CN105355947B - 三维打印具有立体通道蜂窝型固体氧化物燃料电池的方法 - Google Patents

三维打印具有立体通道蜂窝型固体氧化物燃料电池的方法 Download PDF

Info

Publication number
CN105355947B
CN105355947B CN201510833332.2A CN201510833332A CN105355947B CN 105355947 B CN105355947 B CN 105355947B CN 201510833332 A CN201510833332 A CN 201510833332A CN 105355947 B CN105355947 B CN 105355947B
Authority
CN
China
Prior art keywords
ceramic
anode
honeycomb type
cathode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510833332.2A
Other languages
English (en)
Other versions
CN105355947A (zh
Inventor
杨乃涛
孟秀霞
祝敬昌
孟波
谭小耀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201510833332.2A priority Critical patent/CN105355947B/zh
Publication of CN105355947A publication Critical patent/CN105355947A/zh
Application granted granted Critical
Publication of CN105355947B publication Critical patent/CN105355947B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种三维打印具有立体通道蜂窝型固体氧化物燃料电池的方法,属于固体氧化物燃料电池技术领域。本发明以阳极陶瓷粉体或阴极陶瓷粉体为原料,使用三维绘图软件设计结构,利用陶瓷三维打印机输出,一步法打印制备成具有立体通道结构的蜂窝型阳极支撑体或阴极支撑体的生坯;生坯经过烧结后,获得阳极支撑体或阴极支撑体;采用乳液浸渍法,在阳极支撑体上依次沉积电解质层、阴极层形成阳极蜂窝型固体氧化物燃料电池;采用乳液浸渍法,在阴极支撑体上依次沉积电解质层、阳极层形成阴极蜂窝型固体氧化物燃料电池。本发明不仅制备高效、节约成本,大大提高传质速率,而且自动化程度高、批次稳定。

Description

三维打印具有立体通道蜂窝型固体氧化物燃料电池的方法
技术领域
本发明涉及一种三维打印具有立体通道蜂窝型固体氧化物燃料电池的方法,属于固体氧化物燃料电池技术领域。
背景技术
固体氧化物燃料电池是将化学能转化为电能的中高温能量转换装置,按装置形状可分为平板状、管式、微管式三种类型,按支撑体类型可分为阳极支撑、阴极支撑和电解质支撑型。其中微管式固体氧化物燃料电池具有易密封、较高的长径比、快速升降温等特点备受广泛关注,其制备方法主要是通过挤出成型法、相转化纺丝法等制备直径小于2mm的陶瓷支撑体,大大提高了固体氧化物燃料电池的表面积。
中国专利CN201608235U公开了一种微管状陶瓷膜燃料单电池堆,包括数个微管状陶瓷膜燃料单电池以及各电池之间的金属电连接装置;所述的每个微管状陶瓷膜燃料单电池包括有中心导电棒,中心导电棒环壁固定有数个陶瓷膜燃料单电池微管;所述的陶瓷膜燃料单电池微管包括3层,环状外层非支撑体电极、内层环状支撑体电极、以及非支撑体电极和支撑体电极之间的环状电解质层;所述的中心导电棒与金属电连接装置将各微管状陶瓷膜燃料单电池的两个电极并联,构成电池堆。具有制备简单、结构强度高,启动加热速度快、电流导出快的优点。但是此结构用中心导电棒固定单电池,使得传质效率降低,因此电池输出性能偏低。此外将单根电池组装的过程中要采用一定的技术手段进行粘结、固定、密封而成堆,这些技术耗时费力,成本高昂,批次性能不稳定,人工依赖性强,不利于固体氧化物燃料电池的工业化。
中国专利CN103349918A和中国专利CN101456744分别公开了制备多通道陶瓷中空纤维膜和蜂窝型无机膜的方法,但制备的多通道中空纤维膜无管间流体流道,如果做成燃料电池支撑体,传质阻力将会很大,膜有效面积会大大降低。蜂窝型无机膜主要是通过挤出成型技术一步加工而成的多条微管的并联膜组件,因为孔道的壁互相连在一起,不能直接接触外部介质,这种蜂窝型多通道无机膜的每一条蜂窝孔道与外界的传质都严重地受限,只能依靠蜂窝壁的多孔性能与外界进行物质交换。因此蜂窝型无机膜的孔道不能做很多,否则造成蜂窝中心孔道的传质效率大大降低。
三维打印技术作为一种新型的材料成型技术,在制造领域中引起广泛关注。利用三维打印技术可以制备塑料型材,金属型材以及陶瓷型材等,但是真正的工业应用还没有开始,尤其是在固体氧化物燃料电池的制备领域还没有受到关注。
目前,采用三维打印具有立体通道蜂窝型固体氧化物燃料电池的方法未见报道。
发明内容
本发明的目的是提供一种三维打印具有立体通道蜂窝型固体氧化物燃料电池的方法,得到的固体氧化物燃料电池体积功率密度高,传质、传热效率高,机械性能强,更容易保温和密封。
本发明所述的三维打印具有立体通道蜂窝型固体氧化物燃料电池的方法,包括以下步骤:
(1)以阳极陶瓷粉体或阴极陶瓷粉体为原料,使用三维绘图软件设计结构,利用陶瓷三维打印机输出,一步法打印制备成具有立体通道结构的蜂窝型阳极支撑体或阴极支撑体的生坯;
(2)生坯经过烧结后,获得阳极支撑体或阴极支撑体;
(3)采用乳液浸渍法,在阳极支撑体上依次沉积电解质层、阴极层形成具有立体通道的阳极蜂窝型固体氧化物燃料电池;
(4)采用乳液浸渍法,在阴极支撑体上依次沉积电解质层、阳极层形成具有立体通道的阴极蜂窝型固体氧化物燃料电池。
所述的电解质层所用的电解质材料为氧化锆基、氧化铈基或镓酸镧基中的一种或多种;氧化锆基、氧化铈基的结构为XaY1-aO2-δ;其中,
X为钙、钇、钪、钐、钆、镨金属元素的一种或多种;
Y为锆、铈、铋金属元素的一种或多种;
δ为氧缺位数,0≤a≤1;
阳极陶瓷粉体、阳极材料均为Ni基-电解质材料;且电解质层所用的电解质材料与阳极陶瓷粉体、阳极材料所用的电解质材料种类相同;
阴极陶瓷粉体、阴极材料均为结构为ABO3-δ的掺杂的钙钛矿型陶瓷、结构为A2B2O5-δ的双钙钛矿型陶瓷或结构为A2BO4-δ的尖晶石型陶瓷中的一种或多种;其中,
A为镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钙、锶、钡中的一种或多种;
B为钪、钛、钒、铬、锰、铁、钴、镍、铜、锌、镓、铝、钇、锆、铌、钼、铪、钽、钨、铼中的一种或多种;
δ为氧缺位数;
阳极陶瓷粉体、阳极材料、阴极陶瓷粉体、阴层材料、电解质层所用的电解质材料的粒度均为0.02~10微米。
所述的三维绘图软件优选ug,catia,pre,3Dmax等。
具有立体通道蜂窝型固体氧化物燃料电池包括相互平行排列的多组陶瓷微管,每组陶瓷微管均设置在各自的陶瓷筋板上,每组陶瓷微管包含陶瓷微管管口呈直线排列的多个陶瓷微管,平行排列的多组陶瓷微管之间彼此分离,形成管间流体通道;陶瓷微管两端均由陶瓷管板将陶瓷微管固定连接成束,端面为蜂窝状,两块陶瓷管板的两侧分别由两块陶瓷支撑板相连,陶瓷支撑板与陶瓷管板垂直,陶瓷管板、陶瓷支撑板、陶瓷微管与陶瓷筋板均为一体化形成。
所述的管间流体通道为直通道或S型曲折通道。所述的直通道是相邻的两组陶瓷微管的任意两条陶瓷微管的中心线在同一条直线上;所述的S型曲折通道是指相邻的两组陶瓷微管的任意三条陶瓷微管呈三角形分布,即其中一组选1条陶瓷微管,另外一组选2条陶瓷微管。无论怎么排列都可以,只要相邻的两组陶瓷微管之间形成管间流体通道即可。
所述的具有立体通道蜂窝型固体氧化物燃料电池是指,具有成束的管通道,但是和挤出成型的固体氧化物燃料电池的最大不同之处是:该结构还拥有与管束方向垂直的管间流体通道,整体结构由三维打印一步成型。
所述的烧结是将具有立体通道结构的蜂窝型阳极支撑体或阴极支撑体的生坯,在900~1600℃,一定气氛中热处理2~10h后,获得烧结成型的阳极支撑体或阴极支撑体。
所述的气氛优选氧化性气氛或普通大气气氛。
所述的阳极陶瓷粉体、阴极陶瓷粉体中均添加有机物粘结剂或造孔剂,有机物粘结剂或造孔剂的种类为本领域技术人员的常规选择。
所述的乳液浸渍法是将电解质层材料、阴极材料分别与溶剂和添加剂配制成稳定的悬浮乳液,然后将阳极支撑体涂敷浸渍悬浮乳液,经过烘干、烧结或还原热处理;或者将电解质层材料、阳极材料分别与溶剂和添加剂配制成稳定的悬浮乳液,然后将阴极支撑体涂敷浸渍悬浮乳液,经过烘干、烧结或还原热处理。
所述的添加剂为造孔剂,包括球状石墨、淀粉、N-甲基吡咯烷酮、聚甲基丙烯酸甲酯(PMMA)微球或聚苯乙烯微球。
得到的电解质层厚度为1~20微米,阴极层或阳极层为多孔,其厚度均为5~20微米。
三维打印技术成型的固体氧化物燃料电池直接由粉体材料成型为大面积多通道的组件,节省流程,降低成本;性能高,可由三维打印技术直接设计并成型出微管间的立体通道,使得微管外壁的快速传质成为可能;全程设计智能化,制造自动化,批次稳定,降低了人为因素对产品质量的影响。
本发明的有益效果如下:
本发明以阳极陶瓷粉体或阴极陶瓷粉体为原料,利用三维打印机直接打印成型具有立体通道结构的蜂窝型阳极支撑体或阴极支撑体的生坯,解决了支撑体制备过程的几个重要难题:
(1)不需要经过单根中空纤维陶瓷膜的制备程序,直接由粉体材料成型为大面积多通道的支撑体,节省流程,大大提高了生产效率并节约制备成本;
(2)现有的蜂窝型阳极或阴极支撑体,通道和通道之间是固体膜壁相连,传质性能差,单个蜂窝体不能拥有太多通道。三维打印技术可以设计并成型出微管间的立体通道,使得微管外壁的快速传质成为可能,提高了支撑体的传质效能。立体通道的设计既可以提高支撑体强度,又可以大大提高传质速率;
(3)自动化程度高,批次稳定。三维打印技术可以使用绘图软件一次绘制支撑体的结构图,然后由打印设备输出。一步法成型大面积膜组件,免去了中空纤维陶瓷膜逐条制备和膜组件组装过程带来的批次不稳定,生产过程全部自动化,降低了人为因素对产品质量的影响。
附图说明
图1是计算机设计的支撑体模型的结构示意图;
图2是图1横截面的结构示意图;
图3是本发明制备的支撑体结构示意图;
图中:1、陶瓷微管管口;2、陶瓷管板;3、陶瓷支撑板;4、陶瓷微管;5、管间流体通道;6、陶瓷筋板。
具体实施方式
以下结合实施例对本发明做进一步描述。
实施例1
将300g LSCF(La0.6Sr0.4Co0.2Fe0.8O3-δ)陶瓷阴极粉体与10g糊精和球状石墨利用混料机均匀混合,过60目筛后置于三维打印机原料盒中。三维打印机采用美国Zcorp公司Z510型陶瓷三维打印机,用ug软件绘制支撑体的三维实体模型结构图,见图1,用计算机控制三维打印机将LSCF陶瓷粉体按照设计好三维实体模型结构图打印成型,得到具有立体通道结构的蜂窝型陶瓷阴极支撑体生坯。该模型外部尺寸为长、宽、高均为4cm,纵向有45条陶瓷微管,提供管程流体通道,横向有8条通道,提供管间流体通道,成型后的坯体照片见图3。该坯体吹扫干净表面粉体残留,置入程序控温电炉,先在80℃干燥2小时,再以2℃/min的升温速度加热到500℃,保温2小时以除去膜中的有机物粘结剂。然后以2℃/min的升温速度加热到1200℃,保温4小时使其充分烧结,最后以2℃/min的降温速率降到室温,获得多孔阴极支撑体。
在阴极支撑体坯体上利用浸渍法依次沉积致密GDC(Gd0.1Ce0.9O2-δ)电解质和多孔Ni-GDC阳极,形成具有立体通道蜂窝型固体氧化物燃料电池。致密电解质层厚度为10微米,阳极层厚度为10微米。
实施例1中具有立体通道蜂窝型固体氧化物燃料电池包括相互平行排列的多组陶瓷微管4,每组陶瓷微管4均设置在各自的陶瓷筋板6上,每组陶瓷微管4包含陶瓷微管管口1呈直线排列的多个陶瓷微管4,平行排列的多组陶瓷微管4之间彼此分离,形成管间流体通道5;陶瓷微管4两端均由陶瓷管板2将陶瓷微管4固定连接成束,端面为蜂窝状,两块陶瓷管板2的两侧分别由两块陶瓷支撑板3相连,陶瓷支撑板3与陶瓷管板2垂直,陶瓷管板2、陶瓷支撑板3、陶瓷微管4与陶瓷筋板6均为一体化形成。
实施例2
将400g Ni-YSZ陶瓷阳极粉体与20g聚乙烯醇缩丁醛粉体和球状石墨利用混料机均匀混合,过60目筛后置于三维打印机原料盒中。三维打印机采用美国Zcorp公司Z510型陶瓷三维打印机,用3Dmax软件绘制支撑体的三维实体模型结构图,见图1,用计算机控制三维打印机将Ni-YSZ陶瓷粉体按照设计好三维实体模型结构图打印成型,得到具有立体通道结构的蜂窝型陶瓷阳极支撑体生坯。该模型外部尺寸为长、宽、高均为4cm,纵向有45条陶瓷微管,提供管程流体通道,横向有8条通道,提供管间流体通道,成型后的坯体照片见图3。该坯体吹扫干净表面粉体残留,置入程序控温电炉,先在80℃干燥2小时,再以2℃/min的升温速度加热到500℃,保温2小时以除去膜中的有机物粘结剂。然后以2℃/min的升温速度加热到1300℃,保温4小时使其充分烧结,最后以2℃/min的降温速率降到室温,获得多孔阴极支撑体。
在阳极支撑体上利用浸渍法依次沉积致密YSZ(Y0.08Zr0.92O2-δ)电解质和多孔LSM(La0.8Sr0.2MnO3-δ)阴极,形成具有立体通道蜂窝型固体氧化物燃料电池。致密电解质层厚度为15微米,阴极层厚度为15微米。
其结构如实施例1。
实施例3
将450g La2NiO4-δ陶瓷阴极粉体与20g淀粉利用球磨机机均匀混合,过60目筛后置于三维打印机原料盒中。三维打印机采用美国Zcorp公司Z510型陶瓷三维打印机,用catia软件绘制支撑体的三维实体模型结构图,用计算机控制三维打印机将陶瓷粉体按照设计好三维实体模型结构图打印成型,得到具有立体通道结构的蜂窝型陶瓷膜组件的生坯。该坯体吹扫干净表面粉体残留,置入程序控温电炉,先在85℃干燥2小时,再以2℃/min的升温速度加热到500℃,保温2小时以除去膜中的有机物粘结剂。然后以3℃/min的升温速度加热到1350℃,保温8小时使其充分烧结,最后以3℃/min的降温速率降到室温,形成立体通道的蜂窝型阴极支撑体。
在阴极支撑体坯体上利用浸渍法依次沉积致密SDC(Sm0.2Ce0.8O2-δ)电解质和多孔Ni-SDC阳极,形成具有立体通道蜂窝型固体氧化物燃料电池。致密电解质层厚度为20微米,阳极层厚度为5微米。
其结构如实施例1。
实施例4
将450g PrBaCo2O5-δ陶瓷阴极粉体与20g PMMA利用球磨机机均匀混合,过60目筛后置于三维打印机原料盒中。三维打印机采用美国Zcorp公司Z510型陶瓷三维打印机,用pre软件绘制支撑体的三维实体模型结构图,用计算机控制三维打印机将陶瓷粉体按照设计好三维实体模型结构图打印成型,得到具有立体通道结构的蜂窝型陶瓷膜组件的生坯。该坯体吹扫干净表面粉体残留,置入程序控温电炉,先在85℃干燥2小时,再以2℃/min的升温速度加热到500℃,保温2小时以除去膜中的有机物粘结剂。然后以3℃/min的升温速度加热到1300℃,保温4小时使其充分烧结,最后以3℃/min的降温速率降到室温,形成立体通道的蜂窝型阴极支撑体。
在阴极支撑体坯体上利用浸渍法依次沉积致密GDC(Gd0.1Ce0.9O2-δ)电解质和多孔Ni-GDC阳极,形成具有立体通道蜂窝型固体氧化物燃料电池。致密电解质层厚度为8微米,阳极层厚度为20微米。
其结构如实施例1。
实施例5
将300g Ni-GDC陶瓷阳极粉体与10g聚乙烯醇缩丁醛粉体和球状石墨利用混料机均匀混合,过60目筛后置于三维打印机原料盒中。三维打印机采用美国Zcorp公司Z510型陶瓷三维打印机,用3Dmax软件绘制支撑体的三维实体模型结构图,见图1,用计算机控制三维打印机将Ni-YSZ陶瓷粉体按照设计好三维实体模型结构图打印成型,得到具有立体通道结构的蜂窝型陶瓷阳极支撑体生坯。该模型外部尺寸为长、宽、高均为4cm,纵向有45条陶瓷微管,提供管程流体通道,横向有8条通道,提供管间流体通道,成型后的坯体照片见图3。该坯体吹扫干净表面粉体残留,置入程序控温电炉,先在80℃干燥2小时,再以2℃/min的升温速度加热到500℃,保温2小时以除去膜中的有机物粘结剂。然后以2℃/min的升温速度加热到1400℃,保温4小时使其充分烧结,最后以2℃/min的降温速率降到室温,获得多孔阴极支撑体。
在阳极支撑体上利用浸渍法依次沉积致密GDC电解质和多孔BSCF(Ba0.6Sr0.4Co0.5Fe0.5O3-δ)阴极,形成具有立体通道蜂窝型固体氧化物燃料电池。致密电解质层厚度为20微米,阴极层厚度为20微米。
其结构如实施例1。

Claims (9)

1.一种三维打印具有立体通道蜂窝型固体氧化物燃料电池的方法,其特征在于包括以下步骤:
(1)以阳极陶瓷粉体或阴极陶瓷粉体为原料,使用三维绘图软件设计结构,利用陶瓷三维打印机输出,一步法打印制备成具有立体通道结构的蜂窝型阳极支撑体或阴极支撑体的生坯;
(2)生坯经过烧结后,获得阳极支撑体或阴极支撑体;
(3)采用乳液浸渍法,在阳极支撑体上依次沉积电解质层、阴极层形成具有立体通道的阳极蜂窝型固体氧化物燃料电池;或者,采用乳液浸渍法,在阴极支撑体上依次沉积电解质层、阳极层形成具有立体通道的阴极蜂窝型固体氧化物燃料电池;
具有立体通道蜂窝型固体氧化物燃料电池包括相互平行排列的多组陶瓷微管(4),每组陶瓷微管(4)均设置在各自的陶瓷筋板(6)上,每组陶瓷微管(4)包含陶瓷微管管口(1)呈直线排列的多个陶瓷微管(4),平行排列的多组陶瓷微管(4)之间彼此分离,形成管间流体通道(5);陶瓷微管(4)两端均由陶瓷管板(2)将陶瓷微管(4)固定连接成束,端面为蜂窝状,两块陶瓷管板(2)的两侧分别由两块陶瓷支撑板(3)相连,陶瓷支撑板(3)与陶瓷管板(2)垂直,陶瓷管板(2)、陶瓷支撑板(3)、陶瓷微管(4)与陶瓷筋板(6)均为一体化形成。
2.根据权利要求1所述的方法,其特征在于:电解质层所用的电解质材料为氧化锆基、氧化铈基或镓酸镧基中的一种或多种;氧化锆基、氧化铈基的结构为XaY1-aO2-δ ;其中,
X为钙、钇、钪、钐、钆、镨金属元素的一种或多种;
Y为锆、铈、铋金属元素的一种或多种;
δ为氧缺位数,0≤a≤1;
阳极陶瓷粉体、阳极材料均为Ni基-电解质材料;且电解质层所用的电解质材料与阳极陶瓷粉体、阳极材料所用的电解质材料种类相同;
阴极陶瓷粉体、阴极材料均为结构为ABO3-δ的掺杂的钙钛矿型陶瓷、结构为A2B2O5-δ的双钙钛矿型陶瓷或结构为A2BO4-δ的尖晶石型陶瓷中的一种或多种;其中,
A为镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钙、锶、钡中的一种或多种;
B为钪、钛、钒、铬、锰、铁、钴、镍、铜、锌、镓、铝、钇、锆、铌、钼、铪、钽、钨、铼中的一种或多种;
δ为氧缺位数;
阳极陶瓷粉体、阳极材料、阴极陶瓷粉体、阴极材料、电解质层所用的电解质材料的粒度均为0.02~10微米。
3.根据权利要求1所述的方法,其特征在于:管间流体通道(5)为直通道或S型曲折通道。
4.根据权利要求1所述的方法,其特征在于:烧结是生坯在900~1600℃的温度条件下,于一定气氛中热处理2~10h。
5.根据权利要求4所述的方法,其特征在于:气氛为氧化性气氛或普通大气气氛。
6.根据权利要求1所述的方法,其特征在于:阳极陶瓷粉体、阴极陶瓷粉体中均添加有机物粘结剂或造孔剂。
7.根据权利要求1所述的方法,其特征在于:乳液浸渍法是将电解质层材料、阴极材料分别与溶剂和添加剂配制成稳定的悬浮乳液,然后将阳极支撑体涂敷浸渍悬浮乳液,经过烘干、烧结或还原热处理;或者将电解质层材料、阳极材料分别与溶剂和添加剂配制成稳定的悬浮乳液,然后将阴极支撑体涂敷浸渍悬浮乳液,经过烘干、烧结或还原热处理。
8.根据权利要求7所述的方法,其特征在于:添加剂为造孔剂,包括球状石墨、淀粉、N-甲基吡咯烷酮、聚甲基丙烯酸甲酯微球或聚苯乙烯微球。
9.根据权利要求1所述的方法,其特征在于:电解质层厚度为1~20微米,阴极层或阳极层为多孔,其厚度均为5~20微米。
CN201510833332.2A 2015-11-25 2015-11-25 三维打印具有立体通道蜂窝型固体氧化物燃料电池的方法 Active CN105355947B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510833332.2A CN105355947B (zh) 2015-11-25 2015-11-25 三维打印具有立体通道蜂窝型固体氧化物燃料电池的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510833332.2A CN105355947B (zh) 2015-11-25 2015-11-25 三维打印具有立体通道蜂窝型固体氧化物燃料电池的方法

Publications (2)

Publication Number Publication Date
CN105355947A CN105355947A (zh) 2016-02-24
CN105355947B true CN105355947B (zh) 2017-08-15

Family

ID=55331864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510833332.2A Active CN105355947B (zh) 2015-11-25 2015-11-25 三维打印具有立体通道蜂窝型固体氧化物燃料电池的方法

Country Status (1)

Country Link
CN (1) CN105355947B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448118B (zh) * 2018-03-08 2019-04-09 湖南工学院 具有有序3d微通道结构的固体氧化物电极材料的制备方法
CN108520964B (zh) * 2018-04-23 2020-07-28 山东理工大学 3d打印制备无连接体阴极支撑固体氧化物燃料电池堆的方法
CN108598521B (zh) * 2018-04-23 2020-07-03 山东理工大学 3d打印制备无连接体阳极支撑固体氧化物燃料电池堆的方法
CN108550865B (zh) * 2018-05-02 2020-07-24 太原理工大学 制备多孔阳极支撑体及固体氧化燃料电池阳极的方法
CN110336053B (zh) * 2019-07-16 2020-12-15 中南大学 一种含流道燃料电池双极板的制备方法
CN113067004B (zh) * 2021-03-19 2022-07-19 东睦新材料集团股份有限公司 一种用于燃料电池的金属支撑板的制备方法
CN115020735B (zh) * 2022-05-11 2024-05-07 南方科技大学 一种固体氧化物燃料电池及其制备方法和电堆
CN115275228B (zh) * 2022-07-05 2024-05-14 南京工业大学 一种钇钨离子共掺杂的锶钴基钙钛矿固体氧化物燃料电池阴极材料、制备方法与应用
CN117107274A (zh) * 2023-08-24 2023-11-24 长春理工大学中山研究院 一种固体氧化物电解池阴极支撑体及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5188218B2 (ja) * 2008-03-11 2013-04-24 東邦瓦斯株式会社 固体酸化物形燃料電池サブモジュールおよび固体酸化物形燃料電池モジュール
CN101577940B (zh) * 2009-06-11 2011-01-19 中国科学技术大学 分布式天线系统的用户设备调度方法
CN105047947B (zh) * 2015-07-23 2017-04-26 西安交通大学 一种蜂窝状腔极一体化燃料电池电极及其制备方法

Also Published As

Publication number Publication date
CN105355947A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
CN105355947B (zh) 三维打印具有立体通道蜂窝型固体氧化物燃料电池的方法
CN105500493B (zh) 三维打印具有立体通道的蜂窝型电催化膜反应器的方法
CN108598521A (zh) 3d打印制备无连接体阳极支撑固体氧化物燃料电池堆的方法
KR100538555B1 (ko) 연료극 지지체식 평관형 고체산화물 연료전지 스택과 그제조 방법
CN100479251C (zh) 一种平板型电极支撑固体氧化物燃料电池
CN103151548A (zh) Al2O3-YSZ电解质膜的固体氧化物燃料电池及其制备方法
CN105479585A (zh) 三维打印制备具有立体通道的蜂窝型陶瓷膜组件的方法
JP2009037874A (ja) 中温作動固体酸化物形燃料電池の空気極支持形単セルの製造方法
CN108615909A (zh) 3d打印制备无连接体电解质支撑固体氧化物燃料电池堆的方法
CN108630970A (zh) 一种固体氧化物电池电解质支撑体及其制备方法和应用
Timurkutluk et al. Fabrication and optimization of LSM infiltrated cathode electrode for anode supported microtubular solid oxide fuel cells
CN105503246B (zh) 三维打印具有立体通道的蜂窝型陶瓷氧渗透膜组件的方法
JP2014082194A (ja) 固体酸化物形燃料電池セル
CN2884547Y (zh) 一种平板型电极支撑固体氧化物燃料电池
CN108520964A (zh) 3d打印制备无连接体阴极支撑固体氧化物燃料电池堆的方法
CN104795579A (zh) 具有阴极集流层的sofc单电池及其制造方法
JP3636406B2 (ja) 固体電解質型燃料電池用支持体、固体電解質型燃料電池の単電池および固体電解質型燃料電池用支持体の製造方法
JP3350313B2 (ja) 固体電解質型燃料電池セルおよびその製造方法
CN114520356B (zh) 一步低温共烧的质子导体型可逆固体氧化物电池及其制备方法
KR101871349B1 (ko) 고체산화물 연료전지와 전해셀의 공기극 및 그 제조방법
KR101582742B1 (ko) 다공성 지지체 및 이의 제조방법
JP6524756B2 (ja) 固体酸化物形燃料電池セルスタック
JP2016072216A (ja) 固体酸化物形燃料電池セルスタック
JP6316760B2 (ja) 固体酸化物形燃料電池の製造方法
CN111801827B (zh) 电解质层-阳极复合部件以及电池结构体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant