CN105390531A - 一种隧穿场效应晶体管的制备方法 - Google Patents

一种隧穿场效应晶体管的制备方法 Download PDF

Info

Publication number
CN105390531A
CN105390531A CN201510705660.4A CN201510705660A CN105390531A CN 105390531 A CN105390531 A CN 105390531A CN 201510705660 A CN201510705660 A CN 201510705660A CN 105390531 A CN105390531 A CN 105390531A
Authority
CN
China
Prior art keywords
preparation
effect transistor
deposit
tunneling field
gate dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510705660.4A
Other languages
English (en)
Other versions
CN105390531B (zh
Inventor
黄如
吴春蕾
黄芊芊
王佳鑫
王阳元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201510705660.4A priority Critical patent/CN105390531B/zh
Publication of CN105390531A publication Critical patent/CN105390531A/zh
Application granted granted Critical
Publication of CN105390531B publication Critical patent/CN105390531B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66356Gated diodes, e.g. field controlled diodes [FCD], static induction thyristors [SITh], field controlled thyristors [FCTh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Abstract

本发明公开了一种隧穿场效应晶体管的制备方法,属于CMOS超大规模集成电路(ULSI)中场效应晶体管逻辑器件领域。该方法通过制备工艺设计实现了超陡源结的隧穿场效应晶体管。本发明可以显著改善器件特性;同时,该制备方法与标准的CMOS?IC工艺兼容,能有效地在CMOS集成电路中集成TFET器件,还可以利用标准工艺制备由TFET组成的低功耗集成电路,极大地降低了生产成本,简化了工艺流程。

Description

一种隧穿场效应晶体管的制备方法
技术领域
本发明属于CMOS超大规模集成电路(ULSI)中场效应晶体管逻辑器件领域,具体涉及一种实现超陡源结的隧穿场效应晶体管的制备方法。
背景技术
自集成电路诞生以来,微电子集成技术一直按照“摩尔定律”不断发展,半导体器件尺寸不断缩小。随着半导体器件进入深亚微米范围,传统MOSFET器件由于受到自身扩散漂流的导通机制所限,亚阈斜率受到热电势kT/q的限制而无法随着器件尺寸的缩小而同步减小。这就导致MOSFET器件泄漏电流缩小无法达到器件尺寸缩小的要求,整个芯片的能耗不断上升,芯片功耗密度急剧增大,严重阻碍了芯片系统集成的发展。为了适应集成电路的发展趋势,新型超低功耗器件的开发和研究工作就显得特别重要。隧穿场效应晶体管(TFET,TunnelingField-EffectTransistor)采用带带隧穿(BTBT)新导通机制,是一种非常有发展潜力的适于系统集成应用发展的新型低功耗器件。TFET通过栅电极控制源端与沟道交界面处隧穿结的隧穿宽度,使得源端价带电子隧穿到沟道导带(或沟道价带电子隧穿到源端导带)形成隧穿电流。这种新型导通机制突破传统MOSFET亚阈斜率理论极限中热电势kT/q的限制,可以实现低于60mV/dec的具有超陡亚阈斜率,降低器件静态漏泄电流进而降低器件静态功耗。
其中,为了获得较高的隧穿几率和较陡的亚阈斜率,TFET器件需要实现较陡的隧穿源结。但是,传统的离子注入方法普遍形成的源漏结处浓度梯度较缓,难以实现较陡的隧穿源结,导致实验制备TFET器件难以实现较陡的亚阈斜率,器件性能与理论仿真结果差距较大,这非常不利于TFET器件在超低功耗领域的应用。因此,如何在实验制备中增大隧穿结处杂质浓度梯度,实现较陡直的隧穿源结,是TFET器件实际制备中需要解决的一个非常重要的问题。
发明内容
本发明的目的在于提供一种实现超陡源结的隧穿场效应晶体管制备方法。该制备方法可实现非常陡直的隧穿源结,从而有效改善隧穿场效应晶体管器件性能。
本发明提供的技术方案如下:
本发明隧穿场效应晶体管,如图1所示,包括隧穿源区5,沟道区6,漏区10,半导体衬底区1,栅介质层7,以及位于栅介质层之上的控制栅8,其特征是,所述器件为垂直沟道,且通过化学机械平坦化去除表面杂质浓度较低的部分源区,使得源区5表面处于杂质浓度峰值区域,在源区5和沟道区6间实现非常陡直的杂质分布梯度。对于N型器件来说,隧穿源区为P型重掺杂,其掺杂浓度约为1E20cm-3-1E21cm-3,漏区为N型重掺杂,其掺杂浓度约为1E18cm-3-1E19cm-3,沟道区为P型轻掺杂,其掺杂浓度约为1E13cm-3-1E15cm-3;而对于P型器件来说,隧穿源区为N型重掺杂,其掺杂浓度约为1E20cm-3-1E21cm-3,漏区为P型重掺杂,其掺杂浓度约为1E18cm-3-1E19cm-3,沟道区为N型轻掺杂,其掺杂浓度约为1E13cm-3-1E15cm-3
所述器件中化学机械平坦化去除杂质注入表面浓度较低的部分源区的厚度,与源区掺杂条件有关。去除源区厚度大于离子注入射程,会导致剩余源区表面的杂质浓度偏低;而去除源区厚度小于离子注入射程,同样会导致剩余源区表面的杂质浓度偏低,达不到实现超陡源结的效果。该厚度的确定随不同离子注入能量而有所不同,一般情况下取值在10nm-100nm之间。
所述的隧穿场效应晶体管可以应用于Si,或Ge,也可以应用于其他II-VI,III-V和IV-IV族的二元或三元化合物半导体材料、或绝缘体上的硅(SOI)或绝缘体上的锗(GOI)。
本发明提供了一种实现超陡源结的隧穿场效应晶体管制备方法,包括以下步骤:
1)衬底准备:轻掺杂或未掺杂的半导体衬底;
2)在衬底上初始热氧化并淀积一层氮化物;
3)光刻后进行浅沟槽隔离(ShallowTrenchIsolation,STI),并淀积隔离材料填充深孔后进行化学机械平坦化(ChemicalMechanicalPolishing,CMP);
4)热氧化形成注入阻挡层,光刻暴露出隧穿源区,以光刻胶为掩膜,进行离子注入形成隧穿源区,浓度约为1E20cm-3-1E21cm-3
5)进行化学机械平坦化CMP,去除注入阻挡层及表面杂质浓度较低的部分源区,使得表面处于杂质浓度峰值区域;
6)外延生长本征硅Si材料,并刻蚀形成垂直沟道;
7)生长栅介质材料和栅材料;
8)淀积掩膜层,该掩膜层厚度即为器件栅长,去除多余栅材料,形成L型双栅结构;
9)以掩膜层为掩膜,进行离子注入形成漏区掺杂,掺杂浓度约1E18cm-3-1E19cm-3
10)快速高温退火激活杂质;
11)最后进入同CMOS一致的后道工序,包括淀积钝化层、开接触孔以及金属化等,即可制得具有超陡源结的隧穿场效应晶体管。
所述的制备方法,其特征是,步骤1)中所述的轻掺杂,其掺杂浓度约为1E13cm-3-1E15cm-3
所述的制备方法,其特征是,步骤1)中所述的半导体衬底材料选自Si、或Ge,或其他II-VI,III-V和IV-IV族的二元或三元化合物半导体、绝缘体上的硅(SOI)或绝缘体上的锗(GOI)。
所述的制备方法,其特征是,步骤7)中所述的栅介质材料选自SiO2、Si3N4或高K栅(介电常数K>3.9)介质材料。
所述的制备方法,其特征是,步骤7)中所述的淀积栅介质材料的方法选自下列方法之一:化学气相淀积或物理气相淀积。
所述的制备方法,其特征是,步骤7)中所述的栅材料选自掺杂多晶硅、金属钴,镍以及其他金属或金属硅化物。
本发明的技术效果(以N型器件为例):
1、由于该器件的垂直沟道设计,工艺上较易实现双栅结构,从而增强器件栅控能力,达到增大器件导通电流,获得更陡直亚阈斜率的效果。
2、由于源区表面杂质掺杂浓度较高,与沟道区表面掺杂浓度梯度较大,可以实现非常陡直的隧穿源结,从而可以有效提高隧穿效率并实现更陡的亚阈斜率。
3、由于该器件在源区存在一个过覆盖区域,在控制栅过覆盖的源区部分将会发生垂直于栅表面的隧穿,从而增大隧穿面积,增大器件导通电流。
5、由于器件的控制栅的L型结构,控制栅拐角处电场强度很大,将增大源端隧穿结处的隧穿电场,有利于增大器件导通电流,并获得更加陡直的亚阈斜率。
与现有的TFET相比,本发明的超陡源结隧穿场效应晶体管通过制备工艺设计可以显著改善器件特性。同时,该制备方法与标准的CMOSIC工艺兼容,能有效地在CMOS集成电路中集成TFET器件,还可以利用标准工艺制备由TFET组成的低功耗集成电路,极大地降低了生产成本,简化了工艺流程。
附图说明
图1为本发明实现超陡源结的隧穿场效应晶体管的结构示意图。
图2为在半导体衬底上形成STI隔离后去除氮化物后的器件剖面图;
图3为光刻暴露出TFET器件的隧穿源区并离子注入形成隧穿源区后的器件剖面图;
图4为进行化学机械平坦化CMP,去除注入阻挡层及表面杂质浓度较低的部分源区后的器件剖面图;
图5为外延生长本征硅Si材料,并刻蚀形成垂直沟道后的器件剖面图;
图6为淀积栅介质层和栅材料层后的器件剖面图;
图7为淀积掩膜层,通过各向同性回刻完成栅图形刻蚀后的器件剖面图;
图8为光刻暴露出TFET器件的漏区并离子注入形成漏区后的器件剖面图。
图中,
1-半导体衬底;2-STI隔离;3-氧化层;4-光刻胶;5-隧穿源区;6-沟道区;
7-栅介质层;8-控制栅;9-掩膜层;10-漏区;11-后道工序的金属。
具体实施方式
以下结合附图,通过具体的实施例对本发明所述的实现超陡源结的隧穿场效应晶体管的实施方法做进一步的说明。
具体实施步骤如图1-图8所示:(本例以N型器件为例,P型器件可以以此类推)
1、在衬底掺杂浓度为轻掺杂(约1E13cm-3-1E15cm-3)的,晶向为<001>的Si衬底1上初始热氧化一层二氧化硅,厚度约10nm,并淀积一层氮化硅(Si3N4),厚度约100nm,之后采用浅槽隔离技术制作有源区STI隔离2,然后进行CMP,如图2所示;
2、热氧化形成注入阻挡层3,光刻暴露出隧穿源区5,以光刻胶4为掩膜,进行隧穿源区,5离子注入(BF2,5E15/cm-2,40keV),如图3所示;
3、进行化学机械平坦化CMP,去除注入阻挡层3及表面杂质浓度较低的部分源区,其中源区去除厚度约40nm,使得表面处于杂质浓度峰值区域,如图4所示;
4、外延生长一层本征Si材料,厚度约为200nm,并刻蚀形成垂直沟道,沟道区6宽度在20nm-200nm之间,如图5所示;
5、热氧化生长栅介质层7(SiO2),厚度为5nm;采用LPCVD淀积控制栅8,栅材料为掺杂多晶硅层,厚度为50~200nm,如图6所示;
6、淀积掩膜层9(SiO2),厚度约为100nm,该掩膜层厚度即为器件栅长,采用稀H氢氟酸(DHF)各向同性腐蚀掉多余多晶硅栅部分,如图7所示;
7、以掩膜层9为掩膜,进行漏区10离子注入(As,4E15/cm-2,50keV),如图8所示;
8、进行一次快速高温退火,对注入杂质进行激活(1050℃,10s);
9、最后进入常规后道工序,包括淀积钝化层、开接触孔、以及金属化11等,图1所示为制得的所述基于标准CMOSIC工艺制备的N型的实现超陡源结的隧穿场效应晶体管结构示意图。
虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (6)

1.一种隧穿场效应晶体管的制备方法,包括以下步骤:
1)衬底准备:轻掺杂或未掺杂的半导体衬底;
2)在衬底上初始热氧化并淀积一层氮化物;
3)光刻后进行浅沟槽隔离,并淀积隔离材料填充深孔后进行化学机械平坦化;
4)热氧化形成注入阻挡层,光刻暴露出隧穿源区,以光刻胶为掩膜,进行离子注入形成隧穿源区,浓度约为1E20cm-3-1E21cm-3
5)进行化学机械平坦化CMP,去除注入阻挡层及表面杂质浓度较低的部分源区,使得表面处于杂质浓度峰值区域;
6)外延生长本征硅Si材料,并刻蚀形成垂直沟道;
7)生长栅介质材料和栅材料;
8)淀积掩膜层,该掩膜层厚度即为器件栅长,去除多余栅材料,形成L型双栅结构;
9)以掩膜层为掩膜,进行离子注入形成漏区掺杂,掺杂浓度约1E18cm-3-1E19cm-3
10)快速高温退火激活杂质;
11)最后进入同CMOS一致的后道工序,包括淀积钝化层、开接触孔以及金属化,即可制得具有超陡源结的隧穿场效应晶体管。
2.如权利要求1所述的制备方法,其特征在于,步骤1)中所述的轻掺杂,其掺杂浓度约为1E13cm-3-1E15cm-3
3.如权利要求1所述的制备方法,其特征在于,步骤1)中所述的半导体衬底材料选自Si、或Ge,或其他II-VI,III-V和IV-IV族的二元或三元化合物半导体、绝缘体上的硅或绝缘体上的锗。
4.如权利要求1所述的制备方法,其特征在于,步骤7)中所述的栅介质材料为SiO2、Si3N4或高K栅介质材料。
5.如权利要求1所述的制备方法,其特征在于,步骤7)中所述的淀积栅介质材料的方法选自下列方法之一:化学气相淀积或物理气相淀积。
6.如权利要求1所述的制备方法,其特征在于,步骤7)中所述的栅材料为掺杂多晶硅、金属钴,镍以及其金属硅化物。
CN201510705660.4A 2015-10-27 2015-10-27 一种隧穿场效应晶体管的制备方法 Active CN105390531B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510705660.4A CN105390531B (zh) 2015-10-27 2015-10-27 一种隧穿场效应晶体管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510705660.4A CN105390531B (zh) 2015-10-27 2015-10-27 一种隧穿场效应晶体管的制备方法

Publications (2)

Publication Number Publication Date
CN105390531A true CN105390531A (zh) 2016-03-09
CN105390531B CN105390531B (zh) 2018-02-13

Family

ID=55422618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510705660.4A Active CN105390531B (zh) 2015-10-27 2015-10-27 一种隧穿场效应晶体管的制备方法

Country Status (1)

Country Link
CN (1) CN105390531B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107808904A (zh) * 2017-10-31 2018-03-16 沈阳工业大学 双括号形栅控双向开关隧穿晶体管及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103702A (ja) * 2006-09-15 2008-05-01 Interuniv Micro Electronica Centrum Vzw ヘテロ構造を有する細長い単結晶ナノ構造に基づくトンネル効果トランジスタ
US7439576B2 (en) * 2005-08-29 2008-10-21 Micron Technology, Inc. Ultra-thin body vertical tunneling transistor
CN102576726A (zh) * 2009-09-30 2012-07-11 国立大学法人北海道大学 隧道场效应晶体管及其制造方法
EP2528099B1 (en) * 2011-05-23 2015-03-04 Imec Line- tunneling Tunnel Field-Effect Transistor (TFET) and manufacturing method
US20150200289A1 (en) * 2014-01-16 2015-07-16 Samsung Electronics Co., Ltd. Tunneling field effect transistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7439576B2 (en) * 2005-08-29 2008-10-21 Micron Technology, Inc. Ultra-thin body vertical tunneling transistor
JP2008103702A (ja) * 2006-09-15 2008-05-01 Interuniv Micro Electronica Centrum Vzw ヘテロ構造を有する細長い単結晶ナノ構造に基づくトンネル効果トランジスタ
CN102576726A (zh) * 2009-09-30 2012-07-11 国立大学法人北海道大学 隧道场效应晶体管及其制造方法
EP2528099B1 (en) * 2011-05-23 2015-03-04 Imec Line- tunneling Tunnel Field-Effect Transistor (TFET) and manufacturing method
US20150200289A1 (en) * 2014-01-16 2015-07-16 Samsung Electronics Co., Ltd. Tunneling field effect transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107808904A (zh) * 2017-10-31 2018-03-16 沈阳工业大学 双括号形栅控双向开关隧穿晶体管及其制造方法
CN107808904B (zh) * 2017-10-31 2020-04-03 沈阳工业大学 双括号形栅控双向开关隧穿晶体管及其制造方法

Also Published As

Publication number Publication date
CN105390531B (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
CN103151391B (zh) 垂直非均匀掺杂沟道的短栅隧穿场效应晶体管及制备方法
CN102664165B (zh) 基于标准cmos ic工艺制备互补隧穿场效应晶体管的方法
CN103579324B (zh) 一种三面源隧穿场效应晶体管及其制备方法
CN102983168B (zh) 带双扩散的条形栅隧穿场效应晶体管及其制备方法
CN103594376B (zh) 一种结调制型隧穿场效应晶体管及其制备方法
CN104269439B (zh) 一种嵌入层异质结隧穿场效应晶体管及其制备方法
CN102074583B (zh) 一种低功耗复合源结构mos晶体管及其制备方法
CN103985745B (zh) 抑制输出非线性开启的隧穿场效应晶体管及制备方法
CN102945861B (zh) 条形栅调制型隧穿场效应晶体管及其制备方法
CN102664192B (zh) 一种自适应复合机制隧穿场效应晶体管及其制备方法
CN103560144B (zh) 抑制隧穿晶体管泄漏电流的方法及相应的器件和制备方法
CN104362095B (zh) 一种隧穿场效应晶体管的制备方法
CN104241374B (zh) 一种深能级杂质隧穿场效应晶体管及其制备方法
CN104347692B (zh) 抑制输出非线性开启的隧穿场效应晶体管及其制备方法
CN108538911A (zh) 优化的l型隧穿场效应晶体管及其制备方法
CN103474464B (zh) 一种复合机制的条形栅隧穿场效应晶体管及其制备方法
CN104810405B (zh) 一种隧穿场效应晶体管及制备方法
CN105390531B (zh) 一种隧穿场效应晶体管的制备方法
US20230058216A1 (en) A self-aligning preparation method for a drain end underlap region of tunnel field effect transistor
CN104332409B (zh) 基于深n阱工艺隔离隧穿场效应晶体管的制备方法
CN102738161B (zh) 一种双多晶双应变混合晶面Si基BiCMOS集成器件及制备方法
CN103996713A (zh) 垂直沟道双机制导通纳米线隧穿晶体管及制备方法
CN104465752B (zh) Nmos晶体管结构及其制造方法
CN104752497B (zh) 一种超陡平均亚阈摆幅隧穿场效应晶体管及制备方法
CN104241373B (zh) 一种反错层型异质结共振隧穿场效应晶体管及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant