像の一部はカメラ102から得ることとなる。
【0098】
〈視点位置推定モジュール201〉…第3実施例
第3実施例の視点位置推定モジュール201は、時刻t0におけるカメラ102Rの視点位置Vt0 CRから時刻tFにおける左右のカメラ102R,102Lの視点位置VtF CR,VtF CLに至るまでの三次元運動を表す行列ΔMR,ΔMLを、奥行き修正モジュール203に出力する。更に、時刻tFにおける左右のカメラ102R,102Lの視点位置VtF CR,VtF CLを、画像生成モジュール300に出力する。
【0099】
第1実施例と第2実施例の視点位置推定モジュール201は位置センサ101によって視点位置を検出していた。この第3実施例の視点位置推定モジュール201は、カメラ102R,102Lからの画像に基づいて視点の移動を推定する。
【0100】
画像情報に基づいて視点位置を推定する手法には色々のものがある。例えば、実空間上の位置が既知の特徴点の画像内における座標値の変化を追跡することによって、視点位置の移動を推定することができる。例えば、第19図では、実空間に存在する物体600は特徴点として頂点Q1,Q2,Q3を有するものとする。頂点Q1,Q2,Q3の実空間上での座標値は既知であるとする。時刻t1における頂点Q1,Q2,Q3の画像上での夫々の座標値と、それら頂点の既知の実空間上での座標値から視点Vt1を演算することができる。また、カメラが移動して時刻t2において同図に示すような画像が得られたとしても、同じようにして、視点位置Vt2を計算することができる。
【0101】
尚、上記手法で用いられる既知の特徴点の数は、アルゴリズムによって変更されるべきである。例えば、" A self-tracking augmented reality system " (U. NeumannとY. Cho, In Proceedings VRST'96, pages 109-115, 1996)のアルゴリズムでは3点の特徴点が、"画像中の特徴点に基づく実写画像とCG画像との動画像合成システム" (中沢,中野,小松,斎藤,映像情報メディア学会誌,Vol.51,No.7,pages 1086-1095,1997)のアルゴリズムでは4点の特徴点が必要とされる。さらに、左右のカメラ102で撮影された2枚の映像から、視点位置を推定する手法(例えば、"Superior augmented reality registration by integrating landmark tracking and magnetic tracking," (A. State et al., Proceedings SIGGRAPH'96, pages 429-438, 1996))を用いることも可能である。
【0102】
かくして、第3実施例の視点位置推定モジュール201も、時刻tC0,…,tCmにおけるカメラ102Rの視点位置VtC0,…,VtCm を得た後は、第1実施例と同様の処理にしたがって、カメラの三次元的移動を記述する行列ΔM(ΔMRとΔML)とカメラ102の視点位置MtF(MtF CRとMtF CL)を、それぞれ、奥行き修正モジュール203と画像生成モジュール300に出力する。
尚、第3実施例の奥行き推定モジュール202の処理は第1実施例のそれと同じであるので、説明を省略する。
【0103】
〈奥行き修正モジュール203〉…第3実施例
第3実施例における奥行き修正モジュールは、第2実施例と同様に、視点位置の三次元運動を表す行列ΔMとして、左右の視点位置に対応する2つの三次元運動を表す行列ΔMR,ΔMLを入力し、奥行き画像IDWとして、左右の視点位置に対応する2つの奥行き画像IDW R,IDW Lを出力する。ただし、視点位置はカメラ102の視点位置であるので、奥行き画像IDWへの投影を表す式(12)において、焦点距離にはカメラ102の焦点距離fCの値を用いればよい。
【0104】
〈画像生成モジュール300〉…第3実施例
第20図に第3実施例の画像生成モジュール300の構成を示す。第2実施例の画像生成モジュール300(第13図)と比較すると、第3実施例のCG描画部302と前後判定処理部304は第2実施例のそれらと実質的に同一である。一方、融合処理部305は、カメラ102からの実空間の画像とCG描画部305からの画像とを融合して出力する点で異なる。
【0105】
説明を簡単にするために、観察者の右眼に提示されるLCD103Rへの表示画像の生成についてのみ説明する。LCD103Lへの表示画像の生成も同様の手続きによって行われる。
【0106】
第3実施例の画像生成モジュール300は、三次元CGデータベース301からのCGデータと、視点位置推定モジュール201から入力したカメラ102Rの視点位置VtF CRに基づいて、そのCGの濃淡画像(或いはカラー画像)と奥行き画像を生成する。生成された濃淡画像(或いはカラー画像)は融合処理部305に、奥行き画像は前後判定処理部304に送られる。
【0107】
前後判定処理部304の処理は第2実施例のそれと同じであるので、説明を省略する。但し、第3実施例では、前後判定処理部304が出力する画像を、マスク画像ではなく前後判定画像と呼ぶ。
【0108】
融合処理部305は、前後判定画像に基づいて、描画部302からのCG画像(濃淡或いはカラー画像)とカメラからの実空間の濃淡画像(或いはカラー画像)とを融合する。即ち、前後判定画像上の各々の座標について、その座標の画素値が1であれば、CG画像上の同一座標の画素値を出力画像上の同一座標の画素値に、画素値が0であれば、実画像上の同一座標の画素値を出力画像上の同一座標の画素値へと設定する。融合処理部305からの出力はデイスプレイ103に出力される。
【0109】
尚、第3実施例においては、視点位置VtFとして、融合の対象となる現実空間の画像が入力された時点でのカメラの視点位置を設定することが理論上好ましい。
【0110】
かくして、第3実施例の装置によれば、ステレオ処理によって生じる遅れの影響を受けることなく、融合の対象となる現実空間の画像が入力された時刻に同期した奥行き画像に基づいて融合処理が施されるので、現実空間の画像とCG画像との矛盾のない複合現実感を与えることができるという、第2実施例と同様な効果を発揮することができる。
【0111】
第3実施例は、カメラからの画像に基づいて視点位置の推定を行うので、ビデオ・シー・スルー方式の複合現実感提示システムには好適である。第21図は第3実施例の動作タイミングを説明する。
【0112】
〈変形例1〉
第2、第3実施例は、複合現実感提示システムにおける現実世界と仮想画像との前後判定への適用を説明したものであったが、本発明の奥行き画像測定装置は、複合現実感提示システムにおける現実世界と仮想画像との衝突判定にも適用可能である。
【0113】
さらに、本発明の奥行き画像測定装置は、移動ロボットの環境入力装置など、実環境の奥行き情報を遅れなく実時間で獲得することが要求されるアプリケーションには、いずれも適用可能である。
【0114】
〈変形例2〉
第3実施例における視点位置推定モジュール201は、画像上の特徴点の二次元的な変位によっても、時刻tFにおける視点位置の推定を行うことが可能である。
第22図は、特徴点を二次元的に抽出するようにした場合の視点位置推定モジュール201の制御手順である。
【0115】
まず、ステップS40では、カメラ102から画像を順次入力する。カメラ102は、時刻tC0,tC1,tC2,…で、それぞれ、画像ItC0,ItC1,ItC2,…を撮像したとする。これら入力画像から、ステップS42で、特徴点Aの座標値列PA tC0,PA tC1,PA tC3,…を得る。ステップS44では、時刻tFでの特徴点Aの座標値PA tFを推定する。例えばこの推定は一次予測によって行うことができる。
【0116】
即ち、現時点において時刻tCmまでの画像上での特徴点Aの座標値PA tCmが与えられているとして、
F=tCm+α・(tCm−tCm-1) …(15)
であったとき、PA tF=(xA tF,yA tF)は、
A tF=(1+α)・xA tCm −α・xA tCm-1
A tF=(1+α)・yA tCm −α・yA tCm-1 …(16)
を満足するものとして得ることができる。以上の処理を特徴点B、特徴点C…に対しても行い、ステップS46では、ステップS44で得られた各特徴点の座標値PA tF,PB tF,PC tF…を用いて、時刻tFにおける視点位置VtFを推定する。
【0117】
〈変形例3〉
第1または第2実施例における視点位置推定モジュールは三次元位置方位センサを、第3実施例における視点位置推定モジュールはカメラからの画像情報を用いていたが、各実施例はいずれの手法を用いても実現可能である。
【0118】
〈変形例4〉
上記の実施形態や第1実施例における視点位置推定モジュールにおいて、画像特徴による視点位置推定を用いた場合、特徴点の実空間上の位置が未知であっても、奥行き画像の変形に必要な視点位置の三次元的な運動ΔMを得ることができる。
【0119】
例えば第23図に示すように、時刻tc0(=t0),tc1,…,tcmにおいて、複数枚の画像Itc0,Itc1,…,Itcmが撮影されたとする。このとき、各画像中から、複数(第23図では3点)の特徴的な特徴点の画像座標値(PA tc0,PA tc1,…,PA tcm;PB tc0,PB tc1,…,PB tcm;PC tc0,PC tc1,…,PC tcm)を追跡し、さらに、時刻tFにおける各特徴点の画像座標値(PA tF,PB tF,PC tF)を式(13)と同様の手法によって推定する。
【0120】
これらの特徴点の画像座標値の組に基づくと、時刻t0から時刻tFまでの視点位置の相対的な変化ΔMを直接推定することができる。具体的には例えば因子分解法(“因子分解法による物体形状とカメラ運動の復元”,金出武男ら,電子情報通信学会論文誌D-II,Vol.J76-D-II,No.8,pages1497-1505,1993)や、Sequential Factorization Method(A Sequential Factorization Method for Recovering Shape and Motion From Image Streams, Toshihiko Morita et al., IEEETrans. PAMI, Vol.19, No.8, pages 858-867, 1997)などを適用すればよい。この場合、環境に関する知識は不要であり、特徴点は未知の点であっても良く、画像処理により特徴点が画像間で同定できさえすればよい。
【0121】
〈変形例5〉
上記の実施形態や実施例において、奥行き推定モジュールは複数のカメラが撮影した入力画像に対するそれぞれの奥行き画像IDC1,IDC2,…を出力しても良い。
【0122】
この場合、視点位置推定モジュールは、各奥行き画像の撮影された視点位置Vt0 C1,Vt0 C2,…から視点位置VtFまでの各々の三次元的運動を表す行列ΔMC1,ΔMC1,…を出力し、奥行き変形モジュールは、それらの情報を用いて、変形後の奥行き画像IDWを求める事が可能である。
【0123】
即ち、入力される各々の奥行き画像に変形処理を施し、変形後の奥行き画像IDW C1,IDW C2,…を生成し、これを統合することで、出力となる変形後の奥行き画像IDWを生成すれば良い。あるいは、三次元運動の最も小さい視点位置(例えばこれをVt0 Cnとする)で獲得された奥行き画像IDCnからIDWを生成し、このとき「穴あき」の生じた画素についてのみ他の奥行き画像の情報をもちいて埋めることもできる。
【0124】
〈変形例6〉
第2実施例や第3実施例のように変形後の奥行き画像を複数生成する必要がある場合において、視点位置推定モジュールは、代表的な(例えば右のカメラ102Rの)視点位置の三次元的運動を表す行列ΔMのみを出力しても良い。この場合、奥行き修正モジュールは、その内部で、各視点位置の相対的な位置関係に基づいて、それぞれの三次元的運動を表す行列ΔMを演算する。
【0125】
〈変形例7〉
上記の実施形態や実施例において、奥行き画像生成装置の出力する画像は、現実空間の奥行き値そのものを表すものでなくても良い。即ち、奥行き情報と一対一に対応する例えば視差の情報を保持した視差画像でも良く、この場合の演算は、ステレオ画像計測において通常用いられるような奥行き情報と視差情報との対応関係に基づいて、容易に行うことができる。
【0126】
【発明の効果】
以上説明したように本発明の奥行き画像計測装置及び奥行き画像計測方法に因れば、現実世界の奥行き画像を得することができる。
また、本発明の画像処理装置及び画像処理方法、さらには複合現実感提示システム、その提示方法によれば、観察者の視点位置が移動する場合においても、三次元的に整合のとれた複合現実感画像を提示することができる。
また、本発明の画像処理装置及び画像処理方法、さらには複合現実感提示システム、その提示方法によれば、三次元的に整合のとれた複合現実感画像を特に連続的に提示することができる。
【0127】
【図面の簡単な説明】
【図1】 従来法によって得られた奥行き画像によって複合現実感画像を生成するときに発生する矛盾もしくは不整合を説明する図。
【図2】 図1の複合現実感画像において、時間のズレがないと仮定した場合に矛盾もしくは不整合が発生する理由を説明する図。
【図3】 図1の複合現実感画像において、時間のズレがないと仮定した場合に矛盾もしくは不整合が発生する理由を説明する図。
【図4】 図1の複合現実感画像において、時間のズレがある場合に矛盾もしくは不整合が発生する理由を説明する図。
【図5】 図1の複合現実感画像において、時間のズレがある場合に矛盾もしくは不整合が発生する理由を説明する図。
【図6】 本発明を適用した実施形態及び第1実施例に係る画像処理装置200のブロック図。
【図7】 実施形態及び第1実施例に係る画像処理装置200の内部処理をパイプライン処理構成とした場合の同装置の動作を説明するタイミングチャート。
【図8】 実施形態及び第1実施例乃至第3実施形態における視点位置(X、Y、Z)及び方位(ω,ψ,κ)との関係を説明する図。
【図9】 本発明の第1実施例の視点位置推定モジュール201の制御手順を示すフローチャート。
【図10】 本発明の第1実施例において、センサ出力とカメラ出力とが同期しない場合における同期化のための演算処理の原理を説明する図。
【図11】 本発明の第1実施例の奥行き推定モジュール202の動作手順を説明するフローチャート。
【図12】 第1実施例の奥行き修正モジュール203の動作原理を説明する図。
【図13】 第1実施例の奥行き修正モジュール203の動作原理を説明する図。
【図14】 第1実施例の奥行き修正モジュール203の動作手順を説明するフローチャート。
【図15】 第1実施例の一例の動作を説明するタイミングチャート。
【図16】 本発明の第2実施例の画像処理装置を適用した複合現実感提示システムの構成を説明する図。
【図17】 第2実施例の画像処理装置の画像生成モジュール300の構成を示すブロック図。
【図18】 本発明の第3実施例の画像処理装置を適用した複合現実感提示システムの構成を説明する図。
【図19】 第3実施例において視点推定の他の方法を説明する図。
【図20】 第3実施例の画像処理装置の画像生成モジュール300の構成を示すブロック図。
【図21】 第3実施例の動作を説明するタイミングチャート。
【図22】 他の手法に係る視点位置推定の制御手順を示すフローチャート。
【図23】 さらに他の手法に係る視点位置推定の制御手順を説明する図。

Claims (6)

  1. 情景の奥行き情報を連続的に獲得するための奥行き画像処理装置であって、
    連続的に移動する視点位置から前記情景の画像を連続的な時系列で入力する画像入力手段と、
    前記連続的に移動する視点位置の位置情報を連続的な時系列で取得する位置情報取得手段と、
    前記入力手段により入力した情景画像から、奥行き画像を生成する奥行き画像生成手段と、
    所定時間後の視点位置を、前記位置情報取得手段によって取得した位置情報群から推定する推定手段と、
    前記推定された所定時間後の視点位置に応じて、前記生成された奥行き画像を修正し、前記所定時間後に入力する前記情景の画像の奥行き画像として求める奥行き画像修正手段とを有し、
    前記奥行き画像修正手段は、前記生成された奥行き画像を空間に逆投影し、前記推定された所定時間後の視点位置に想定した撮像面に再度投影することにより、前記生成された奥行き画像を修正することを特徴とする画像処理装置。
  2. 情景の奥行き情報を連続的に獲得するための奥行き画像処理方法であって、
    連続的に移動する視点位置から前記情景の画像を連続的な時系列で入力し、
    前記連続的に移動する視点位置の位置情報を連続的な時系列で取得し、
    前記入力手段により入力した情景画像から、奥行き画像を生成し、
    所定時間後の視点位置を、前記位置情報取得手段によって取得した位置情報群から推定し、
    前記生成された奥行き画像を空間に逆投影し、前記推定された所定時間後の視点位置に想定した撮像面に再度投影することにより、前記推定された所定時間後の視点位置に応じて、前記生成された奥行き画像を修正し、前記所定時間後に入力する前記情景の画像の奥行き画像として求めることを特徴とする画像処理方法。
  3. 前記奥行き画像は、ステレオ撮影された前記情景画像を用いて生成されることを特徴とする請求項2記載の画像処理方法。
  4. 前記画像の入力と前記位置情報の取得は非同期に行われ、
    前記位置情報を補間処理して、前記画像に応じた位置情報を算出することを特徴とする請求項2記載の画像処理方法。
  5. さらに、前記推定した視点位置に応じてCG画像と該CG画像の奥行き画像とを生成し、
    前記所定時間後に入力した前記情景の画像と前記生成されたCG画像とを、前記修正された奥行き画像を前記所定時間後に入力した前記情景の画像の奥行き画像として前記CG画像の奥行き画像と比較した結果に応じて融合することを特徴とする請求項2記載の画像処理方法。
  6. コンピュータ装置に、
    情景の奥行き情報を連続的に獲得するための奥行き画像処理方法であって、
    連続的に移動する視点位置から前記情景の画像を連続的な時系列で入力する工程と、
    前記連続的に移動する視点位置の位置情報を連続的な時系列で取得する工程と、
    前記入力手段により入力した情景画像から、奥行き画像を生成する工程と、
    所定時間後の視点位置を、前記位置情報取得手段によって取得した位置情報群から推定する工程と、
    前記生成された奥行き画像を空間に逆投影し、前記推定された所定時間後の視点位置に想定した撮像面に再度投影することにより、前記推定された所定時間後の視点位置に応じて、前記生成された奥行き画像を修正し、前記所定時間後に入力する前記情景の画像の奥行き画像として求める工程とを実現させるコンピュータプログラムを格納したコンピュータ装置読み取り可能な記録媒体。
JP12626498A 1998-05-08 1998-05-08 画像処理装置及び画像処理方法 Expired - Fee Related JP3745117B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP12626498A JP3745117B2 (ja) 1998-05-08 1998-05-08 画像処理装置及び画像処理方法
EP99301827A EP0955606A3 (en) 1998-05-08 1999-03-11 Measurement of depht image considering time delay
US09/266,859 US6445815B1 (en) 1998-05-08 1999-03-12 Measurement of depth image considering time delay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12626498A JP3745117B2 (ja) 1998-05-08 1998-05-08 画像処理装置及び画像処理方法

Publications (2)

Publication Number Publication Date
JPH11331874A JPH11331874A (ja) 1999-11-30
JP3745117B2 true JP3745117B2 (ja) 2006-02-15

Family

ID=14930888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12626498A Expired - Fee Related JP3745117B2 (ja) 1998-05-08 1998-05-08 画像処理装置及び画像処理方法

Country Status (3)

Country Link
US (1) US6445815B1 (ja)
EP (1) EP0955606A3 (ja)
JP (1) JP3745117B2 (ja)

Families Citing this family (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3363861B2 (ja) * 2000-01-13 2003-01-08 キヤノン株式会社 複合現実感提示装置及び複合現実感提示方法並びに記憶媒体
JP2001344597A (ja) * 2000-05-30 2001-12-14 Fuji Heavy Ind Ltd 融合視界装置
DE60115789T2 (de) * 2000-08-25 2006-08-31 Fuji Photo Film Co., Ltd., Minami-Ashigara Vorrichtung zur Parallaxbildaufnahme und Parallaxbildverarbeitung
US7101988B2 (en) * 2000-10-12 2006-09-05 Marical, Inc. Polyvalent cation-sensing receptor in Atlantic salmon
US7085409B2 (en) * 2000-10-18 2006-08-01 Sarnoff Corporation Method and apparatus for synthesizing new video and/or still imagery from a collection of real video and/or still imagery
US20020055861A1 (en) * 2000-11-08 2002-05-09 King Daniel A. Claiming system and method
JP2002157606A (ja) * 2000-11-17 2002-05-31 Canon Inc 画像表示制御装置、複合現実感提示システム、画像表示制御方法、及び処理プログラムを提供する媒体
WO2002096096A1 (en) * 2001-05-16 2002-11-28 Zaxel Systems, Inc. 3d instant replay system and method
US8035612B2 (en) 2002-05-28 2011-10-11 Intellectual Ventures Holding 67 Llc Self-contained interactive video display system
US8300042B2 (en) * 2001-06-05 2012-10-30 Microsoft Corporation Interactive video display system using strobed light
US7339609B2 (en) * 2001-08-10 2008-03-04 Sony Corporation System and method for enhancing real-time data feeds
US7173672B2 (en) * 2001-08-10 2007-02-06 Sony Corporation System and method for transitioning between real images and virtual images
US7091989B2 (en) * 2001-08-10 2006-08-15 Sony Corporation System and method for data assisted chroma-keying
US20030030658A1 (en) * 2001-08-10 2003-02-13 Simon Gibbs System and method for mixed reality broadcast
US7251352B2 (en) * 2001-08-16 2007-07-31 Siemens Corporate Research, Inc. Marking 3D locations from ultrasound images
US6940538B2 (en) * 2001-08-29 2005-09-06 Sony Corporation Extracting a depth map from known camera and model tracking data
JP3705180B2 (ja) * 2001-09-27 2005-10-12 セイコーエプソン株式会社 画像表示システム、プログラム、情報記憶媒体および画像処理方法
US20030187820A1 (en) 2002-03-29 2003-10-02 Michael Kohut Media management system and process
JP2003337963A (ja) * 2002-05-17 2003-11-28 Seiko Epson Corp 画像処理装置および画像処理方法、ならびに、画像処理プログラムおよびその記録媒体
US20050122308A1 (en) * 2002-05-28 2005-06-09 Matthew Bell Self-contained interactive video display system
US7710391B2 (en) * 2002-05-28 2010-05-04 Matthew Bell Processing an image utilizing a spatially varying pattern
AU2003301043A1 (en) * 2002-12-13 2004-07-09 Reactrix Systems Interactive directed light/sound system
US7515156B2 (en) * 2003-01-08 2009-04-07 Hrl Laboratories, Llc Method and apparatus for parallel speculative rendering of synthetic images
JP2004228948A (ja) * 2003-01-23 2004-08-12 Seiko Epson Corp 画像処理システム、プロジェクタ、プログラム、情報記憶媒体および画像処理方法
US7425984B2 (en) * 2003-04-04 2008-09-16 Stmicroelectronics, Inc. Compound camera and methods for implementing auto-focus, depth-of-field and high-resolution functions
JP4451730B2 (ja) * 2003-09-25 2010-04-14 富士フイルム株式会社 動画生成装置、方法及びプログラム
EP1676442A2 (en) 2003-10-24 2006-07-05 Reactrix Systems, Inc. Method and system for managing an interactive video display system
KR100682994B1 (ko) 2004-11-04 2007-02-15 한국전자통신연구원 영상 사실감 예측 장치 및 그 방법
JP4227561B2 (ja) 2004-06-03 2009-02-18 キヤノン株式会社 画像処理方法、画像処理装置
JP4573599B2 (ja) * 2004-08-17 2010-11-04 エイディシーテクノロジー株式会社 表示装置
US7868904B2 (en) 2005-04-01 2011-01-11 Canon Kabushiki Kaisha Image processing method and image processing apparatus
US9128519B1 (en) 2005-04-15 2015-09-08 Intellectual Ventures Holding 67 Llc Method and system for state-based control of objects
JP5111739B2 (ja) * 2005-05-12 2013-01-09 三菱電機株式会社 質感表示装置
US8081822B1 (en) 2005-05-31 2011-12-20 Intellectual Ventures Holding 67 Llc System and method for sensing a feature of an object in an interactive video display
US8098277B1 (en) 2005-12-02 2012-01-17 Intellectual Ventures Holding 67 Llc Systems and methods for communication between a reactive video system and a mobile communication device
DE102006006001B3 (de) * 2006-02-08 2007-10-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Anordnung zum Einblenden ortsbezogener Informationen in eine visuelle Darstellung oder Ansicht einer Szene
JP4810295B2 (ja) * 2006-05-02 2011-11-09 キヤノン株式会社 情報処理装置及びその制御方法、画像処理装置、プログラム、記憶媒体
US7894662B2 (en) * 2006-10-11 2011-02-22 Tandent Vision Science, Inc. Method for using image depth information in identifying illumination fields
JP4857196B2 (ja) * 2007-05-31 2012-01-18 キヤノン株式会社 頭部装着型表示装置、及びその制御方法
US8036452B2 (en) * 2007-08-10 2011-10-11 Leica Geosystems Ag Method and measurement system for contactless coordinate measurement on an object surface
EP2402710B1 (de) * 2007-08-10 2015-10-28 Leica Geosystems AG Verfahren und Vermessungssystem zur berührungslosen Koordinatenmessung an einer Objektoberfläche
US9020240B2 (en) 2007-08-10 2015-04-28 Leica Geosystems Ag Method and surveying system for noncontact coordinate measurement on an object surface
EP2188737A4 (en) 2007-09-14 2011-05-18 Intellectual Ventures Holding 67 Llc PROCESSING BREAKFAST USER INTERACTIONS
US7929804B2 (en) * 2007-10-03 2011-04-19 Mitsubishi Electric Research Laboratories, Inc. System and method for tracking objects with a synthetic aperture
US8159682B2 (en) 2007-11-12 2012-04-17 Intellectual Ventures Holding 67 Llc Lens system
US8351685B2 (en) * 2007-11-16 2013-01-08 Gwangju Institute Of Science And Technology Device and method for estimating depth map, and method for generating intermediate image and method for encoding multi-view video using the same
KR101367284B1 (ko) * 2008-01-28 2014-02-26 삼성전자주식회사 시점 변화에 따른 영상 복원 방법 및 장치
US8259163B2 (en) * 2008-03-07 2012-09-04 Intellectual Ventures Holding 67 Llc Display with built in 3D sensing
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
CN102047288B (zh) * 2008-05-28 2014-04-23 汤姆森特许公司 利用正向和反向深度预测进行图像的深度提取的系统和方法
US8595218B2 (en) 2008-06-12 2013-11-26 Intellectual Ventures Holding 67 Llc Interactive display management systems and methods
CN102204262A (zh) * 2008-10-28 2011-09-28 皇家飞利浦电子股份有限公司 图像特性的遮挡数据的生成
WO2010071531A1 (en) * 2008-12-19 2010-06-24 Saab Ab System and method for mixing a scene with a virtual scenario
KR101574068B1 (ko) * 2008-12-26 2015-12-03 삼성전자주식회사 영상 처리 방법 및 장치
JP5215211B2 (ja) * 2009-03-04 2013-06-19 Kddi株式会社 関連情報表示位置特定システムおよび関連情報表示位置特定用プログラム
JP5310130B2 (ja) * 2009-03-11 2013-10-09 オムロン株式会社 3次元視覚センサによる認識結果の表示方法および3次元視覚センサ
JP5714232B2 (ja) 2009-03-12 2015-05-07 オムロン株式会社 キャリブレーション装置および3次元計測のためのパラメータの精度の確認支援方法
JP2010210585A (ja) * 2009-03-12 2010-09-24 Omron Corp 3次元視覚センサにおけるモデル表示方法および3次元視覚センサ
JP5245938B2 (ja) * 2009-03-12 2013-07-24 オムロン株式会社 3次元認識結果の表示方法および3次元視覚センサ
JP5245937B2 (ja) * 2009-03-12 2013-07-24 オムロン株式会社 3次元計測処理のパラメータの導出方法および3次元視覚センサ
JP5316118B2 (ja) * 2009-03-12 2013-10-16 オムロン株式会社 3次元視覚センサ
JP5282614B2 (ja) * 2009-03-13 2013-09-04 オムロン株式会社 視覚認識処理用のモデルデータの登録方法および視覚センサ
JP5247590B2 (ja) * 2009-05-21 2013-07-24 キヤノン株式会社 情報処理装置及びキャリブレーション処理方法
US8422641B2 (en) * 2009-06-15 2013-04-16 Calabrio, Inc. Distributed record server architecture for recording call sessions over a VoIP network
KR101565969B1 (ko) * 2009-09-01 2015-11-05 삼성전자주식회사 깊이 정보를 추정할 수 있는 방법과 장치, 및 상기 장치를 포함하는 신호 처리 장치
JP2011060216A (ja) * 2009-09-14 2011-03-24 Fujifilm Corp 画像処理装置および画像処理方法
US8643701B2 (en) 2009-11-18 2014-02-04 University Of Illinois At Urbana-Champaign System for executing 3D propagation for depth image-based rendering
EP2502115A4 (en) 2009-11-20 2013-11-06 Pelican Imaging Corp RECORDING AND PROCESSING IMAGES THROUGH A MONOLITHIC CAMERA ARRAY WITH HETEROGENIC IMAGE CONVERTER
US8280112B2 (en) * 2010-03-31 2012-10-02 Disney Enterprises, Inc. System and method for predicting object location
WO2011144793A1 (en) * 2010-05-18 2011-11-24 Teknologian Tutkimuskeskus Vtt Mobile device, server arrangement and method for augmented reality applications
CN102438153B (zh) * 2010-09-29 2015-11-25 华为终端有限公司 多摄像机图像校正方法和设备
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
CN103404156A (zh) * 2011-02-24 2013-11-20 索尼公司 图像处理装置和图像处理方法
US9262950B2 (en) 2011-04-20 2016-02-16 Microsoft Technology Licensing, Llc Augmented reality extrapolation techniques
US20130113701A1 (en) * 2011-04-28 2013-05-09 Taiji Sasaki Image generation device
EP2717572B1 (en) * 2011-06-24 2018-08-08 LG Electronics Inc. Encoding/decoding method and apparatus using a skip mode
US9300946B2 (en) 2011-07-08 2016-03-29 Personify, Inc. System and method for generating a depth map and fusing images from a camera array
WO2013043761A1 (en) 2011-09-19 2013-03-28 Pelican Imaging Corporation Determining depth from multiple views of a scene that include aliasing using hypothesized fusion
WO2013049699A1 (en) 2011-09-28 2013-04-04 Pelican Imaging Corporation Systems and methods for encoding and decoding light field image files
EP2817955B1 (en) 2012-02-21 2018-04-11 FotoNation Cayman Limited Systems and methods for the manipulation of captured light field image data
JP5977591B2 (ja) * 2012-06-20 2016-08-24 オリンパス株式会社 画像処理装置及びそれを備えた撮像装置、画像処理方法、並びに画像処理プログラムを記録したコンピュータ読み取り可能な記録媒体
US20140002674A1 (en) 2012-06-30 2014-01-02 Pelican Imaging Corporation Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors
SG11201500910RA (en) 2012-08-21 2015-03-30 Pelican Imaging Corp Systems and methods for parallax detection and correction in images captured using array cameras
US20140055632A1 (en) 2012-08-23 2014-02-27 Pelican Imaging Corporation Feature based high resolution motion estimation from low resolution images captured using an array source
WO2014052974A2 (en) * 2012-09-28 2014-04-03 Pelican Imaging Corporation Generating images from light fields utilizing virtual viewpoints
US9398264B2 (en) 2012-10-19 2016-07-19 Qualcomm Incorporated Multi-camera system using folded optics
US20140168264A1 (en) 2012-12-19 2014-06-19 Lockheed Martin Corporation System, method and computer program product for real-time alignment of an augmented reality device
US20140176591A1 (en) * 2012-12-26 2014-06-26 Georg Klein Low-latency fusing of color image data
JP6143469B2 (ja) * 2013-01-17 2017-06-07 キヤノン株式会社 情報処理装置、情報処理方法及びプログラム
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9473708B1 (en) * 2013-08-07 2016-10-18 Google Inc. Devices and methods for an imaging system with a dual camera architecture
US10178373B2 (en) 2013-08-16 2019-01-08 Qualcomm Incorporated Stereo yaw correction using autofocus feedback
JP6102648B2 (ja) * 2013-09-13 2017-03-29 ソニー株式会社 情報処理装置及び情報処理方法
WO2015074078A1 (en) 2013-11-18 2015-05-21 Pelican Imaging Corporation Estimating depth from projected texture using camera arrays
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US10600245B1 (en) 2014-05-28 2020-03-24 Lucasfilm Entertainment Company Ltd. Navigating a virtual environment of a media content item
JP6384856B2 (ja) * 2014-07-10 2018-09-05 Kddi株式会社 予測カメラ姿勢に基づくarオブジェクトを実時間に合わせて描画する情報装置、プログラム及び方法
WO2016054089A1 (en) 2014-09-29 2016-04-07 Pelican Imaging Corporation Systems and methods for dynamic calibration of array cameras
SE538405C2 (en) * 2015-01-07 2016-06-14 Viscando Ab Method and system for categorization of a scene
US9588598B2 (en) 2015-06-30 2017-03-07 Ariadne's Thread (Usa), Inc. Efficient orientation estimation system using magnetic, angular rate, and gravity sensors
US9607428B2 (en) 2015-06-30 2017-03-28 Ariadne's Thread (Usa), Inc. Variable resolution virtual reality display system
US9588593B2 (en) 2015-06-30 2017-03-07 Ariadne's Thread (Usa), Inc. Virtual reality system with control command gestures
US9396588B1 (en) 2015-06-30 2016-07-19 Ariadne's Thread (Usa), Inc. (Dba Immerex) Virtual reality virtual theater system
US9240069B1 (en) * 2015-06-30 2016-01-19 Ariadne's Thread (Usa), Inc. Low-latency virtual reality display system
US10089790B2 (en) 2015-06-30 2018-10-02 Ariadne's Thread (Usa), Inc. Predictive virtual reality display system with post rendering correction
CN104952221B (zh) * 2015-07-09 2017-06-13 深圳大学 智能防近视台灯
US9606362B2 (en) 2015-08-07 2017-03-28 Ariadne's Thread (Usa), Inc. Peripheral field-of-view illumination system for a head mounted display
US9990008B2 (en) 2015-08-07 2018-06-05 Ariadne's Thread (Usa), Inc. Modular multi-mode virtual reality headset
US9454010B1 (en) 2015-08-07 2016-09-27 Ariadne's Thread (Usa), Inc. Wide field-of-view head mounted display system
CN108027652B (zh) * 2015-09-16 2021-06-22 索尼公司 信息处理设备、信息处理方法以及记录介质
US10345786B2 (en) 2016-02-16 2019-07-09 International Business Machines Corporation Method and system for proactive heating-based crack prevention in 3D printing
US10242499B2 (en) 2016-02-16 2019-03-26 International Business Machines Corporation Method and system for geographic map overlay onto a live feed
US9459692B1 (en) 2016-03-29 2016-10-04 Ariadne's Thread (Usa), Inc. Virtual reality headset with relative motion head tracker
CN105892683A (zh) * 2016-04-29 2016-08-24 上海乐相科技有限公司 一种显示方法及目标设备
US10043318B2 (en) * 2016-12-09 2018-08-07 Qualcomm Incorporated Display synchronized image warping
KR102434497B1 (ko) * 2017-02-03 2022-08-18 워너 브로스. 엔터테인먼트 인크. 가상 현실에서 확장 비디오의 렌더링
CN110573929A (zh) * 2017-05-01 2019-12-13 无限增强现实以色列有限公司 增强或混合现实环境的光学引擎时间扭曲
US10929987B2 (en) 2017-08-16 2021-02-23 Nvidia Corporation Learning rigidity of dynamic scenes for three-dimensional scene flow estimation
JP6732716B2 (ja) * 2017-10-25 2020-07-29 株式会社ソニー・インタラクティブエンタテインメント 画像生成装置、画像生成システム、画像生成方法、およびプログラム
EP3522150A3 (en) * 2018-02-03 2020-01-01 Facebook Technologies, LLC Apparatus, system, and method for mitigating motion-to-photon latency in head-mounted displays
US10559276B2 (en) 2018-02-03 2020-02-11 Facebook Technologies, Llc Apparatus, system, and method for mitigating motion-to-photon latency in head-mounted displays
US10706813B1 (en) 2018-02-03 2020-07-07 Facebook Technologies, Llc Apparatus, system, and method for mitigating motion-to-photon latency in head-mounted displays
CN108289175B (zh) * 2018-02-05 2020-12-08 黄淮学院 一种低延迟虚拟现实显示方法及显示系统
JP7132730B2 (ja) * 2018-03-14 2022-09-07 キヤノン株式会社 情報処理装置および情報処理方法
US10678325B2 (en) 2018-05-22 2020-06-09 Facebook Technologies, Llc Apparatus, system, and method for accelerating positional tracking of head-mounted displays
CN108921951B (zh) * 2018-07-02 2023-06-20 京东方科技集团股份有限公司 虚拟现实图像显示方法及其装置、虚拟现实设备
DE102018122435A1 (de) * 2018-09-13 2020-03-19 Hendrik Fehlis Virtuelle dreidimensionale Objekte in einem Livevideo
US10510155B1 (en) * 2019-06-11 2019-12-17 Mujin, Inc. Method and processing system for updating a first image generated by a first camera based on a second image generated by a second camera
KR102646521B1 (ko) 2019-09-17 2024-03-21 인트린식 이노베이션 엘엘씨 편광 큐를 이용한 표면 모델링 시스템 및 방법
CN110751039B (zh) * 2019-09-18 2023-07-25 平安科技(深圳)有限公司 多视图3d人体姿态估计方法及相关装置
MX2022004163A (es) 2019-10-07 2022-07-19 Boston Polarimetrics Inc Sistemas y metodos para la deteccion de estandares de superficie con polarizacion.
CN110751685B (zh) * 2019-10-21 2022-10-14 广州小鹏汽车科技有限公司 深度信息确定方法、确定装置、电子装置和车辆
KR20230116068A (ko) 2019-11-30 2023-08-03 보스턴 폴라리메트릭스, 인크. 편광 신호를 이용한 투명 물체 분할을 위한 시스템및 방법
US20210192681A1 (en) * 2019-12-18 2021-06-24 Ati Technologies Ulc Frame reprojection for virtual reality and augmented reality
JP7462769B2 (ja) 2020-01-29 2024-04-05 イントリンジック イノベーション エルエルシー 物体の姿勢の検出および測定システムを特徴付けるためのシステムおよび方法
KR20220133973A (ko) 2020-01-30 2022-10-05 인트린식 이노베이션 엘엘씨 편광된 이미지들을 포함하는 상이한 이미징 양식들에 대해 통계적 모델들을 훈련하기 위해 데이터를 합성하기 위한 시스템들 및 방법들
WO2021172950A1 (en) * 2020-02-27 2021-09-02 Samsung Electronics Co., Ltd. Electronic device and method for depth map re-projection on electronic device
US11107290B1 (en) 2020-02-27 2021-08-31 Samsung Electronics Company, Ltd. Depth map re-projection on user electronic devices
WO2021243088A1 (en) 2020-05-27 2021-12-02 Boston Polarimetrics, Inc. Multi-aperture polarization optical systems using beam splitters
CN113221953B (zh) * 2021-04-14 2023-01-31 上海交通大学宁波人工智能研究院 基于实例分割和双目深度估计的目标姿态识别系统与方法
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3573512B2 (ja) * 1994-05-17 2004-10-06 オリンパス株式会社 画像処理方法及び画像処理装置
US5703961A (en) * 1994-12-29 1997-12-30 Worldscape L.L.C. Image transformation and synthesis methods
US5933185A (en) * 1995-05-31 1999-08-03 Sony Corporation Special effect apparatus
US6084979A (en) * 1996-06-20 2000-07-04 Carnegie Mellon University Method for creating virtual reality
JP3064928B2 (ja) * 1996-09-20 2000-07-12 日本電気株式会社 被写体抽出方式

Also Published As

Publication number Publication date
JPH11331874A (ja) 1999-11-30
EP0955606A2 (en) 1999-11-10
EP0955606A3 (en) 2003-11-12
US6445815B1 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
JP3745117B2 (ja) 画像処理装置及び画像処理方法
US9240069B1 (en) Low-latency virtual reality display system
JP6514826B2 (ja) ピクセル速度を用いた電子ディスプレイ安定化
JP3338618B2 (ja) 実空間画像と仮想空間画像の表示方法及び表示装置
JP4532856B2 (ja) 位置姿勢計測方法及び装置
US6570566B1 (en) Image processing apparatus, image processing method, and program providing medium
JP2000215311A (ja) 仮想視点画像生成方法およびその装置
US20020106120A1 (en) Method of analyzing in real time the correspondence of image characteristics in corresponding video images
WO2002045003A1 (en) Techniques and systems for developing high-resolution imagery
JP2003187261A (ja) 3次元画像生成装置、3次元画像生成方法、立体画像処理装置、立体画像撮影表示システム、立体画像処理方法及び記憶媒体
JP2007323615A (ja) 画像処理装置及びその処理方法
KR101266362B1 (ko) 카메라 트래킹 시스템, 트래킹 방법 및 이를 이용한 실사영상 합성 시스템
US11158108B2 (en) Systems and methods for providing a mixed-reality pass-through experience
US20220148207A1 (en) Processing of depth maps for images
JPH07296185A (ja) 3次元画像表示装置
JP3450792B2 (ja) 奥行き画像計測装置及び方法、並びに複合現実感提示システム
JP2001012910A (ja) 多眼式データ入力装置
KR100945307B1 (ko) 스테레오스코픽 동영상에서 이미지를 합성하는 방법 및장치
CN110969706B (zh) 增强现实设备及其图像处理方法、系统以及存储介质
Bapat et al. Rolling shutter and radial distortion are features for high frame rate multi-camera tracking
JP2005063041A (ja) 3次元モデリング装置、方法、及びプログラム
KR20110025083A (ko) 입체 영상 시스템에서 입체 영상 디스플레이 장치 및 방법
KR102375135B1 (ko) 구형 물체를 이용한 다시점 카메라 위치 보정 장치 및 방법
KR100447778B1 (ko) 포즈추정을 이용한 스테레오/다시점 실감 혼합현실 구현장치 및 그 방법
JP4144981B2 (ja) 立体画像表示装置

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees