CN105050714A - 用于在二氧化碳存在下重整烃的含六铝酸镍的催化剂 - Google Patents

用于在二氧化碳存在下重整烃的含六铝酸镍的催化剂 Download PDF

Info

Publication number
CN105050714A
CN105050714A CN201480012079.8A CN201480012079A CN105050714A CN 105050714 A CN105050714 A CN 105050714A CN 201480012079 A CN201480012079 A CN 201480012079A CN 105050714 A CN105050714 A CN 105050714A
Authority
CN
China
Prior art keywords
catalyst
nickel
weight
preferred
aluminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480012079.8A
Other languages
English (en)
Other versions
CN105050714B (zh
Inventor
S·顺克
E·施瓦布
A·米拉诺夫
G·瓦塞尔沙夫
T·鲁西埃
G·科克斯
B·欣里希森
U·弗勒尔兴格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN105050714A publication Critical patent/CN105050714A/zh
Application granted granted Critical
Publication of CN105050714B publication Critical patent/CN105050714B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

本发明涉及一种用于在二氧化碳存在下重整烃,优选甲烷的含六铝酸镍的催化剂,其包含65-95重量%,优选70-90重量%比例的六铝酸盐,以及5-35重量%,优选10-30重量%的选自LaAlO3、SrAl2O4和BaAl2O4的结晶氧化次级相。催化剂的BET表面积为≥5m2/g,优选≥10m2/g,催化剂的摩尔镍含量为≤3mol%,优选≤2.5mol%,更优选≤2mol%,且层间阳离子优选为Ba和/或Sr。用于制备催化剂的方法包括如下步骤:(i)制备金属盐,优选Ni以及Sr和/或La的硝酸盐,与纳米颗粒状铝源的混合物,(ii)模塑和(iii)煅烧。使本发明催化剂在重整方法中,优选在>800℃的温度下与烃,优选甲烷和CO2接触。催化剂的特征还在于镍的优选结构性能,其中镍颗粒主要具有四方形形状且颗粒≤50nm,优选≤40nm,特别优选≤30nm,并且提供在六铝酸盐颗粒上生长的细分散方式。该催化剂对于形成焦炭仅具有非常低的趋向性。

Description

用于在二氧化碳存在下重整烃的含六铝酸镍的催化剂
描述
本发明涉及一种用于在CO2存在下重整烃,优选CH4的含六铝酸镍的催化剂,该催化剂包含含有至少一种选自La、Sr、Ba,优选Sr和/或Ba的元素的六铝酸镍,以及结晶氧化次级相,其中催化剂的镍含量,基于元素Al、Ni和层间元素为≤3mol%,优选≤2.5mol%,更优选≤2mol%。六铝酸镍的比例为65-95重量%,优选70-90重量%,且次级相的主要成分包含至少一种选自LaAlO3、SrAl2O4和BaAl2O4的化合物。为了制备催化剂,使铝源,优选氢氧化铝(优选由小的初级颗粒组成,优选具有小于或等于500nm的初级粒度)与金属盐溶液接触,干燥并煅烧,优选在≥900℃的温度下煅烧。金属盐溶液包含镍盐和一种或多种包含选自La、Ba、Sr的元素的金属盐。
甲烷和二氧化碳的重整由于可由该方法制得合成气而具有很大的经济价值。合成气是制备基础化学品的原料。此外,为了将在许多工艺过程中作为废产物获得的二氧化碳通过化学途径结合并由此避免排入大气中,在化学合成中使用二氧化碳作为起始物质非常重要。
由于其大的经济重要性,在二氧化碳存在下重整烃是许多公开文献的主题。下文给出了这些公开文献的主题的简单综述。
Chu等(W.Chu等,CatalysisLetters,第74卷,第3-4期(2001),第139-144页)报道了包含具有氧化镍沉淀物的六铝酸钡(NiO/六铝酸镍)的活性组合物用于甲烷的部分氧化。六铝酸钡的合成基于借助碳酸铵由铝和钡的硝酸盐溶液沉淀以及在900-1200℃的温度下的煅烧。为了使镍沉淀,将六铝酸钡用乙酸镍溶液处理,干燥并在800℃下煅烧。改变镍沉淀物的量,其中镍的最小负载量为0.5重量%,且镍的最大负载量为20重量%。因此,镍的负载量的下限约为0.5mol%,镍的负载量的上限为16.7mol%,其中在每种情况下显示的数值基于金属元素Ni、Ba和Al。
Ikkour等(CatalysisLetters,第132卷(2009),第213-217页)报道了在干燥重整甲烷中镍取代的六铝酸钙-镧催化剂的活性。该研究基于具有高镍含量的六铝酸盐,其中镍的摩尔含量为7.69mol%。在此报道的摩尔量基于六铝酸盐的金属元素,即La、Ni和Al或Ca,而不是La和Ca与La的混合物。该材料经由硝酸盐溶液而合成,使后者与柠檬酸混合并由其中蒸发部分水以形成凝胶。将该凝胶在100℃下干燥,在500℃下煅烧2小时并在1100℃下煅烧8小时。在该文章的前言部分中,提及六铝酸镍既可与镧也可与选自Ca、Ba、Sr的碱土元素一起存在。该引用基于镍含量为7mol%的六铝酸镍,其中所示数值基于金属原子Ni、Al和层间平面的元素。还引用了具有低镍含量的六铝酸镧-镍(LaNi0.3Al12.7O19-δ)。基于金属元素La、Ni和Al,该六铝酸盐具有镍含量为2.14mol%的镍。
总之,首先在此可说明可在主题为含六铝酸镍的材料的现有技术中找到的很多公开文献涉及具有高镍含量的材料,其中镍的摩尔含量(其基于金属元素或基于除氧以外的所有元素的摩尔量)通常为7mol%。
涉及具有低镍含量的含六铝酸盐材料的那些公开文献通常具有镧作为层间元素或层间阳离子。在此可提及的一个实例是Wang等的公开文献(React.Kinet.Catal.Lett,第96卷,第1期(2009),第65-73页),其中镍由镁以不同量替换,其中在试样中镍含量为1.54mol%。所报道的镍含量基于元素Al、Mg、La和Ni。
除上述之外,可引用Gardner等的公开文献(ToddH.,Gardner等,AppliedCatalysisA:General323(2007)第1-8页),其涉及镍取代的六铝酸盐催化剂,其中La、Sr和Ba用作层间阳离子。具有经验式ANi0.4Al11.6O19-δ(A=La、Sr和Ba)的催化剂用于部分氧化正十四烷,其在此代表中间蒸馏产物的模型化合物。该研究的目的是开发适合于制备用于燃料电池的燃料的催化剂。基于碱土元素Sr或Ba(或La)以及Ni和Al,试样的镍含量为3.08mol%。
与镧组合,ToddH.Gardner在他的论文(题为“HexaaluminateCatalystsforthePartialOxidationofMiddleDistillateFuels”(2007)Morgantown,WestVirginia,USA)中也已报道具有LaNi0.2Al11.8O19-δ的含六铝酸盐的材料以及因此具有低镍含量的含镍的六铝酸盐。在现有情况下,镍含量基于元素La、Ni、Al为1.54mol%的镍。该材料通过沉淀由硝酸盐溶液得到,其中将碳酸铵用作沉淀剂。
也可提及ToddH.Gardner等的公开文献(J.Phys.Chem.C2010,14,第7888-7894页),其中检测了具有钯作为层间阳离子的含镍或镍取代的六铝酸盐(即Ba0.75NiyAl12-yO19-δ,其中y取值为0.2、0.4、0.6、0.8和1.0)。这些材料借助可溶性碳酸盐通过沉淀由相应的硝酸盐溶液制备。将沉淀产物在110℃的温度下干燥并在1400℃的温度下煅烧,其中将温度在1400℃下维持1小时。以该方式制备的含钡-镍的六铝酸盐试样具有8-12m2/g的BET表面积。
本发明的目的是提供一种用于重整烃和二氧化碳的活性、抗碳化、老化稳定且高性能的催化剂,并且改进现有技术已知的催化剂。此外,催化剂应以节约资源的方式制备。
上述目的和还未提及的其他目的通过如下所述提供的催化剂实现:
用于重整烃和CO2的催化剂,其包含含有呈β”-铝酸盐和/或磁性铅酸盐的形式的六铝酸盐的氧化载体材料以及金属镍颗粒,其中催化剂中的金属镍颗粒具有四方形形状,作为生长(grown-on)颗粒细分布在氧化载体材料的表面上,且镍颗粒的平均粒度为≤50nm,优选≤40nm,特别优选≤30nm。
催化剂优选额外具有如下性能:催化剂的氧化相包含65-95重量%,优选70-90重量%的六铝酸盐和5-35重量%,优选10-30重量%的结晶氧化次级相,含六铝酸盐的相包含至少一种选自Ba、Sr和La的层间阳离子,其中层间阳离子与铝的摩尔比为1:6-11,优选1:7-10,特别优选1:8-10,结晶氧化次级相至少包含LaAlO3、SrAl2O4和/或BaAl2O4,催化剂的BET表面积为≥5m2/g,优选≥10m2/g。
对于本发明催化剂的镍含量,如下应优选在本文中坚持:催化剂的镍含量为≤3mol%,优选≤2.5mol%,更优选≤2mol%,并且镍颗粒的主要部分存在于六铝酸盐相的表面。(即大于50%,优选大于70%,特别优选大于80%,其中六铝酸盐晶格中的镍在此不作考虑。)
在一个优选实施方案中,本发明催化剂为用于重整烃和CO2的催化剂,其至少包含65-95重量%,优选70-90重量%的六铝酸镍-钡,其中催化剂中的六铝酸盐以在35.722θ[°]具有[114]反射的β”-铝酸盐形式存在,并且催化剂包含5-35重量%,优选10-30重量%的结晶氧化次级相,催化剂的镍含量为≤3mol%,优选≤2.5mol%,更优选≤2mol%,并且催化剂的Ba与Al的摩尔比为1:6-11,优选1:7-10,特别优选1:8-10,结晶氧化次级相至少包含BaAl2O4,催化剂的BET表面积为≥5m2/g,优选≥10m2/g。
在一个优选实施方案中,本发明提供一种用于重整烃和CO2的催化剂,其至少包含65-95重量%,优选70-90重量%的呈磁性铅酸盐形式的六铝酸镍-锶以及5-35重量%,优选10-30重量%的结晶氧化次级相,其中催化剂的镍含量为≤3mol%,优选≤2.5mol%,更优选≤2mol%,并且催化剂的Sr与Al的摩尔比为1:6-11,优选1:7-10,特别优选1:8-10,结晶氧化次级相至少包含SrAl2O4,催化剂的BET表面积为≥5m2/g,优选≥10m2/g。
本发明的一个方面还涉及一种用于重整烃和CO2的催化剂,其至少包含65-95重量%,优选70-90重量%的六铝酸镍以及5-35重量%,优选10-30重量%的结晶氧化次级相,其中催化剂可使用用于合成的纳米颗粒状氧化铝氢氧化物源制备并且催化剂的镍含量为≤3mol%,优选≤2.5mol%,更优选≤2mol%,含六铝酸镍的相包含至少一种选自Ba、Sr和La的层间阳离子,其中层间阳离子与铝的摩尔比为1:6-11,优选1:7-10,特别优选1:8-10,结晶氧化次级相至少包含LaAlO3、SrAl2O4和BaAl2O4,催化剂的BET表面积为≥5m2/g,优选≥10m2/g。报道的镍摩尔含量基于包含在催化剂中的阳离子形成的元素,即Al、Ni和层间元素。因此,不考虑氧的存在。就本发明的公开内容而言,应确保在限定层间阳离子与铝的摩尔比范围时,层间阳离子的摩尔量还包括镍的相应摩尔量。
本发明优选提供一种用于重整烃和CO2的催化剂,其至少包含65-95重量%,优选70-90重量%的呈在35.722θ[°]具有[114]反射的β”-铝酸盐和/或磁性铅酸盐形式的六铝酸镍以及5-35重量%,优选10-30重量%的结晶氧化次级相,其中催化剂可使用用于合成的纳米颗粒状氧化铝氢氧化物源制备并且催化剂的镍含量为≤3mol%,优选≤2.5mol%,更优选≤2mol%,含六铝酸镍的相具有至少一种选自Ba和/或Sr的层间阳离子且催化剂具有的层间阳离子与铝的摩尔比为1:6-11,优选1:7-10,特别优选1:8-10,结晶氧化次级相至少包含SrAl2O4和/或BaAl2O4,催化剂的BET表面积为≥5m2/g,优选≥10m2/g。
在一个优选实施方案中,催化剂的X-射线衍射图显示至多有少量γ-和/或δ-和/或θ-和/或α-氧化铝,其中γ-氧化铝的量小于10重量%,优选小于5重量%,特别优选少于2重量%。
本发明还提供一种制备用于重整烃和CO2的本发明催化剂的方法,所述催化剂至少包含65-95重量%,优选70-90重量%的含六铝酸镍主相和5-35重量%,优选10-30重量%的结晶氧化次级相,其中制备方法包括如下步骤:
(i)使纳米颗粒状氧化铝氢氧化物源与包含选自La、Sr和Ba的元素以及镍盐的金属盐接触,其中镍含量为≤3mol%,优选≤2.5mol%,更优选≤2mol%,并且层间阳离子与铝的摩尔比为1:6-11,优选1:7-10,特别优选1:8-10,
(ii)充分混合起始组分,
(iii)至少干燥、分解盐和/或模塑混合物,
(iv)在≥900℃的温度下煅烧以及还原步骤。
对本发明公开内容而言,术语催化剂是指氧化六铝酸盐材料,以及部分还原的活性组分,其中部分活性金属以氧化形式保留在六铝酸盐晶格中。此外,术语催化剂也指活性组分,其中活性金属几乎全部作为金属存在。当在管式反应器中进行前体催化剂的还原时,必须确保还原程度使得可存在梯度形成。梯度形成非常显著地取决于反应器温度和沿反应器轴的温度剖面。典型地,还原程度随着温度升高而升高,且由于在很多反应器中反应器中心的温度高于周围区域,反应器中心的还原程度大于周围区域。在该背景下,在此所示术语应理解为容许包含所有存在的还原程度的催化剂以及经还原/经钝化的活性组合物。然而,对本发明公开内容而言,更方便地提及前体催化剂,且因此也使用该术语。
适合用于制备催化剂的金属盐源尤其为易于溶解在水溶液中的那些。特别优选硝酸盐、乙酸盐、氯化物,非常特别优选硝酸盐。也可使用络合剂;合适的络合剂的实例尤其为EDTA、胺类、氨水溶液、酒石酸或柠檬酸。同样可将非水性有机溶剂用于进行浸渍;这些的实例为醇类、醚类或酮类。当使用这些有机溶剂时,可使用金属的有机复合物(complex),例如乙酰丙酮酸盐,或金属有机化合物。
本发明同样包括使用这些助催化剂。一种或多种助催化剂可直接在浸渍纳米颗粒状铝源中或仅在干燥材料后,作为替换方案仅在煅烧或模塑后加入。助催化剂可以氧化或金属形式存在,可将它们并入六铝酸盐相或一个次级相。该助催化剂通常以低浓度加入;基于活性金属镍,优选Ni/Me=2/1~1000/1,特别优选Ni/Me=3/1~500/1,非常特别优选Ni/Me=4/1~100/1。本发明助催化剂可以尤其为:钴、铁、铜、银、金、铂、钯、铑、铱、锰、锆、钛、铈、镨。特别优选铂、铱、钴和铈。非常特别优选铱和铈。使用超过一种助催化剂同样包括在本发明中。助催化剂可改进催化剂的活性以及它的抗碳化性。助催化剂在还原、活化和/或反应条件后可以金属或氧化形式存在。
对于如上所述处于本发明范围内的不完全还原的催化剂,可说明如下:结合在六铝酸盐晶格中的镍有时仅可通过还原、活化和/或在反应条件下不完全还原且因此仅部分由六铝酸盐晶格中移除。
以部分还原态存在的催化剂具有更低含量的以金属形式存在的活性金属。以金属形式存在的活性金属以暴露形式存在于表面上。然而,残留在六铝酸盐晶格内的氧化镍可有助于晶格的结构稳定性且因此借助固有的氧化还原活性改进催化剂的抗碳化性。使用有意还原到一定程度的催化剂同样包括在本发明中。使用其中在各区域中使用具有不同还原程度的催化剂的结构化床同样包括在本发明中。特别优选如下实施方案,其中催化剂的还原程度由反应器入口沿着反应器出口方向增加。同样包括如下实施方案,其中催化剂的还原程度与温度剖面和反应器中的气体组成相匹配。
本发明的一个重要方面还涉及存在具有≤3mol%,优选≤2.5mol%,更优选≤2mol%的低镍含量和特定次级相的含六铝酸盐的催化剂。在制备本发明催化剂中优选必须将含镍的起始组分直接加入合成混合物。因此,将镍随后施加到六铝酸盐或含六铝酸盐的化合物中不会得到本发明催化剂。
对于本发明催化剂以及本发明的制备方法,借助X-射线研究没有识别出显著量的含镍的次级相。因此可假定本发明催化剂仅包含非显著量的含镍次级相。
可假定在合成催化剂过程中镍物种首先主要并入六铝酸盐相的格架结构。在具体工艺过程条件下(通过活化处理或还原步骤和重整方法),细碎的镍物种在六铝酸盐颗粒的外表面上形成(其由格架溶出)。因此煅烧后直接得到但还没有借助还原步骤、活化步骤或工艺过程气体处理的催化剂代表本发明催化剂的前体。可假定在此本发明的一个重要方面也在于镍几乎完全存于六铝酸盐结构中。
本发明催化剂的合成优选也基于使用纳米颗粒状氧化铝源作为起始组分。就在还原过程中形成的通常具有四方形形状的细碎镍颗粒与在合成催化剂中优选的氧化铝源的使用而言的本发明催化剂的组合得到协同效应。
涉及存在非常细碎的镍颗粒的催化剂的结构特征可借助透射电子显微镜法测定。
与具有主要呈四方形形状的生长的细碎颗粒的本发明催化剂相反,现有技术的催化剂具有更多的或多或少的球形(即球型)的颗粒,其平均尺寸约为60-200nm。具有60-200nm如此大的直径的球型颗粒是非常不希望的,这是因为已发现具有相对高密度的这种颗粒的催化剂试样不像本发明催化剂一样具有所需催化剂性能。就此而言,还可指出进行六铝酸盐颗粒表面的半定量TME分析。借助TEM检测的六铝酸盐颗粒表面在平面视图中典型地具有约450nm×650nm的面积,其对应于约0.3μm2(即0.45×0.65μm2)的表面积。现有技术的催化剂显示每μm2的表面部分约20-30个球型颗粒。在本发明催化剂的情况下,每μm2的表面部分的球型颗粒数为≤10,优选≤5。球型、相对大的颗粒的形成可在本发明催化剂的情况下大大地减少,但也不能完全排除。
就此而言,还可指出生长的细碎颗粒以及略大的球形颗粒由镍或氧化镍和镍组成,其不归入术语氧化结晶次级相,该术语对本发明而言主要涉及包含选自La、Sr、Ba或优选选自Sr和Ba的其他元素的含氧化铝的次级相。
本发明的低镍催化剂可以为具有La、Sr和Ba作为层间阳离子的催化剂。然而,在催化剂重整研究中得到的数据表明层间阳离子Sr和/或Ba具有比La略好的催化性能。此外,由于使用锶作为层间阳离子得到的催化数据稍好于基于含钡催化剂的催化数据,与Ba相比,略微更优选Sr作为层间阳离子。锶具有的另外优点涉及含锶起始组分的可用性和可持续性。
本发明范围还包括任何类型的具有选自La、Ba、Sr的两种或全部三种层间阳离子的本发明的含六铝酸盐的催化剂的混合物。混合物可为就层间阳离子而言不同的催化剂的物理共混物或该混合物可在合成过程中通过加入至少两种包含选自La、Ba、Sr的物种的起始组分而得到。
涉及加入少量微量元素的本发明的变化也在本发明范围内,只要得到本发明催化剂所示性能。就此而言,术语微量元素涉及替换小部分层间阳离子且其浓度相对于层间阳离子的量低的添加物。该元素的实例可以尤其为钙、钠或本领域技术人员已知的其他元素。对于本发明催化剂,应强调层间阳离子不仅存在于含六铝酸盐的相中,还存在于结晶氧化次级相中。
已发现结晶氧化次级相优选还包含选自La、Ba和/或Sr的层间阳离子的元素。在次级相中的特定元素(例如含镍的尖晶石)以及特定次级相(例如γ-氧化铝)往往不希望作为次级相。然而,还可关注还可存在例如可存在于次级相中但不会不利地影响本发明催化剂的催化性能的其他元素和相。
在一个优选实施方案中,在制备用于重整烃和CO2的本发明催化剂的方法中,使用呈硝酸盐形式的金属盐或呈纳米颗粒状氧化铝氢氧化物形式的铝源。
在本发明方法中,用于制备催化剂的混合物优选在作为溶剂的水存在下制备。
对本发明公开内容而言使用的术语纳米颗粒状氧化铝氢氧化物源在下文中更详细地解释:
纳米颗粒状氢氧化铝优选用作用于制备本发明的含六铝酸盐的催化剂的铝组分源。纳米颗粒状氢氧化铝特别地为反应性的且因此特别有利于作为铝源,这是因为与其他铝源相比,即使在相对低的温度下,也可实现起始组分转化成目标相六铝酸盐。较高的反应性可归因于反应性铝相的存在。就本发明而言,优选具有高比例的水的铝氧化物和氢氧化物;特别优选三羟铝石、勃姆石和假勃姆石,其中非常特别优选勃姆石。同样特别重要的与所述材料的细度有关。
特别地,为了得到高反应性,还重要的是所述材料的初级微晶小于500nm,特别优选小于300nm,非常特别优选小于100nm。该初级晶体可连接以形成更大的团聚体;取决于材料的预处理,也可借助合适的方法使该类微晶的这种团聚体一定程度解聚。合适的解聚方法尤其为用酸和碱处理、研磨粉末或本领域技术人员已知的其他方法。在特定情况下,材料的预聚也可能是有用的。合适的方法可以尤其为:压制、造粒、捏制以及本领域技术人员已知的其他方法。
特别优选使用高纯度氧化铝,特别是由Sasol以商品名Pural、Dispal、Puralox或Catalox销售的那些。来自其他制造商的类似产品同样包括在本发明制备方法中。
重整方法
本发明还提供一种在CO2存在下重整烃,优选甲烷的方法。
在CO2存在下重整烃,优选甲烷的方法包括如下步骤:
(a.1)使包含烃,优选甲烷和CO2的重整气体与根据本发明公开内容的含六铝酸镍的催化剂接触,
(a.2)在>800℃的温度下,更优选在>850℃的温度下加热与重整气体接触的催化剂,
(a.3)在>5巴的工艺过程压力下,优选在>10巴的工艺过程压力下,更优选在>15巴的工艺过程压力下,运行反应器,同时进行反应,
(a.4)与催化剂接触的重整气体具有500-20000h-1,优选1500-10000h-1,更优选2000-5000h-1的GHSV。
优选在步骤(a.1)中提及的重整气体具有至多70体积%,优选至多50体积%,特别优选至多30体积%H2O含量。
此外,在一个优选实施方案中,在重整方法中使用的催化剂以还原形式使用或在重整方法前进行还原步骤。
在本发明方法的另一优选实施方案中,使用包含水蒸气且具有其中组分CH4/CO2/H2O以25/25/50到50/50/0,优选35/35/30到45/45/10的气体体积比存在的组成的起始流体。
具有0.8-2.0的H2/CO比的合成气优选借助本发明的重整方法制备,其中合成气的H2/CO比优选为0.9-1.1。
本发明催化剂的一个重要方面涉及它的特别高的长期稳定性,这使得即使该方法在高压和高温下进行,催化剂在本发明重整方法,即在CO2存在下重整烃,优选甲烷中显示出没有大的活性降低。
因此,本发明催化剂能够使在CO2存在下重整烃中设备运行的运行时间增加,这在该方法的开发中具有大的技术相关性。通常,催化剂在设备中使用后不能再生且随后必须处理掉。延长运行时间减少待处理掉的材料的量,这改进该方法的经济性。
产生明显更少量的催化剂废产物以及结合CO2的高性能、有效的方法与现有技术已知的完善方法和催化剂相比具有显著优势。
还令人惊讶地,尤其是低镍含量范围≤3mol%,优选≤2.5mol%,更优选≤2mol%与本发明的其他特征组合得到显著改进的用于重整的催化剂。还应提及的一个特别方面是纯相的六铝酸盐材料不符合本发明催化剂,这是因为纯相材料不具有本发明催化剂的催化应用性能。
具有低镍含量以及本发明其他特征的催化剂显示出高催化功效以及同时优异的长期稳定性。该发现说明在催化重整中起主要作用的金属镍可以结构不同的形式且在催化剂内分布存在。具有四方形形状的镍颗粒与近似球型的颗粒的不同在此是重要的。已开发出在结构检测中几乎不显示任何球型颗粒而是相反细分散的具有四方形形状的镍颗粒的催化剂。可假定在催化剂中的这些镍物种的最小含量对于实现催化剂的所需效用是必须的。
例如,由于结构上优选的镍颗粒的浓度低,具有0.1mol%的镍含量的本发明催化剂的活性可略低于具有1.5mol%的镍含量的本发明催化剂的活性。因此,可假定本发明催化剂中镍的特定最小量为有利的。就本发明方法而言,镍含量应优选>0.1mol%,更优选>0.25mol%,特别优选0.5mol%。
还将可关注将本发明催化剂用于重整烃和二氧化碳的本发明方法之外的催化工艺过程。这意指具有低镍含量以及其他本发明特征的催化剂甚至在二氧化碳存在下的重整领域外具有技术上和经济上的使用潜能。因此,本发明不意欲仅限制于具有低镍含量的本发明催化剂,而是还涉及具有超低镍含量的催化剂,只要镍颗粒具有优选的四方形形状。
I.示例性试样
表1给出一系列16个借助实施例制备的试样以及它们的组成和表征数据的概述。对于化学组成报道的数值基于Al、Ni以及至少一种选自La、Sr、Ba的其他元素的摩尔比例。在试样编号中,字母L、S或B取决于其中存在的元素添加至各试样。试样L1至L4在1600℃的温度下煅烧且所有其他试样(即L5-L8、S1-S4和B1-B4)在1200℃的温度下煅烧。
为了解释本发明,将在下文描述具有Al0.846La0.77Ni0.77的化学计量组成以及La:Ni比为1的实验试样L1和L5的制备。首先将100mL的蒸馏水放置在玻璃烧杯中,并且随后将18.242g的硝酸镧六水合物(La(NO3)3x6H2O)和12.884g的硝酸镍六水合物(Ni(NO3)2x6H2O)加入水中。在使该盐在搅拌的同时溶解后,将溶液加热到45℃的温度,并将30.606gDisperal(Condea或SASOL)作为固体加入经加热的溶液,得到悬浮液。将该悬浮液在搅拌的同时冷却到25℃,并且借助移液管取出并滴加引入用于模塑的具有液氮的杜瓦容器。在杜瓦容器中的液氮在滴加引入悬浮液期间借助磁力驱动的搅拌器浴剧烈混合。冻结的悬浮颗粒作为约1cm厚的粉末层分布在冻干设备的多个不锈钢盘上。将不锈钢盘引入冻干设备并经受干燥工艺过程。在干燥工艺过程中,覆盖有悬浮颗粒的不锈钢盘在1.98毫巴的压力下储存48小时或96小时的时间,其中在干燥设备内部的温度逐步由-25℃提高到-5℃。(作为冻干产物,使用来自制造商MartinChrist的型号Gamma1-20)。
将冻干后获得的试样材料引入两个瓷盘,其随后在高温炉(来自Carbolite)中在不同温度下煅烧。在制备试样L5的情况下,使试样在1200℃的温度下煅烧,且在制备试样L1的情况下,使试样在1600℃下煅烧。选择煅烧以使得试样在达到目标温度前各自在100℃、250℃、350℃和450℃的温度下维持1小时。直到450℃的温度,使试样在1K/min的加热速率下加热,而由450℃至各自的目标温度,使试样在5K/min的加热速率下加热。在煅烧期间,使空气通过炉。煅烧完成后,使试样在5小时的时间内冷却到室温,其中空气持续通过炉。
煅烧后,经煅烧的试样分批经受还原处理工艺过程。为此,在每种情况下将约2.5g的试样引入装有玻璃料的熔凝硅管(fusedsilicatube)中。熔凝硅管具有1.32cm的内径,并且存在于玻璃料上的试样的床高为1.5cm。将存在于熔凝硅管中的试样在含氢气的气氛(即成型气体在N2中包含5%的H2)下加热到900℃并随后在900℃下维持3小时。随后将试样冷却到100℃,同时使成型气体通过它们。在加热工艺过程期间和冷却工艺过程期间都维持每分钟10mL的气体料流流速。在试样冷却到100℃后,将CDA逐步加入到气体料流以使还原状态的试样钝化。
表1显示16个借助实施例制备的试样、它们的组成以及BET分析结果的简述。对于组成,报道了就Al、Ni和至少一种选自La、Sr、Ba的其他元素的摩尔比例而言的元素组成。此外,还报道了存在于单个试样中的六铝酸盐的比例。六铝酸盐含量的量化借助各自的衍射图的Rietveld分析而进行。对于BET分析和X-射线衍射研究使用未还原形式的试样。
II.借助TEM的试样表征
还原形式的试样S4、B3和B2借助透射电子显微镜法更严密地表征。在试样经受还原处理工艺过程后,对试样进行TEM表征。该表征的结果在图1-3中显示并在下文论述。
透射电子显微图显示了浅色的结构,其可明确地归于以金属形式存在的镍颗粒。可指出试样的X-射线衍射图也表明金属镍颗粒的存在,但低粒度和低镍含量借助X-射线数据不能够明确的确认。
本发明通过试样S4(其中SrNi0.25)(其透射电子显微图在图1中描述)说明。图1中的显微图显示了薄片型颗粒的平面视图,其具有六铝酸盐相的特征形状。尺寸在20nm左右的很多较小的镍颗粒在六铝酸盐颗粒的表面上生长。
生长的金属颗粒的尺寸测定基于透射电子显微图进行,其中测定在六铝酸盐上生长的纳米颗粒的尺寸。不能借助自动化方法进行测量。原因是低对比度和六铝酸盐颗粒表面上的缺陷,这将显著干扰自动化识别方法的使用。
应注意的是具有10-30nm尺寸的很多小的镍颗粒具有限定的结构,其中颗粒的主要比例具有角的结构特征且一些颗粒清晰地显示出四面体形状。这些四面体镍颗粒的基底区域在六铝酸盐薄片的表面上生长。由该限定的结构构形明显看出微晶在形态学上是相同的并具有相同或类似的生长取向。
就本发明而言,纳米颗粒的尺寸非常重要。使用粒度或当量直径的累积评定分布以确定尺寸范围。基于本发明材料的粒度的累积评定,优选30%的颗粒部分具有本发明阈值以下的粒度,特别优选50%的颗粒部分具有本发明阈值以下的粒度,非常特别优选70%的颗粒部分具有本发明阈值以下的粒度。
具有约100nm及以上的尺寸的相对大的镍颗粒数随镍含量的增加而增加。这例如由图2和3中的试样B3和B2的显微图显示,其中试样B3具有3.85mol%的镍含量,而试样B2具有5.77mol%的镍含量。相对大的镍颗粒非常接近于相邻的镍颗粒放置。
在镍的金属形式中,单个镍原子具有面心立方体设置。在该晶体体系中,晶格矢量[uvw]=[111]为立方体的三维对角线且相交于八面体和四面体的面的中间。在立方体系(a=b=c,α=β=γ)中,该矢量与具有指数(hkl)=(111).[111]┴(111)的面垂直。矢量[111]、[-111]、[-1-11]和[1-11]是对称等价的。因此,可由这些晶体学考虑总结出其为镍纳米颗粒的(111)面,其优先在六铝酸盐颗粒上生长。可假定该类结合导致金属镍颗粒与氧化表面特别好的接触。这可以而不受理论考虑以任何形式限制本发明解释示例性试样极其耐受催化实验中的烧结过程的发现,这在其工业使用时与催化剂的极好的应用性能直接相关。
附图简述
附图1显示了借助在1:200000的放大率下的TEM(透射电子显微镜)得到的本发明试样S4(其中SrNi0.25)的显微图。在中间区域,可见六铝酸盐薄片的表面,在其上沉积生长的尺寸约20nm的很多较小的镍颗粒。在显微图顶部左边,存在具有约100nm尺寸的两个镍颗粒。
图2显示了在1:200000的放大率下的试样B3(其中BaNi0.5)的透射电子显微图。在中心,可见很多具有100nm及以上的直径的颗粒(见箭头)。
图3显示了在1:200000的放大率下的试样B2(其中BaNi0.75)的透射电子显微图。可见很多具有100nm及以上的尺寸的镍颗粒。相邻镍颗粒之间的空间距离看起来是小的。
图4显示了试样S4(其中SrNi0.25)的X-射线衍射图,其记录了未还原状态的试样。
图5显示了试样B4(其中BaNi0.25)的X-射线衍射图,其记录了未还原状态的试样。在31.86、33.08和35.722θ[°]的反射说明β”-铝酸盐相的存在。
图6显示了试样B1、B2、B3和B4在35.0-38.02θ[°]角的范围内的X-射线衍射图,其记录了未还原状态的试样。在35.722θ[°]的反射说明β”-铝酸盐相的存在。在35.852θ[°]的反射,β'-铝酸盐相的特征,在XRD图样中未发现。
还原后的试样的研究:未在六铝酸盐薄片上生长的镍纳米颗粒的检测
显微图说明该颗粒数随氧化六铝酸盐中镍的比例增加而增加且较大的镍颗粒不仅以强结构形式在六铝酸盐薄片上生长。特别地,这种大的镍颗粒在超过Ni0.25或1.92mol%的镍含量下存在。
II.催化剂研究
对于催化表征,将活性组合物在循环反应器中测试。待检测的试样用碳化硅稀释,其中使在每种情况下20mg试样与在每种情况下80mg碳化硅混合。使用其粒度为500-750μm的试样进行研究。研究中使用的碳化硅具有与待测试的催化剂试样相同的粒度级,即粒度为500-750μm。将催化剂试样和碳化硅的相应测试混合物引入具有6mm内径的反应器管。由具有1mm壁厚的氧化铝陶瓷组成的反应器管安装在具有8mm内径的钢制反应器中。使反应器管和钢制反应器的尺寸相匹配以使得没有气体能够在陶瓷和钢制反应器壁之间传输。
首先使氮气通过试样填充的反应器,其在大气压力下加热到800℃。随后使试样在800℃和大气压力下经受还原预处理步骤,其包括使试样在包含20%氢气和80%氮气的气氛下暴露2小时。
作为催化测试反应,测定由甲烷和二氧化碳制备合成气。测试反应在10巴和850℃下使用甲烷与二氧化碳比值为1的进料气体进行。将10体积%起内标作用的氮气引入进料气体中。为实现再循环操作,使产物气体借助气体泵供回反应器的进料气体管线,其中选择气体流速以使得绝对气体流速为100mL/min(即GHSV约为60000h-1)。离开反应器的产物气体的组成借助GC系统分析。
催化重整研究的结果在表2和表3中显示。
可指出对于评价催化剂的催化性能,首先使用活性,其次使用选择性。对于目标反应,在甲烷在二氧化碳存在下的干燥重整的示例性研究中,催化剂的活性是第一重要的。
在表2中,催化剂相对于其他试样的活性可通过比较甲烷和二氧化碳的转化率而总结出。然而,在本发明情况下经由氢气与一氧化碳之比以相对术语表示的催化剂选择性也是重要的。通常,在此希望氢气与一氧化碳之比约为1。氢气与一氧化碳的较低比例表明这些产物在催化剂上进一步反应。
表2显示了试样的化学组成、煅烧温度和催化性能的测试结果的概述,其在每种情况下在850℃、10巴(表压)下10小时后完成,且进料气体的起始组成CH4/CO2=1。作为测试结果,报道了甲烷的转化率、CO2的转化率和H2/CO比。
对于其他试样的催化剂活性可由表3通过比较达到的最大CO浓度和达到该值的时间得到。然而,在该情况下通过比较实验结束时一氧化碳浓度表示的催化剂选择性也是重要的。通常在达到的最大浓度和在实验结束时的浓度之差非常小是希望的。相对于最大值在实验结束时的低浓度一氧化碳可表明一氧化碳在催化剂上进一步反应。通常,希望在非常短的时间内达到最大浓度,但这方面相对于保持一氧化碳最大浓度的方面是次要的。大的一氧化碳最大浓度的下降自动说明含碳沉积物在催化剂上的形成,这由于它们大大缩短材料寿命而是不希望的。
表3显示了就对各试样得到的反应气体中CO含量而言的催化测试结果的概述,其中测定了在实验期间的最大CO含量并在此测定10小时测试时间(在850℃、10巴(表压)下且气体的起始组成CH4/CO2=1)后的CO含量。
表征方法的简述:
实施例中检测的所有催化剂试样的物理表征借助XRD分析、氮气吸附测量和堆密度测量进行。XRD分析使用来自Bruker/AXS的D8AdvanceSerie2使用CuK-α源(在40kV和40mA下具有0.154nm波长)进行。测量在测量范围:5-80°(2θ)内以4.8秒/步的0.02°步幅进行。Rietveld分析基于反射强度的评价。表1中显示的BET数据和Rietveld分析数据涉及未还原状态的试样。

Claims (15)

1.一种用于重整烃和CO2的催化剂,其包含含有呈β”-铝酸盐和/或磁性铅酸盐形式的六铝酸盐的氧化载体材料以及金属镍颗粒,其中在催化剂中的金属镍颗粒主要具有四方形形状,作为生长颗粒细分布在氧化载体材料的表面上,并且镍颗粒的平均粒度为≤50nm,优选≤40nm,特别优选≤30nm。
2.根据权利要求1的用于重整烃和CO2的催化剂,其中催化剂的氧化相至少包含65-95重量%,优选70-90重量%的六铝酸盐以及5-35重量%,优选10-30重量%的结晶氧化次级相,含六铝酸盐的相包含至少一种选自Ba、Sr和La的层间阳离子,层间阳离子与铝的摩尔比为1:6-11,优选1:7-10,特别优选1:8-10,结晶氧化次级相至少包含LaAlO3、SrAl2O4和/或BaAl2O4,催化剂的BET表面积为≥5m2/g,优选≥10m2/g。
3.根据权利要求1或2的用于重整烃和CO2的催化剂,其中催化剂的镍含量为≤3mol%,优选≤2.5mol%,更优选≤2mol%,并且镍颗粒的主要部分存在于六铝酸盐相的表面上。
4.一种用于制备根据权利要求1-3中任一项的用于重整烃和CO2的催化剂的前体催化剂,其呈未还原的状态,其中前体催化剂至少包含65-95重量%,优选70-90重量%的六铝酸镍-钡,其中催化剂中的六铝酸盐以在35.722θ[°]具有[114]反射的β”-铝酸盐的形式存在,并且催化剂包含5-35重量%,优选10-30重量%的结晶氧化次级相,催化剂的镍含量为≤3mol%,优选≤2.5mol%,更优选≤2mol%,并且催化剂中的Ba与Al的摩尔比为1:6-11,优选1:7-10,特别优选1:8-10,结晶氧化次级相至少包含BaAl2O4,催化剂的BET表面积为≥5m2/g,优选≥10m2/g。
5.一种用于制备根据权利要求1-3中任一项的用于重整烃和CO2的催化剂的前体催化剂,其以未还原的状态存在,其中前体催化剂至少包含65-95重量%,优选70-90重量%的呈磁性铅酸盐形式的六铝酸镍-锶以及5-35重量%,优选10-30重量%的结晶氧化次级相,其中催化剂的镍含量为≤3mol%,优选≤2.5mol%,更优选≤2mol%,并且催化剂中的Sr与Al的摩尔比为1:6-11,优选1:7-10,特别优选1:8-10,结晶氧化次级相至少包含SrAl2O4,催化剂的BET表面积为≥5m2/g,优选≥10m2/g。
6.一种用于制备根据权利要求1-3中任一项的用于重整烃和CO2的催化剂的前体催化剂,其以未还原的状态存在,其中前体催化剂至少包含65-95重量%,优选70-90重量%的六铝酸镍以及5-35重量%,优选10-30重量%的结晶氧化次级相,其中催化剂可使用用于合成的纳米颗粒状氧化铝氢氧化物源制备并且催化剂的镍含量为≤3mol%,优选≤2.5mol%,更优选≤2mol%,含六铝酸镍的相包含至少一种选自Ba、Sr和La的层间阳离子,层间阳离子与铝的摩尔比为1:6-11,优选1:7-10,特别优选1:8-10,结晶氧化次级相至少包含LaAlO3、SrAl2O4和BaAl2O4,催化剂的BET表面积为≥5m2/g,优选≥10m2/g。
7.一种用于制备根据权利要求1-3中任一项的用于重整烃和CO2的催化剂的前体催化剂,其呈未还原的状态,其中前体催化剂至少包含65-95重量%,优选70-90重量%的呈在35.722θ[°]具有[114]反射的β”-铝酸盐和/或磁性铅酸盐的形式的六铝酸镍以及5-35重量%,优选10-30重量%的结晶氧化次级相,其中催化剂可使用用于合成的纳米颗粒状氧化铝氢氧化物源制备并且催化剂的镍含量为≤3mol%,优选≤2.5mol%,更优选≤2mol%,含六铝酸镍的相具有至少一种选自Ba和Sr的层间阳离子且催化剂具有的层间阳离子与铝的摩尔比为1:6-11,优选1:7-10,特别优选1:8-10,结晶氧化次级相至少包含SrAl2O4和/或BaAl2O4,催化剂的BET表面积为≥5m2/g,优选≥10m2/g。
8.根据权利要求1-7中任一项的用于重整烃和CO2的催化剂,其中催化剂的X-射线衍射图显示至多有少量γ-和/或δ-和/或θ-和/或α-氧化铝,其中γ-氧化铝的量小于10重量%,优选小于5重量%,特别优选小于2重量%。
9.一种制备根据权利要求1-3中任一项的用于重整烃和CO2的催化剂的方法,该催化剂至少包含65-95重量%,优选70-90重量%的含六铝酸镍的主相以及5-35重量%,优选10-30重量%的结晶氧化次级相,其中制备方法包括如下步骤:
(i)使纳米颗粒状氧化铝氢氧化物源与包含选自La、Sr和Ba的元素以及镍盐的金属盐接触,其中镍含量为≤3mol%,优选≤2.5mol%,更优选≤2mol%,并且层间阳离子与铝的摩尔比为1:6-11,优选1:7-10,特别优选1:8-10,
(ii)充分混合起始组分,
(iii)至少干燥、分解盐和/或模塑混合物,
(iv)在≥900℃的温度下煅烧,步骤(iv)后还原处理催化剂。
10.根据权利要求9的制备用于重整烃和CO2的催化剂的方法,其中金属盐以硝酸盐形式使用,和/或铝源以纳米颗粒状氧化铝氢氧化物形式使用和/或水作为溶剂使用。
11.一种在CO2存在下重整烃,优选甲烷的方法,其包括如下步骤:
(a.1)使包含烃,优选甲烷,和CO2的重整气体与根据权利要求1-6中任一项的含六铝酸镍的催化剂,或与由根据权利要求7或8的方法制备的催化剂接触,
(a.2)在>800℃的温度下,更优选在>850℃的温度下加热与重整气体接触的催化剂,
(a.3)在>5巴的工艺过程压力下,优选在>10巴的工艺过程压力下,更优选在>15巴的工艺过程压力下运行反应器,同时进行反应,
(a.4)与催化剂接触的重整气体具有500-20000h-1,优选1500-10000h-1,更优选2000-5000h-1的GHSV。
12.根据权利要求11的在二氧化碳存在下重整烃,优选甲烷的方法,其中在步骤(a.1)中提及的重整气体具有至多70体积%,优选至多50体积%,特别优选至多30体积%的H2O含量。
13.根据权利要求11或12的在二氧化碳存在下重整烃,优选甲烷的方法,其中催化剂以还原形式使用或还原步骤在催化工艺过程之前。
14.根据权利要求11-13中任一项的在二氧化碳存在下重整烃,优选甲烷的方法,其中起始流体包含水蒸气且具有其中组分CH4/CO2/H2O以25/25/50到50/50/0,优选35/35/30到45/45/10的气体体积比存在的组成。
15.根据权利要求11-14中任一项的在二氧化碳存在下重整烃,优选甲烷的方法,其中由该方法产生的合成气具有的H2/CO比为0.8-2.0,其中优选合成气的H2/CO比为0.9-1.1。
CN201480012079.8A 2013-03-07 2014-03-06 用于在二氧化碳存在下重整烃的含六铝酸镍的催化剂 Expired - Fee Related CN105050714B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP13158074.8 2013-03-07
EP13158074 2013-03-07
EP13194345 2013-11-26
EP13194345.8 2013-11-26
PCT/EP2014/054362 WO2014135642A1 (de) 2013-03-07 2014-03-06 Nickelhexaaluminathaltiger katalysator zur reformierung von kohlenwasserstoffen in gegenwart von kohlendioxid

Publications (2)

Publication Number Publication Date
CN105050714A true CN105050714A (zh) 2015-11-11
CN105050714B CN105050714B (zh) 2018-06-26

Family

ID=50231185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480012079.8A Expired - Fee Related CN105050714B (zh) 2013-03-07 2014-03-06 用于在二氧化碳存在下重整烃的含六铝酸镍的催化剂

Country Status (8)

Country Link
US (1) US9475037B2 (zh)
EP (1) EP2964385A1 (zh)
JP (1) JP2016510687A (zh)
KR (1) KR20150129786A (zh)
CN (1) CN105050714B (zh)
DE (1) DE112014001125A5 (zh)
RU (1) RU2662221C2 (zh)
WO (1) WO2014135642A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107597199A (zh) * 2017-09-13 2018-01-19 武汉凯迪工程技术研究总院有限公司 循环流化床烃重整催化剂及其制备方法和应用
CN113329815A (zh) * 2019-01-31 2021-08-31 巴斯夫欧洲公司 包含包含氧、镧、铝和钴的混合氧化物的模制品

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2886514A1 (de) * 2013-12-20 2015-06-24 Basf Se Verfahren zur Reformierung von Gemischen aus Kohlenwasserstoffen und Kohlendioxid
US9416087B2 (en) 2014-10-08 2016-08-16 Chevron Phillips Chemical Company Lp Methods for the production of α,β-unsaturated carboxylic acids and salts thereof
US9725393B2 (en) 2014-10-08 2017-08-08 Chevron Phillips Chemical Company Lp Methods for the production of α,β-unsaturated carboxylic acids and salts thereof
US10385033B2 (en) 2015-07-22 2019-08-20 Basf Se Process for preparing furan-2,5-dicarboxylic acid
CN108473455A (zh) 2015-11-04 2018-08-31 巴斯夫欧洲公司 用于制备包含5-(羟基甲基)糠醛和特定的hmf酯的混合物的方法
KR20180080260A (ko) 2015-11-04 2018-07-11 바스프 에스이 푸란-2,5-디카르복실산을 제조하는 방법
CN108368017B (zh) 2015-12-15 2021-07-09 切弗朗菲利浦化学公司 由金属内酯和阴离子聚电解质形成α,β-不饱和羧酸和其盐
US10544080B2 (en) 2017-06-14 2020-01-28 Chevron Phillips Chemical Company Lp Continuous process for the conversion of olefins and carbon dioxide to acrylates via solution phase reactor
US10550061B2 (en) 2017-06-14 2020-02-04 Chevron Phillips Chemical Company Lp Sulfur oxoacid-substituted and phosphorus oxoacid-substituted polyaromatic resins and salts thereof as promoters in acrylate production from coupling reactions of olefins and carbon dioxide
CN111034336B (zh) * 2017-08-11 2024-04-09 交互数字专利控股公司 多个接入网络之间的业务引导和切换
CN107673383A (zh) * 2017-09-06 2018-02-09 新地能源工程技术有限公司 六铝酸盐、包含其的载体及其制备方法和高温甲烷化催化剂
CN109012144B (zh) * 2018-07-19 2021-03-30 中国科学院大学 六铝酸盐复合氧化物材料在h2s催化分解反应中的应用
US11174213B2 (en) 2018-10-12 2021-11-16 Chevron Phillips Chemical Company, Lp Effects of catalyst concentration and solid activator on nickel-mediated olefin/carbon dioxide coupling to acrylates
US20230271844A1 (en) * 2020-07-14 2023-08-31 Basf Corporation Strontium-catalyzed boehmite formation
WO2024003347A1 (en) 2022-07-01 2024-01-04 Basf Se Cobalt- and strontium-based catalyst for the conversion of hydrocarbons to synthesis gas
WO2024003354A1 (en) 2022-07-01 2024-01-04 Basf Se Cobalt-based catalyst for the conversion of hydrocarbons to synthesis gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050232857A1 (en) * 2004-04-16 2005-10-20 H2Gen Innovations, Inc. Catalyst for hydrogen generation through steam reforming of hydrocarbons
CN102836718A (zh) * 2011-06-20 2012-12-26 中国科学院过程工程研究所 一种介孔六铝酸盐负载镍基的甲烷化催化剂及其制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2721837B1 (fr) * 1994-07-01 1996-08-30 Inst Francais Du Petrole Catalyseur d'oxydation resistant a des temperatures elevees, son procede de preparation et procede de combustion utilisant un tel catalyseur
JP3676300B2 (ja) * 1999-10-01 2005-07-27 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド ヒドロタルサイト−誘導ニッケル触媒を使用する合成ガスの製造
GB0115850D0 (en) * 2001-06-28 2001-08-22 Isis Innovations Ltd Catalyst
US20050265920A1 (en) * 2002-11-11 2005-12-01 Conocophillips Company Supports and catalysts comprising rare earth aluminates, and their use in partial oxidation
AU2003295465A1 (en) * 2002-11-11 2004-06-03 Conocophillips Company Stabilized alumina supports, catalysts made therefrom, and their use in partial oxidation
JP4096096B2 (ja) * 2002-12-25 2008-06-04 独立行政法人産業技術総合研究所 ヘキサアルミネート多孔質セラミックス及びその製造方法
DE10322339A1 (de) * 2003-05-17 2004-12-02 Mtu Aero Engines Gmbh Einlaufbelag für Gasturbinen
DE102004025798A1 (de) * 2004-05-26 2005-12-22 Mtu Aero Engines Gmbh Wärmedämmschichtsystem
JP4976656B2 (ja) * 2005-03-07 2012-07-18 電気化学工業株式会社 触媒担体及びその製造方法
US8142756B1 (en) * 2006-03-28 2012-03-27 The United States Of America As Represented By The U.S. Department Of Energy Methods of reforming hydrocarbon fuels using hexaaluminate catalysts
US7736536B2 (en) * 2006-07-11 2010-06-15 Intematix Corporation Compositions comprising a mixture of a BAM phosphor and at least one other hexaaluminate
RU2366503C1 (ru) * 2008-04-14 2009-09-10 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Катализатор, способ его приготовления (варианты) и способ получения биотоплива
RU2388535C1 (ru) * 2009-04-15 2010-05-10 Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (статус государственного учреждения) Катализатор, способ его приготовления и способ окисления метана
US20120273728A1 (en) * 2009-08-21 2012-11-01 Universite De Sherbrooke Steam reforming of hydrocarbonaceous fuels over a ni-alumina spinel catalyst
US8916491B2 (en) 2011-11-08 2014-12-23 Basf Se Process for producing a methanation catalyst and a process for the methanation of synthesis gas
US9259712B2 (en) 2011-11-08 2016-02-16 Basf Se Process for producing a reforming catalyst and the reforming of methane
US9566571B2 (en) * 2012-02-10 2017-02-14 Basf Se Hexaaluminate-comprising catalyst for the reforming of hydrocarbons and a reforming process
US20140001407A1 (en) 2012-06-29 2014-01-02 Basf Se High-pressure process for the carbon dioxide reforming of hydrocarbons in the presence of iridium-comprising active compositions
CN104918882B (zh) 2012-12-21 2019-03-01 巴斯夫欧洲公司 平行制备氢气、一氧化碳和含碳产物的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050232857A1 (en) * 2004-04-16 2005-10-20 H2Gen Innovations, Inc. Catalyst for hydrogen generation through steam reforming of hydrocarbons
CN102836718A (zh) * 2011-06-20 2012-12-26 中国科学院过程工程研究所 一种介孔六铝酸盐负载镍基的甲烷化催化剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MARINA V. BUKHIYAROVA ET AL.: ""Steam reforming of methane over Ni-substituted Sr hexaaluminates"", 《CATALYSIS FOR SUSTAINABLE ENERGY》 *
TODD H. GARDNER ET AL.: ""Effect of nickel hexaaluminate mirror cation on structure-sensitive reactions during n-tetradecane partial oxidation"", 《APPLIED CATALYSIS A:GENERAL》 *
WENLING CHU ET AL.: ""The partial oxidation of methane to syngas over the nickel-modified hexaaluminate catalysts BaNiyAl12-yO19-δ"", 《APPLIED CATALYSIS A:GENERAL》 *
徐占林等: ""六铝酸盐SrNiAl11O19-δ催化二氧化碳重整甲烷制合成气反应研究"", <化学研究与应用> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107597199A (zh) * 2017-09-13 2018-01-19 武汉凯迪工程技术研究总院有限公司 循环流化床烃重整催化剂及其制备方法和应用
CN113329815A (zh) * 2019-01-31 2021-08-31 巴斯夫欧洲公司 包含包含氧、镧、铝和钴的混合氧化物的模制品

Also Published As

Publication number Publication date
DE112014001125A5 (de) 2015-11-19
WO2014135642A1 (de) 2014-09-12
JP2016510687A (ja) 2016-04-11
EP2964385A1 (de) 2016-01-13
KR20150129786A (ko) 2015-11-20
RU2015142397A (ru) 2017-04-17
US20160008791A1 (en) 2016-01-14
RU2662221C2 (ru) 2018-07-25
US9475037B2 (en) 2016-10-25
CN105050714B (zh) 2018-06-26

Similar Documents

Publication Publication Date Title
CN105050714A (zh) 用于在二氧化碳存在下重整烃的含六铝酸镍的催化剂
RU2680060C1 (ru) Способ риформинга смесей из углеводородов и диоксида углерода
US8916491B2 (en) Process for producing a methanation catalyst and a process for the methanation of synthesis gas
RU2491119C2 (ru) Катализатор конверсии водяного газа низкой температуры
CN112169799B (zh) 采用铁基催化剂进行二氧化碳加氢合成低碳烯烃的方法
US20170080407A1 (en) Yttrium-containing catalyst for high-temperature carbon dioxide hydration, combined high-temperature carbon dioxide hydration, and reforming and/or reforming, and a method for high-temperature carbon dioxide hydration, combined high-temperature carbon dioxide hydration and reforming and/or reforming
EP2366664A1 (en) Palladium-modified hydrotalcites and their use as catalyst precursors
JP2014532559A5 (zh)
US9114378B2 (en) Iron and cobalt based fischer-tropsch pre-catalysts and catalysts
CA2864063A1 (en) Hexaaluminate-comprising catalyst for the reforming of hydrocarbons and a reforming process
CN103191720B (zh) 一种镁铝尖晶石负载的耐硫甲烷化催化剂
JP2022519508A (ja) 酸素、ランタン、アルミニウム及びコバルトを含む混合酸化物を含む成形物
CN107970907A (zh) 一种纳米复合氧化物催化剂及其制备方法和应用
EP2492008A1 (en) Methanol synthesis catalyst
CA2854914A1 (en) Process for producing a methanation catalyst and a process for the methanation of synthesis gas
CN105749855B (zh) 液相脱氯剂及其制备方法和应用
RU2629667C1 (ru) СПОСОБ ПОЛУЧЕНИЯ МЕЗОПОРИСТЫХ КСЕРОГЕЛЕЙ И НАНОПОРОШКОВ В СИСТЕМЕ ZrO2(Y2O3)-Al2O3 ДЛЯ НОСИТЕЛЕЙ КАТАЛИЗАТОРОВ ПРИ КОНВЕРСИИ МЕТАНА В СИНТЕЗ-ГАЗ
RU2650495C1 (ru) Катализатор для паровой конверсии углеводородов
CN100441298C (zh) 氧化钛-氧化铝复合载体及其制备方法和应用
JP6824168B2 (ja) 触媒の調製方法
CN105435856B (zh) 低碳烷烃脱氢制低碳烯烃催化剂载体及其用途
TANG et al. Effect of modifiers on the performance of Cu-ZnO-based catalysts for low-temperature methanol synthesis
JP2003236382A (ja) 水性ガスシフト反応用触媒
KR101273575B1 (ko) 수산화탄산세륨을 이용한 나노 결정 크기의 산화세륨 제조방법
AU2012258290B2 (en) Nickel based catalysts for hydrocarbon reforming

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180626

Termination date: 20190306