CN105305913A - 一种新型的用于滚珠丝杠进给系统的抗扰跟随控制器 - Google Patents

一种新型的用于滚珠丝杠进给系统的抗扰跟随控制器 Download PDF

Info

Publication number
CN105305913A
CN105305913A CN201510726950.7A CN201510726950A CN105305913A CN 105305913 A CN105305913 A CN 105305913A CN 201510726950 A CN201510726950 A CN 201510726950A CN 105305913 A CN105305913 A CN 105305913A
Authority
CN
China
Prior art keywords
motor
controller
motor position
equivalent
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510726950.7A
Other languages
English (en)
Other versions
CN105305913B (zh
Inventor
陈耀龙
张承勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Suzhou Academy of Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Suzhou Academy of Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University, Suzhou Academy of Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201510726950.7A priority Critical patent/CN105305913B/zh
Publication of CN105305913A publication Critical patent/CN105305913A/zh
Application granted granted Critical
Publication of CN105305913B publication Critical patent/CN105305913B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了新型的滚珠丝杠进给系统的抗扰跟随控制器,主要用于滚珠丝杠进给系统的高速高精控制。此控制器利用自抗扰技术与比例积分(PI)控制实现了电机位置和负载位置的精确控制。在此控制框架下,扩展状态观测器被应用于实时在线评估与补偿高阶未建模动态、参数变动以及切削等扰动,以提高系统的抗干扰性能和鲁棒性。此外,在利用自抗扰控制的反馈线性化特性的基础上,一种新型的基于等效误差模型的前馈控制器被设计,大大改善了系统的跟随性能。此等效误差模型具有不依赖机械模型、设计简单、调试容易等优点。实验与仿真结果都表明,所设计的控制器具有较好的跟随性能、抗干扰性和鲁棒性。

Description

一种新型的用于滚珠丝杠进给系统的抗扰跟随控制器
技术领域
本发明涉及一种用于滚珠丝杠进给系统高速高精控制的抗扰跟随控制器结构,具有算法简单、控制参数物理意义明确且易调试等特点和具有较好的跟随性能、较高的抗干扰能力、较强的鲁棒性等优点。
背景技术
由于滚珠丝杠进给系统具有高刚性、高传动精度、对切削力和工件质量变动的低灵敏度和高性价比等优点,被广泛的应用在现代的数控机床中。随着对工件加工质量和加工效率要求的提高,对进给系统控制系统设计提出了更高的要求:不仅具有较高的瞬态和稳态跟随精度,还必须具有较好的抗干扰能力和对高频建模不准确、参数变动(负载质量)等的鲁棒性。
为了获得较高的跟随精度,进给系统就必须具有较高的控制带宽,但是机械结构的第一阶共振频率影响了其控制带宽的提高。到目前为止,很多控制策略被提出用来抑制机械结构的共振,其中包括运动指令及控制信号的输入整形和陷波滤波器等。陷波滤波器虽然能有效抑制机械系统的共振,但不能消除外部干扰对机械系统的激励作用,而且在一定程度上会减小控制系统的相位裕度,影响其稳定性。此外,H∞控制、极点配置控制、滑模控制以及预测控制等先进的控制策略也被用于进给系统的主动振动抑制,从而允许其控制带宽的增加。但是这些控制方法算法比较复杂、控制参数调试困难或者依赖于系统的精确模型,因此应用性比较差。
自抗扰控制技术是由中国科学院数学与系统科学研究所系统所的韩京清研究员及其领导的科研小组提出的。自抗扰控制是在深入认识经典控制理论与现代控制理论各自优缺点的基础上,保留并发扬经典PID控制“基于误差消除误差”的思想精髓,借鉴现代控制理论中状态观测器的思想发展而来的,其核心是将未建模动态和未知外扰总称为对象的总扰动,利用扩张状态观测外进行实时的评估与补偿,从而实现动态系统的反馈线性化,再利用非线性配置构成的非线性反馈控制率或者线性反馈控制率来提高闭环系统的控制性能。由于自抗扰控制具有基本不依赖于对象的数学模型、较高的抗扰性、较强的鲁棒性和较好的控制性能等优点,因此本发明在以前专利“一种进给系统双位置环反馈的抗扰控制器”(申请号:201410374191.1)的基础上利用自抗扰的思想设计了一种新型的抗扰跟随控制器结构,主要用于滚珠丝杠进给系统高速高精控制。
发明内容
本发明专利的目的在于,实现了一种滚珠丝杠进给系统的抗扰跟随控制器结构,主要用于进给系统高速高精控制。此控制方法具有算法简单、控制参数物理意义明确且易调试等特点和具有较高的控制带宽、较高的抗干扰能力、较强的鲁棒性等优点。
本发明采用的技术方案:
一种新型的滚珠丝杠进给系统的抗扰跟随控制器,所述控制器包括等效误差模型前馈控制器、负载位置控制器、电机位置状态观测器、电机位置控制器和摩擦补偿控制器:
所述的等效误差前馈控制器利用负载参考位置xr和等效误差模型Ge得到误差前馈补偿指令xfe,并与负载参考位置xr相加形成新的负载位置指令xrl
所述的负载位置控制器利用负载位置指令xrl与负载实际误差e的比例积分值xse之和通过电机位置指令生成器Gr,再加上负载实际误差的比例值xpe得到电机位置控制指令xmr
所述的电机位置状态观测器利用输入电机控制量u和电机的等效直线位置xM,评估得到电机等效直线位置的评估值Z1、电机等效直线速度的评估值Z2以及电机位置反馈环的总扰动Z3
所述的电机位置控制器利用电机位置控制指令xmr与电机实际位置之间的误差eM1及其微分误差eM2设计比例微分反馈率,得到电机位置的控制量u0
所述摩擦补偿控制器利用负载参考位置指令的微分vr和摩擦力模型f(v)得到摩擦力补偿量f。
优选的,所述的电机位置状态观测器通过线性扩张状态观测器LESO利用输入电机控制量u和电机的等效直线位置xM,评估得到电机等效直线位置的评估值Z1、电机等效直线速度的评估值Z2以及电机位置反馈环的总扰动Z3,其算法如下:
Z · 1 = Z 2 + β 1 ( x M - Z 1 ) Z · 2 = Z 3 + β 2 ( x M - Z 1 ) + b 0 u Z · 3 = β 3 ( x M - Z 1 )
式中,b0表示电机位置反馈环中被控对象的控制增益,β123为观测器的增益,通过合适的选择,使得f为进给系统的总扰动,利用极点配置的方法,把状态观测器的极点都配置在-ωM0处,因此
优选的,所述的电机位置控制器利用电机位置指令信号xmr经过微分处理产生电机速度指令信号,并与线性扩张状态观测器LESO得到的电机等效速度的评估值Z2相减得到电机速度误差信号eM2;利用电机位置指令信号xmr减去线性扩张状态观测器LESO得到的电机等效位置的评估值Z1得到电机位置误差信号eM1,进而设计线性反馈率得到电机位置的控制信号u0;电机位置的控制信号u0减去线性扩张状态观测器LESO得到电机位置反馈环的总扰动Z3,并经过具有参数化放大系统1/b0的比例放大环节得到输入电机的控制量u,其中线性反馈率算法如下:
u0=KpeM1+KdeM2
式中,Kp,Kd表示控制器增益,利用极点配置的方法,将控制器的所有极点配置在-ωMc,故其中ωMc表示控制器带宽,ζ表示阻尼比。
优选的,所述的负载位置控制器利用负载位置指令xrl减去负载实际位置xL得到负载位置实际误差e,并对负载位置实际误差e进行积分、比例得到比例积分值xse,将比例积分值xse,与负载位置指令xrl相加得到新的负载位置指令xrl1;负载位置指令xrl1通过电机位置指令生成器Gr得到电机位置指令xrm,并与负载实际误差e的比例(2.2)相加得到新的电机位置指令xmr,电机位置指令生成器可表示为:
x r m ( s ) = M L s 2 + c s + k c s + k x r l 1 ( s )
式中,ML表示辨识的滚珠丝杠进给系统等效双质量模型中的负载侧的等效质量,k表示辨识的等效刚度,c表示等效的粘性阻尼。
优选的,所述的等效误差模型前馈控制器利用等效误差模型Ge和比例环节得到误差的前馈补偿值xfe,等效误差模型可表示为:
x f e ( s ) = s 3 s 3 + ( K d + K d K p e ) s 2 + ( K p + K p K p e + K d K s ) s + K p K s x r ( s )
式中Ks表示积分增益,KPe表示比例增益。
本发明的另一种方案是:所述的电机位置状态观测器通过降阶线性扩张状态观测器RLESO利用输入电机控制量u和电机等效直线位置xM评估得到电机等效速度的评估值ZMR1以及电机位置反馈环的总扰动ZMR2;电机位置控制器利用电机位置指令信号的微分与降阶线性扩张状态观测器RLESO得到电机等效速度的评估值ZMR1相减得到速度误差信号eM2;利用电机位置指令信号xmr减去的实测电机等效位置xM得到电机位置误差信号eM1,进而设计线性反馈率得到电机位置的控制信号u0;电机位置的控制信号u0减去降阶线性扩张状态观测器RLESO得到电机位置反馈环的总扰动ZMR2,并经过具有参数化放大系统1/b0的比例放大环节得到输入电机的控制量u;其中降阶状态观测器算法如下:
Z · 1 = - β M R 1 Z 1 + Z 2 + ( β M R 2 - β M R 1 β M R 2 ) x M + b 0 u Z · 2 = - β M R 2 Z 1 - β M R 1 β M R 2 x M Z M R 1 = Z 1 + β M R 1 x M Z M R 2 = Z 2 + β M R 2 x M
式中,Z1、Z2是计算的中间量,b0表示电机位置反馈环中被控对象的控制增益有,βMR1MR2为观测器的增益,利用极点配置取
本发明的有益效果:
本发明所提供的双位置环反馈的抗扰控制器,可以使进给系统具有较好的跟随性能、较高的抗干扰能力和较强的鲁棒性,进而实现进给系统的高速高精控制,而且本控制器基本不依赖于进给系统的数学模型,且控制参数物理意义明确易调整。因此,本抗扰控制器具有比较广泛的应用。
附图说明
图1是进给系统的抗扰跟随控制器的第一实施例的结构原理图,采用扩张状态观测器评估总扰动;
图2是进给系统的抗扰跟随控制器的第二实施例的结构原理图,采用降阶线性扩张状态观测器评估总扰动;
图3为本发明实施例中进行实例仿真所采用轨迹的位移图、速度图、加速度图与加加速度图;
图4是仿真得到工作台实际位置与理想位置之间的误差图;
图5是在负载惯量与等效刚度变化时利用P-PI控制器所得到的工作台实际位置与理想位置之间的误差图;
图6为在负载惯量与等效刚度变化时,利用本发明控制器所得到的工作台实际位置与理想位置之间的误差图;
图7是单轴滚珠丝杠进给系统实验设置图;
图8是实验得到的工作台实际位置与理想位置之间的误差图。
具体实施方式
以下结合附图对上述方案做进一步说明。以下结合具体实施例对上述方案做进一步说明。应理解,这些实施例是用于说明本发明而不限于限制本发明的范围。实施例中采用的实施条件可以根据具体厂家的条件做进一步调整,未注明的实施条件通常为常规实验中的条件。
实施例1
图1首先给出进给系统的抗扰跟随控制器的大体组成,采用不同于传统进给系统位置环、速度环控制方式的的双位置反馈控制架构:内环以电机角位置等效位置信号xM作为反馈信号,而外环通过负载位置信号xL的反馈实现整个系统的闭环控制。此控制器具有等效误差模型前馈控制器1、负载位置控制器2、电机位置状态观测器3、电机位置控制器4和摩擦补偿控制器5,其中:
电机位置状态观测器3通过线性扩张状态观测器LESO3.1利用输入电机控制量u和电机的等效直线位置xM,评估得到电机等效直线位置的评估值Z1、电机等效直线速度的评估值Z2以及电机位置反馈环的总扰动Z3,其算法如下:
Z · 1 = Z 2 + β 1 ( x M - Z 1 ) Z · 2 = Z 3 + β 2 ( x M - Z 1 ) + b 0 u Z · 3 = β 3 ( x M - Z 1 )
式中,b0表示电机位置反馈环中被控对象的控制增益,β123为观测器的增益,通过合适的选择,使得f为进给系统的总扰动,利用极点配置的方法,把状态观测器的极点都配置在-ωM0处,因此
电机位置控制器4利用电机位置指令信号xmr经过微分处理4.3产生电机速度指令信号,并与线性扩张状态观测器LESO3.1得到的电机等效速度的评估值Z2相减得到电机速度误差信号eM2;利用电机位置指令信号xmr减去线性扩张状态观测器LESO3.1得到的电机等效位置的评估值Z1得到电机位置误差信号eM1,进而设计线性反馈率得到电机位置的控制信号u0;电机位置的控制信号(u0)减去线性扩张状态观测器(LESO,4.2)得到电机位置反馈环的总扰动(Z3),并经过具有参数化放大系统(1/b0)的比例放大环节得到输入电机的控制量u,其中线性反馈率算法如下:
u0=KpeM1+KdeM2
式中,Kp,Kd表示控制器增益,利用极点配置的方法,将控制器的所有极点配置在-ωMc,故其中ωMc表示控制器带宽,ζ表示阻尼比。
负载位置控制器2利用负载位置指令xrl减去负载实际位置xL得到负载位置实际误差e并进行比例2.4积分2.3与负载位置指令xrl相加得到新的负载位置指令xrl1;负载位置指令xrl1通过电机位置指令生成器Gr得到电机位置指令xrm,并与负载实际误差e的比例2.2相加得到新的电机位置指令xmr,电机位置指令生成器可表示为:
x r m ( s ) = M L s 2 + c s + k c s + k x r l 1 ( s )
式中,ML表示评估的滚珠丝杠进给系统等效双质量模型中的负载侧的等效质量,k表示评估的等效刚度,c表示等效的粘性阻尼。
等效误差模型前馈控制器1利用等效误差模型Ge和比例环节1.2得到误差的前馈补偿值xfe,等效误差模型可表示为:
x f e ( s ) = s 3 s 3 + ( K d + K d K p e ) s 2 + ( K p + K p K p e + K d K s ) s + K p K s x r ( s )
式中Ks表示积分增益,KPe表示比例增益。
以下给出本发明实施例1的技术方案的仿真与实验结果:
仿真控制的对象为单轴滚珠丝杠进给系统,如图6所示,通过辨识得到系统模型参数为MM=5.29V/(m/s2),ML=2.24V/(m/s2),k=974958.6V/m。仿真是时级联P-PI控制器与所设计的控制器的的控制参数详细见表1。
表1
控制器 设计参数
P-PI 位置环比例增益Kpx=150,速度环比例增益Kpv=4000,
速度环积分增益Kiv=500000,加速度前馈增益Kaf=6
Proposed ωMc=157.1(25Hz),ωMo=942.5(175Hz),Kpe=0.4,KS=60
图3是仿真所采用轨迹的位移图、速度图、加速度图与加加速度图。在MatlabSimulink中建立控制框图进行仿真。图4是仿真得到两种控制器工作台实际位置与理想位置之间的误差图,由图可以看出,本发明所提出的控制器具有更好的跟随性能。
图5和图6分别表示在负载惯量与等效刚度变化时P-PI控制器与本发明控制器最大跟随误差的比较。由图可以看出,本发明所提出的控制器具有更大的稳定域和较强的鲁棒性。
图7表示的控制器性能比较实验的设置。进给系统工作台采用静压导轨支撑,并且被Kollmorgen伺服电机通过导程5mm和直径20mm的滚珠丝杠驱动电机伺服控制器工作在力矩模式,控制算法在TurboClipper控制器上以0.442ms(2.26KHz)的伺服更新速率被执行。此外,由于受角度编码器与直线光栅尺细分器时钟频率的限制,并在保证一定安全余量的情况下,进给系统的最高速度被设定为1m/min。在考虑进给系统速度限制的条件下,跟随轨迹指令被设计为加速度连续,其行程为18mm,最大速度为16mm/s,最大加速度为0.8m/s2,加加速度为45m/s3。其轨迹跟踪实验的跟随误差如图8所示。由图可以看出本发明所提出的控制器具有更好的跟随性能。
实施例2
对于电机位置环总扰动的评估,除实施例1所述的线性扩张状态观测器评估外,还可采用降阶线性扩张状态观测器评估,如图2所示。电机位置状态观测器3通过降阶线性扩张状态观测器RLESO3.1利用输入电机控制量u和电机等效直线位置xM评估得到电机等效速度的评估值ZMR1以及电机位置反馈环的总扰动ZMR2;电机位置控制器2利用电机位置指令信号的微分与降阶线性扩张状态观测器RLESO3.1得到电机等效速度的评估值ZMR1相减得到速度误差信号eM2;利用电机位置指令信号xmr减去的实测电机等效位置xM得到电机位置误差信号eM1,进而设计线性反馈率得到电机位置的控制信号u0;电机位置的控制信号u0减去降阶线性扩张状态观测器RLESO3.1得到电机位置反馈环的总扰动ZMR2,并经过具有参数化放大系统1/b0的比例放大环节得到输入电机的控制量u;其中降阶状态观测器算法如下:
Z · 1 = - β M R 1 Z 1 + Z 2 + ( β M R 2 - β M R 1 β M R 2 ) x M + b 0 u Z · 2 = - β M R 2 Z 1 - β M R 1 β M R 2 x M Z M R 1 = Z 1 + β M R 1 x M Z M R 2 = Z 2 + β M R 2 x M
式中,Z1、Z2是计算的中间量,b0表示电机位置反馈环中被控对象的控制增益有,βMR1MR2为观测器的增益,利用极点配置取
此外,本控制器利用负载参考位置指令的微分vr和摩擦力模型f(v)得到摩擦力补偿量f进行摩擦前馈补偿,以改善速度反向时的跟随性能。
综上所述,本发明所述的用于滚珠丝杠进给系统高速高精控制的抗扰跟随控制器,可以改善进给系统的跟随性能、抗干扰性能和鲁棒性,而且此控制器还具有算法简单、控制参数物理意义明确且易调试以及基本不依赖于进给系统精确数学模型等优点,因此使用性较强,应用比较广泛,且还可以通过模拟或者数字的形式实现。
上述实例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人是能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种新型的滚珠丝杠进给系统的抗扰跟随控制器,其特征在于,所述控制器包括等效误差模型前馈控制器(1)、负载位置控制器(2)、电机位置状态观测器(3)、电机位置控制器(4)和摩擦补偿控制器(5):
所述的等效误差前馈控制器(1)利用负载参考位置xr和等效误差模型Ge得到误差前馈补偿指令xfe,并与负载参考位置xr相加形成新的负载位置指令xrl
所述的负载位置控制器(2)利用负载位置指令xrl与负载实际误差e的比例积分值xse之和通过电机位置指令生成器Gr,再加上负载实际误差的比例值xpe得到电机位置控制指令xmr
所述的电机位置状态观测器(3)利用输入电机控制量u和电机的等效直线位置xM,评估得到电机等效直线位置的评估值Z1、电机等效直线速度的评估值Z2以及电机位置反馈环的总扰动Z3
所述的电机位置控制器(4)利用电机位置控制指令xmr与电机实际位置之间的误差eM1及其微分误差eM2设计比例微分反馈率,得到电机位置的控制量u0
所述摩擦补偿控制器(5)利用负载参考位置指令的微分vr和摩擦力模型f(v)得到摩擦力补偿量f。
2.根据权利要求1的滚珠丝杠进给系统的抗扰跟随控制器,其特征在于,所述的电机位置状态观测器(3)通过线性扩张状态观测器LESO(3.1)利用输入电机控制量u和电机的等效直线位置xM,评估得到电机等效直线位置的评估值Z1、电机等效直线速度的评估值Z2以及电机位置反馈环的总扰动Z3,其算法如下:
式中,b0表示电机位置反馈环中被控对象的控制增益,β123为观测器的增益,通过合适的选择,使得f为进给系统的总扰动,利用极点配置的方法,把状态观测器的极点都配置在-ωM0处,因此
3.根据权利要求2所述的进给系统双位置环反馈的抗扰控制器,其特征在于,所述的电机位置控制器(4)利用电机位置指令信号xmr经过微分处理(4.3)产生电机速度指令信号,并与线性扩张状态观测器LESO(3.1)得到的电机等效速度的评估值Z2相减得到电机速度误差信号eM2;利用电机位置指令信号xmr减去线性扩张状态观测器LESO(3.1)得到的电机等效位置的评估值Z1得到电机位置误差信号eM1,进而设计线性反馈率得到电机位置的控制信号u0;电机位置的控制信号u0减去线性扩张状态观测器LESO(4.2)得到电机位置反馈环的总扰动Z3,并经过具有参数化放大系统1/b0的比例放大环节得到输入电机的控制量u,其中线性反馈率算法如下:
u0=KpeM1+KdeM2
式中,Kp,Kd表示控制器增益,利用极点配置的方法,将控制器的所有极点配置在-ωMc,故其中ωMc表示控制器带宽,ζ表示阻尼比。
4.根据权利要求1的滚珠丝杠进给系统的抗扰跟随控制器,其特征在于,所述的负载位置控制器(2)利用负载位置指令xrl减去负载实际位置xL得到负载位置实际误差e,并对负载位置实际误差e进行积分(2.3)、比例(2.4)得到比例积分值xse,将比例积分值xse,与负载位置指令xrl相加得到新的负载位置指令xrl1;负载位置指令xrl1通过电机位置指令生成器Gr得到电机位置指令xrm,并与负载实际误差e的比例(2.2)相加得到新的电机位置指令xmr,电机位置指令生成器可表示为:
式中,ML表示辨识的滚珠丝杠进给系统等效双质量模型中的负载侧的等效质量,k表示辨识的等效刚度,c表示等效的粘性阻尼。
5.根据权利要求1的滚珠丝杠进给系统的抗扰跟随控制器,其特征在于,所述的等效误差模型前馈控制器(1)利用等效误差模型Ge(1.1)和比例环节(1.2)得到误差的前馈补偿值xfe,等效误差模型可表示为:
式中Ks表示积分增益,KPe表示比例增益。
6.一种新型的滚珠丝杠进给系统的抗扰跟随控制器,其特征在于,所述的电机位置状态观测器(3)通过降阶线性扩张状态观测器RLESO(3.1)利用输入电机控制量u和电机等效直线位置xM评估得到电机等效速度的评估值ZMR1以及电机位置反馈环的总扰动ZMR2;电机位置控制器(2)利用电机位置指令信号的微分与降阶线性扩张状态观测器RLESO(3.1)得到电机等效速度的评估值ZMR1相减得到速度误差信号eM2;利用电机位置指令信号xmr减去的实测电机等效位置xM得到电机位置误差信号eM1,进而设计线性反馈率得到电机位置的控制信号u0;电机位置的控制信号u0减去降阶线性扩张状态观测器RLESO(3.1)得到电机位置反馈环的总扰动ZMR2,并经过具有参数化放大系统1/b0的比例放大环节得到输入电机的控制量u;其中降阶状态观测器算法如下:
式中,Z1、Z2是计算的中间量,b0表示电机位置反馈环中被控对象的控制增益有,βMR1MR2为观测器的增益,利用极点配置取
CN201510726950.7A 2015-10-30 2015-10-30 一种用于滚珠丝杠进给系统的抗扰跟随控制器 Expired - Fee Related CN105305913B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510726950.7A CN105305913B (zh) 2015-10-30 2015-10-30 一种用于滚珠丝杠进给系统的抗扰跟随控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510726950.7A CN105305913B (zh) 2015-10-30 2015-10-30 一种用于滚珠丝杠进给系统的抗扰跟随控制器

Publications (2)

Publication Number Publication Date
CN105305913A true CN105305913A (zh) 2016-02-03
CN105305913B CN105305913B (zh) 2018-06-29

Family

ID=55202781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510726950.7A Expired - Fee Related CN105305913B (zh) 2015-10-30 2015-10-30 一种用于滚珠丝杠进给系统的抗扰跟随控制器

Country Status (1)

Country Link
CN (1) CN105305913B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106340331A (zh) * 2016-09-18 2017-01-18 华北电力大学 一种用于核反应堆功率的自抗扰控制方法
CN106655956A (zh) * 2016-11-17 2017-05-10 北京特种机械研究所 伺服控制系统机械谐振抑制方法
CN108205259A (zh) * 2016-12-19 2018-06-26 中国航天科工飞航技术研究院 基于线性扩张状态观测器的复合控制系统及其设计方法
CN108919652A (zh) * 2018-10-10 2018-11-30 北京工商大学 一种自适应抗扰整形控制方法与系统
CN109308008A (zh) * 2017-07-28 2019-02-05 上海三菱电梯有限公司 具有异常应对能力的自抗扰控制装置
CN109613824A (zh) * 2018-12-13 2019-04-12 广东工业大学 一种滚珠丝杠驱动的刚柔耦合运动平台及控制方法
TWI710199B (zh) * 2016-09-27 2020-11-11 日商和諧驅動系統股份有限公司 狀態觀測器兼用型全閉合控制的諧波齒輪裝置之致動器的定位控制裝置
CN112000145A (zh) * 2020-08-31 2020-11-27 上海大学 一种改善低频抑振性能的前馈控制器
CN112025117A (zh) * 2020-09-30 2020-12-04 上海维宏电子科技股份有限公司 基于线性状态误差组合实现激光切割头随动控制的方法及其系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020089671A1 (en) * 2000-11-20 2002-07-11 Hill Henry A. Interferometric servo control system for stage metrology
JP2006215626A (ja) * 2005-02-01 2006-08-17 Okuma Corp 位置制御装置
CN101339406A (zh) * 2007-07-04 2009-01-07 中国科学院自动化研究所 一种自适应控制器及方法
CN102208891A (zh) * 2010-11-18 2011-10-05 东南大学 基于摩擦和扰动补偿的pmsm伺服系统控制方法
JP2011197738A (ja) * 2010-03-17 2011-10-06 Okuma Corp フルクローズド位置制御装置
CN103401501A (zh) * 2013-04-15 2013-11-20 湖南大学 一种基于模糊自抗扰控制的pmsm伺服系统控制方法
CN103529858A (zh) * 2013-10-11 2014-01-22 北京航空航天大学 位置闭环系统最小幅相差跟踪法
CN104166372A (zh) * 2014-07-31 2014-11-26 西安交通大学苏州研究院 一种进给系统双位置环反馈的抗扰控制器
CN104252134A (zh) * 2014-09-17 2014-12-31 南京理工大学 基于扩张状态观测器的电机伺服系统自适应鲁棒位置控制方法
CN104898550A (zh) * 2015-05-05 2015-09-09 北京航空航天大学 动态伺服系统基于滑模扩张状态观测器的复合控制方法
CN104932252A (zh) * 2015-06-26 2015-09-23 中国科学院光电技术研究所 一种改进的自抗扰与pid的串级控制方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020089671A1 (en) * 2000-11-20 2002-07-11 Hill Henry A. Interferometric servo control system for stage metrology
JP2006215626A (ja) * 2005-02-01 2006-08-17 Okuma Corp 位置制御装置
CN101339406A (zh) * 2007-07-04 2009-01-07 中国科学院自动化研究所 一种自适应控制器及方法
JP2011197738A (ja) * 2010-03-17 2011-10-06 Okuma Corp フルクローズド位置制御装置
CN102208891A (zh) * 2010-11-18 2011-10-05 东南大学 基于摩擦和扰动补偿的pmsm伺服系统控制方法
CN103401501A (zh) * 2013-04-15 2013-11-20 湖南大学 一种基于模糊自抗扰控制的pmsm伺服系统控制方法
CN103529858A (zh) * 2013-10-11 2014-01-22 北京航空航天大学 位置闭环系统最小幅相差跟踪法
CN104166372A (zh) * 2014-07-31 2014-11-26 西安交通大学苏州研究院 一种进给系统双位置环反馈的抗扰控制器
CN104252134A (zh) * 2014-09-17 2014-12-31 南京理工大学 基于扩张状态观测器的电机伺服系统自适应鲁棒位置控制方法
CN104898550A (zh) * 2015-05-05 2015-09-09 北京航空航天大学 动态伺服系统基于滑模扩张状态观测器的复合控制方法
CN104932252A (zh) * 2015-06-26 2015-09-23 中国科学院光电技术研究所 一种改进的自抗扰与pid的串级控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
史永丽 等: "基于自抗扰控制的伺服系统摩擦补偿研究", 《计算机工程与应用》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106340331A (zh) * 2016-09-18 2017-01-18 华北电力大学 一种用于核反应堆功率的自抗扰控制方法
CN106340331B (zh) * 2016-09-18 2017-12-05 华北电力大学 一种用于核反应堆功率的自抗扰控制方法
TWI710199B (zh) * 2016-09-27 2020-11-11 日商和諧驅動系統股份有限公司 狀態觀測器兼用型全閉合控制的諧波齒輪裝置之致動器的定位控制裝置
CN106655956A (zh) * 2016-11-17 2017-05-10 北京特种机械研究所 伺服控制系统机械谐振抑制方法
CN106655956B (zh) * 2016-11-17 2018-10-12 北京特种机械研究所 伺服控制系统机械谐振抑制方法
CN108205259A (zh) * 2016-12-19 2018-06-26 中国航天科工飞航技术研究院 基于线性扩张状态观测器的复合控制系统及其设计方法
CN109308008A (zh) * 2017-07-28 2019-02-05 上海三菱电梯有限公司 具有异常应对能力的自抗扰控制装置
CN108919652A (zh) * 2018-10-10 2018-11-30 北京工商大学 一种自适应抗扰整形控制方法与系统
CN108919652B (zh) * 2018-10-10 2021-07-27 北京工商大学 一种自适应抗扰整形控制方法与系统
CN109613824A (zh) * 2018-12-13 2019-04-12 广东工业大学 一种滚珠丝杠驱动的刚柔耦合运动平台及控制方法
CN112000145A (zh) * 2020-08-31 2020-11-27 上海大学 一种改善低频抑振性能的前馈控制器
CN112000145B (zh) * 2020-08-31 2021-06-08 上海大学 一种改善低频抑振性能的前馈控制器
CN112025117A (zh) * 2020-09-30 2020-12-04 上海维宏电子科技股份有限公司 基于线性状态误差组合实现激光切割头随动控制的方法及其系统

Also Published As

Publication number Publication date
CN105305913B (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
CN105305913A (zh) 一种新型的用于滚珠丝杠进给系统的抗扰跟随控制器
CN104166372B (zh) 一种进给系统双位置环反馈的抗扰控制器
CN101727088B (zh) 用于数控机床的位置控制装置
CN102023612B (zh) 一种数控机床伺服系统摩擦误差补偿方法
CN105849663B (zh) 机械装置的控制装置及摩擦补偿用增益确定方法
CN102385342B (zh) 虚拟轴机床并联机构运动控制的自适应动态滑模控制方法
CN103792888A (zh) 基于进给系统位置反馈信号的振动抑制控制器
CN104111664A (zh) 在速度环克服电机死区提高雷达跟踪精度的方法
CN102323790A (zh) 两轴数控系统的串级型迭代学习交叉耦合轮廓误差控制方法
Itagaki et al. Control system design of a linear motor feed drive system using virtual friction
Erkorkmaz et al. Control of ball screw drives based on disturbance response optimization
CN104166346A (zh) 一种基于摩擦补偿的伺服系统控制方法
CN104076740A (zh) 数控装置
CN105978400A (zh) 超声电机控制方法
Safanah M et al. Robust H∞ controller for high precision positioning system, design, analysis, and implementation
CN104375458B (zh) 一种平面轮廓轨迹跟踪控制方法
CN105048922B (zh) 一种永磁同步直线电机稳定自适应鲁棒位置控制方法
CN203720602U (zh) 基于进给系统位置反馈信号的振动抑制控制器
Moghadam et al. Hierarchical optimal contour control of motion systems
Yang et al. Effects of the mechanical vibrations on the thrust force characteristics for the PMLM driven motion system
CN105700470B (zh) 一种用于减小机床伺服进给系统跟踪误差的方法
CN103640250B (zh) 叶片矫形机床及其控制系统和方法
CN103886191A (zh) 机床床身直线度补偿方法
CN101989081B (zh) 伺服落后补偿方法及其装置
Huo et al. Position control of servo press system based on fuzzy PID

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180629

Termination date: 20201030

CF01 Termination of patent right due to non-payment of annual fee