CN105385997A - 一种Cr2O3薄膜体系及其制备方法 - Google Patents

一种Cr2O3薄膜体系及其制备方法 Download PDF

Info

Publication number
CN105385997A
CN105385997A CN201510752290.XA CN201510752290A CN105385997A CN 105385997 A CN105385997 A CN 105385997A CN 201510752290 A CN201510752290 A CN 201510752290A CN 105385997 A CN105385997 A CN 105385997A
Authority
CN
China
Prior art keywords
substrate
film
sputtering
transition layer
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510752290.XA
Other languages
English (en)
Other versions
CN105385997B (zh
Inventor
张华�
李帅
吕琴丽
吴云翼
何迪
张超
雷洋
刘晓鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
Beijing General Research Institute for Non Ferrous Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing General Research Institute for Non Ferrous Metals filed Critical Beijing General Research Institute for Non Ferrous Metals
Priority to CN201510752290.XA priority Critical patent/CN105385997B/zh
Publication of CN105385997A publication Critical patent/CN105385997A/zh
Application granted granted Critical
Publication of CN105385997B publication Critical patent/CN105385997B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0047Activation or excitation of reactive gases outside the coating chamber
    • C23C14/0052Bombardment of substrates by reactive ion beams
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种Cr2O3薄膜体系及其制备方法,该体系以金属材料为基底,基底上覆有Cr2O3薄膜,或基底上以Cr-M为过渡层,过渡层上覆有Cr2O3薄膜。制备前,先对基底进行真空加热烘烤和Ar+离子束清洗,以降低基片和薄膜的污染;然后采用共溅射法在基底表面沉积Cr-M过渡层;最后采用离子束辅助反应溅射的方法在过渡层表面溅射Cr2O3薄膜。此法可有效缓解Cr2O3薄膜和金属基底的应力,避免薄膜开裂和剥落,明显提高膜-基结合力。本发明从多方面综合保证薄膜质量,大大提高溅射效率。

Description

一种Cr2O3薄膜体系及其制备方法
技术领域
本发明属于薄膜技术领域,特别涉及一种Cr2O3薄膜体系及其制备方法。
背景技术
氧化铬(Cr2O3)薄膜是近年来发展起来并受到重视的薄膜材料之一,它具有化学稳定性强、抗高温性好、摩擦系数小、硬度高、抗磨蚀能力强、与基体结合力强等特点,被广泛用于微电子器件的阻挡层、磨损器件的保护层,以及气体轴承汽车的汽缸内壁等。
目前,Cr2O3薄膜的主要制备方法有离子镀、磁控溅射、原位氧化等。磁控溅射沉积的薄膜具有表面平整、致密、精度高等优点。虽然很多文献对溅射法制备Cr2O3薄膜有详细报道,但因Cr2O3薄膜和金属基底热膨胀系数相差很大,直接在金属上沉积的Cr2O3薄膜易产生裂纹等缺陷,这会影响薄膜性能,甚至降低器件的使用寿命。
发明内容
针对现有技术不足,本发明提供了一种Cr2O3薄膜体系及其制备方法。
一种Cr2O3薄膜体系,该体系以金属材料为基底,基底上覆有Cr2O3薄膜,或基底上以Cr-M为过渡层,过渡层上覆有Cr2O3薄膜,其中,M为与Cr和基底相融合的金属元素。
所述Cr-M过渡层的厚度为0-1000nm,Cr2O3薄膜的厚度为10-2000nm;Cr-M过渡层和Cr2O3薄膜的总厚度不超过2000nm。
进一步地,所述Cr-M过渡层为梯度过渡层。
所述基底为纯金属材料,则M为基底中的金属元素;或所述基底为合金材料,则M为基底中含量最多的金属元素。
所述基底为Cu基底、Al基底、Ag基底或不锈钢基底。
上述一种Cr2O3薄膜体系的制备方法,包括以下步骤:
1)基底的清洗:基底依次经丙酮和乙醇超声清洗干净后,放入真空腔体,待真空优于5×10-2Pa后,50~400℃下,真空加热烘烤基底10~60min,然后降温至80℃以下,待真空优于5×10-3Pa后,采用Ar+离子束对基底清洗5~30min;
2)Cr-M过渡层的制备:采用共溅射法制备Cr-M过渡层,通入Ar气,气压为0.3~3Pa,开启两溅射电源,使用M靶和Cr靶溅射1~60min,通过改变两金属靶的功率和/或靶-基距进行调整M:Cr的摩尔比;
3)Cr2O3薄膜的制备:采用离子束辅助反应溅射的方法沉积Cr2O3薄膜,通入Ar气和反应气体,总气压为0.3~3Pa,其中反应气体分压为0.005~0.2Pa,开启溅射电源和Ar+离子束电源,待辉光稳定后,将基片移至辉光区,开始沉积Cr2O3薄膜;沉积1~300min后,关闭溅射电源和Ar+离子束电源,断开Ar气和反应气体,关闭真空系统,得到Cr2O3薄膜体系。
所述溅射均采用纯金属靶材,靶材纯度优于99.9%。
所述反应溅射可采用直流溅射、射频溅射、中频溅射、离子束溅射。
所述Ar+离子束的能量为0~800eV,束流为0~700mA,Ar+离子束与基片呈45°。
步骤3)中所述Ar气通向靶材附近;所述反应气体为氧气或水气,通向基底附近。
本发明的有益效果为:本发明提供了一种Cr2O3薄膜的综合制备方法,用此方法制备的Cr2O3薄膜可有效增加膜-基结合力:
1.本发明镀膜前对基底进行真空加热烘烤和氩离子束清洗,能有效降低基片和薄膜的污染。
2.采用Cr-M为过渡层,过渡层可以为梯度过渡,其含有金属基底和薄膜的元素,能缓解Cr2O3薄膜和金属基底的应力,防止薄膜开裂和剥落。
3.Cr2O3薄膜采用离子束辅助反应溅射法制备,能进一步提高膜-基结合力;同时,反应溅射能提高沉积效率,适用于大面积薄膜的均匀制备。
本发明采用金属靶材,成本低,制备过程不需高温,也无需高温退火处理,低熔点基材不受限制;特别地,Cr2O3薄膜使基片的δ(二次电子发射系数)降低20%~35%。本发明的方法简单易行、成膜均匀,便于应用和推广。
附图说明
图1a为实施例1制备的Cr2O3薄膜中Cr的XPS图谱。
图1b为实施例1制备的Cr2O3薄膜中O的XPS图谱。
图2为实施例1制备的Cr2O3/Cr-Cu/无氧铜的δ。
图3为实施例2制备的Cr2O3/Cr-Fe/不锈钢的结合力图谱。
图4为实施例2制备的Cr2O3/Cr-Fe/不锈钢界面的SEM照片。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步说明,但不应该用来限制本发明。
实施例1
1)基片清洗:无氧铜基片依次经丙酮和酒精超声清洗15min后,放入真空腔体,待真空达到5×10-2Pa后,腔体加热至200℃,烘烤20min后降温至60℃;待真空达到3×10-3Pa后,用Ar+离子束清洗基片,Ar+离子束能量为200eV,束流为200mA,清洗时间为15min。
2)Cr-Cu过渡层的制备:采用共溅射法制备Cr-Cu过渡层。通入Ar气,将气压调整至1.0Pa,开启两射频溅射电源,在Cu靶和Cr靶功率分别为40W和60W下溅射2min。
3)Cr2O3薄膜的制备:采用离子束辅助反应溅射的方法沉积Cr2O3薄膜。通入Ar气和氧气,将气压调整至0.8Pa,其中氧气分压为0.08Pa,开启溅射射频电源和Ar+离子束电源,溅射功率为50W,Ar+离子束能量为200eV,束流为200mA,待辉光稳定后,将基片移至辉光区,开始沉积,沉积时间为120min。
获得的Cr-Cu过渡层和Cr2O3薄膜的厚度分别为30nm和100nm。对Cr2O3薄膜进行XPS测试,如图1a-b所示,Cr2p3/2和O1s结合能分别为576.7ev和530.7ev,说明Cr已经被完全氧化,经计算O/Cr为1.9,表明Cr2O3薄膜是富氧状态。对Cr2O3/Cr-Cu/无氧铜的δ也进行了测量,如图2所示,其最大值为1.22(未经镀膜的无氧铜的δ为1.6),则δ降低率为23.8%,表明Cr2O3薄膜有效抑制了二次电子发射。
实施例2
1)基片清洗:304抛光不锈钢基片依次经丙酮和酒精超声清洗15min,放入真空腔体,待真空达到1×10-2Pa后,腔体加热至350℃,烘烤20min后降温至40℃;待真空达到1.4×10-3Pa后,用Ar+离子束清洗基片,Ar+离子束能量为100eV,束流为100mA,清洗时间为20min。
2)Cr-Fe过渡层的制备:采用共溅射法制备Cr-Fe梯度过渡层。通入Ar气,将气压调整至0.4Pa,开启两直流溅射电源,通过调整Fe靶和Cr靶的溅射功率获得Fe:Cr比值不同的过渡层,在Fe靶和Cr靶溅射电流分别为0.5A和0.2A下溅射2min,然后在Fe靶和Cr靶溅射电流分别为0.3A和0.3A下溅射2min,最后在Fe靶和Cr靶溅射电流分别为0.2A和0.4A下溅射2min。
3)Cr2O3薄膜的制备:采用离子束辅助反应溅射的方法沉积Cr2O3薄膜,通入Ar气和水气,将气压调整至1Pa,其中水分压为0.005Pa,开启溅射直流电源和Ar+离子束电源,电流为1A,Ar+离子束能量为400ev,束流为300mA,待辉光稳定后,将基片移至辉光区,开始沉积,沉积时间为50min。
对有无过渡层的薄膜进行显微划痕测试,如图3所示,结果表明无过渡层和有过渡层的两种基材,薄-基结合力分别为18.6N和26.3N,结合力增加了41.4%,说明过渡层能显著提高膜-基结合力。对所制备的复合薄膜进行界面观察,如图4所示,薄膜均匀致密,Cr-Fe过渡层和Cr2O3薄膜厚度分别为175nm和175nm。对不锈钢基片和Cr2O3/Cr-Fe/不锈钢进行δ测量,发现Cr2O3/Cr-Fe/不锈钢的δ从不锈钢基片的2.08下降到1.36,降幅为34.6%,说明此方法制备的Cr2O3薄膜能有效抑制基片的二次电子发射。

Claims (10)

1.一种Cr2O3薄膜体系,其特征在于,该体系以金属材料为基底,基底上覆有Cr2O3薄膜,或基底上以Cr-M为过渡层,过渡层上覆有Cr2O3薄膜,其中,M为与Cr和基底相融合的金属元素。
2.根据权利要求1所述的一种Cr2O3薄膜体系,其特征在于,所述Cr-M过渡层的厚度为0-1000nm,Cr2O3薄膜的厚度为10-2000nm,Cr-M过渡层和Cr2O3薄膜的总厚度不超过2000nm。
3.根据权利要求1所述的一种Cr2O3薄膜体系,其特征在于,所述Cr-M过渡层为梯度过渡层。
4.根据权利要求1所述的一种Cr2O3薄膜体系,其特征在于,所述基底为纯金属材料,则M为基底中的金属元素;或所述基底为合金材料,则M为基底中含量最多的金属元素。
5.根据权利要求1所述的一种Cr2O3薄膜体系,其特征在于,所述基底为Cu基底、Al基底、Ag基底或不锈钢基底。
6.如权利要求1所述一种Cr2O3薄膜体系的制备方法,其特征在于,包括以下步骤:
1)基底的清洗:基底依次经丙酮和乙醇超声清洗干净后,放入真空腔体,待真空优于5×10-2Pa后,50~400℃下,真空加热烘烤基底10~60min,然后降温至80℃以下,待真空优于5×10-3Pa后,采用Ar+离子束对基底清洗5~30min;
2)Cr-M过渡层的制备:采用共溅射法制备Cr-M过渡层,通入Ar气,气压为0.3~3Pa,开启两溅射电源,使用M靶和Cr靶同时进行溅射0~60min;通过改变两金属靶的功率和/或靶-基距进行调整M:Cr的摩尔比;
3)Cr2O3薄膜的制备:采用离子束辅助反应溅射的方法沉积Cr2O3薄膜,通入Ar气和反应气体,总气压为0.3~3Pa,其中反应气体分压为0.005~0.2Pa,开启溅射电源和Ar+离子束电源,待辉光稳定后,将基片移至辉光区,开始沉积Cr2O3薄膜;沉积1~300min后,关闭溅射电源和Ar+离子束电源,断开Ar气和反应气体,关闭真空系统,得到Cr2O3薄膜体系。
7.根据权利要求6所述的制备方法,其特征在于,所述溅射均采用纯金属靶材,靶材纯度优于99.9%。
8.根据权利要求6所述的制备方法,其特征在于,所述反应溅射可采用直流溅射、射频溅射、中频溅射、离子束溅射。
9.根据权利要求6所述的制备方法,其特征在于,所述Ar+离子束的能量为0~800eV,束流为0~700mA,Ar+离子束与基片呈45°。
10.根据权利要求6所述的制备方法,其特征在于,步骤3)中所述Ar气通向靶材附近;所述反应气体为氧气或水气,通向基底附近。
CN201510752290.XA 2015-11-06 2015-11-06 一种Cr2O3薄膜体系及其制备方法 Active CN105385997B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510752290.XA CN105385997B (zh) 2015-11-06 2015-11-06 一种Cr2O3薄膜体系及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510752290.XA CN105385997B (zh) 2015-11-06 2015-11-06 一种Cr2O3薄膜体系及其制备方法

Publications (2)

Publication Number Publication Date
CN105385997A true CN105385997A (zh) 2016-03-09
CN105385997B CN105385997B (zh) 2018-08-28

Family

ID=55418761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510752290.XA Active CN105385997B (zh) 2015-11-06 2015-11-06 一种Cr2O3薄膜体系及其制备方法

Country Status (1)

Country Link
CN (1) CN105385997B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106967947A (zh) * 2017-04-18 2017-07-21 华南理工大学 一种镶嵌结构界面α‑氧化铬涂层及其制备方法
CN107604332A (zh) * 2017-09-14 2018-01-19 艾瑞森表面技术(苏州)股份有限公司 一种纳米复合涂层结构及其制备方法
CN111304744A (zh) * 2019-11-29 2020-06-19 深圳市立洋光电子股份有限公司 Cr2O3晶体的制备方法
CN111501018A (zh) * 2020-05-09 2020-08-07 北方夜视技术股份有限公司 利用ald提高mcp通道镀膜增益稳定性的方法、ald-mcp及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1776017A (zh) * 2005-11-18 2006-05-24 邹志尚 差速器行星齿轮表面使用的硬质复合纳米陶瓷薄膜的涂层
CN101469399A (zh) * 2007-12-27 2009-07-01 北京有色金属研究总院 一种氧化铒阻氢涂层及其制备方法
CN103895282A (zh) * 2012-12-26 2014-07-02 北京有色金属研究总院 一种高温真空集热管用复合梯度阻氢涂层及其制备方法
CN104708863A (zh) * 2013-12-11 2015-06-17 北京有色金属研究总院 氧化铬和氧化铝复合涂层及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1776017A (zh) * 2005-11-18 2006-05-24 邹志尚 差速器行星齿轮表面使用的硬质复合纳米陶瓷薄膜的涂层
CN101469399A (zh) * 2007-12-27 2009-07-01 北京有色金属研究总院 一种氧化铒阻氢涂层及其制备方法
CN103895282A (zh) * 2012-12-26 2014-07-02 北京有色金属研究总院 一种高温真空集热管用复合梯度阻氢涂层及其制备方法
CN104708863A (zh) * 2013-12-11 2015-06-17 北京有色金属研究总院 氧化铬和氧化铝复合涂层及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106967947A (zh) * 2017-04-18 2017-07-21 华南理工大学 一种镶嵌结构界面α‑氧化铬涂层及其制备方法
CN106967947B (zh) * 2017-04-18 2019-06-18 华南理工大学 一种镶嵌结构界面α-氧化铬涂层及其制备方法
CN107604332A (zh) * 2017-09-14 2018-01-19 艾瑞森表面技术(苏州)股份有限公司 一种纳米复合涂层结构及其制备方法
CN111304744A (zh) * 2019-11-29 2020-06-19 深圳市立洋光电子股份有限公司 Cr2O3晶体的制备方法
CN111304744B (zh) * 2019-11-29 2020-12-22 深圳市立洋光电子股份有限公司 Cr2O3晶体的制备方法
CN111501018A (zh) * 2020-05-09 2020-08-07 北方夜视技术股份有限公司 利用ald提高mcp通道镀膜增益稳定性的方法、ald-mcp及应用
CN111501018B (zh) * 2020-05-09 2021-08-31 北方夜视技术股份有限公司 利用ald提高mcp通道镀膜增益稳定性的方法、ald-mcp及应用

Also Published As

Publication number Publication date
CN105385997B (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
CN105385997A (zh) 一种Cr2O3薄膜体系及其制备方法
CN100595951C (zh) 一种燃料电池用双极板及其表面碳铬薄膜制备方法
CN105386049B (zh) 一种在硬质合金表面制备梯度硬质复合涂层的方法
CN104746030A (zh) 提高硬质合金与金刚石涂层结合强度的方法
CN106835054B (zh) 金刚石单晶表面金属化处理的方法
CN109852943B (zh) 核用锆合金表面CrN涂层的制备方法及产品
CN108866480B (zh) 一种多层多元纳米复合自润滑硬质涂层及其制备方法和应用
CN102732833B (zh) 一种γ-TiAl合金表面抗高温氧化和耐磨损涂层及其制备方法
CN106191794A (zh) 钛合金表面超硬减摩耐磨复合膜层的覆层方法及钛合金材料
CN102766846B (zh) AN/Cr1-xAlxN/Cr30(Al,Y)70N硬质梯度涂层及其制备方法
CN104561891A (zh) 双成分梯度阻氢渗透涂层及其制备方法
CN109023361A (zh) 梯度涂层刀具及其制备方法
CN108342705A (zh) 具有自愈合功能的Ta基高温防护涂层的制备方法
CN108251800A (zh) 一种Cu-Al梯度薄膜材料及其制备方法
CN108441822A (zh) 一种磁控溅射法制备(Cu,Fe)3O4尖晶石涂层的方法及其应用
CN104087902B (zh) 金属材料表面的绝缘涂层及其制备方法
CN104264116A (zh) 一种在X80管线钢基材表面制备AlTiCrNiTa高熵合金涂层的工艺
CN103849834A (zh) 基于二硼化钛的复合刀具涂层及其制备方法
CN105449168A (zh) 具有界面修饰层的金属基固态薄膜锂电池正极的制备方法
CN108977806A (zh) Gamma-TiAl金属间化合物表面金属/陶瓷复合涂层的制备方法
CN108866481A (zh) 一种纳米复合Al-Ti-V-Cu-N涂层及其制备方法和应用
CN108359953A (zh) 一种Cu-Ni梯度薄膜材料及其制备方法
US20200199734A1 (en) Magnesium alloy surface coating method and corrosion-resistant magnesium alloy prepared thereby
CN102808161A (zh) 口腔烤瓷用钛瓷TiN/ZrTiSiN复合过渡阻挡层制备工艺
CN108504993A (zh) 一种Cu-Mo梯度薄膜材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190826

Address after: 101407 Beijing city Huairou District Yanqi Economic Development Zone Branch Hing Street No. 11

Patentee after: Research Institute of engineering and Technology Co., Ltd.

Address before: 100088 Beijing city Xicheng District Xinjiekou Avenue No. 2

Patentee before: General Research Institute for Nonferrous Metals

TR01 Transfer of patent right