CN104812901B - 赋予植物抗病性的组合物和系统及其使用方法 - Google Patents

赋予植物抗病性的组合物和系统及其使用方法 Download PDF

Info

Publication number
CN104812901B
CN104812901B CN201380058718.XA CN201380058718A CN104812901B CN 104812901 B CN104812901 B CN 104812901B CN 201380058718 A CN201380058718 A CN 201380058718A CN 104812901 B CN104812901 B CN 104812901B
Authority
CN
China
Prior art keywords
plant
sequence
protein
seq
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380058718.XA
Other languages
English (en)
Other versions
CN104812901A (zh
Inventor
R.英尼斯
S.H.金
D.祁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INDIANA RESEARCH AND TECHNOLOGY CORP
Original Assignee
INDIANA RESEARCH AND TECHNOLOGY CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INDIANA RESEARCH AND TECHNOLOGY CORP filed Critical INDIANA RESEARCH AND TECHNOLOGY CORP
Publication of CN104812901A publication Critical patent/CN104812901A/zh
Application granted granted Critical
Publication of CN104812901B publication Critical patent/CN104812901B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8281Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/21Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pseudomonadaceae (F)

Abstract

本申请涉及赋予对植物病原体的抗病性的组合物,系统和方法,所述植物病原体利用蛋白酶靶向植物细胞内的植物底物蛋白质。简要地,所述组合物,系统和方法基于被病原体‑特异性蛋白酶靶定的底物蛋白质,当被所述蛋白酶切割时所述底物蛋白质激活核苷酸结合位点‑富含亮氨酸重复(NB‑LRR)抗病性蛋白质。这些底物蛋白质被修饰,以使得内源蛋白酶识别序列被特异于不同的病原体蛋白酶的蛋白酶识别序列(即,异源蛋白酶识别序列)替代。所述经修饰的植物底物蛋白质可与其相应的NB‑LRR蛋白质一起,应答异源病原体‑特异性蛋白酶的切割,激活抗性。当被植物病原体‑特异性蛋白酶激活时,所述蛋白质对启动包括细胞程序性死亡在内的宿主防御性应答。

Description

赋予植物抗病性的组合物和系统及其使用方法
对相关申请的交叉引用
本申请要求2012年9月13日提交的美国临时专利申请序列号No.61/700,500的优先权,据此其通过提述完整并入。
有关联邦政府资助研究和发展的声明
本发明在美国国立卫生研究院授予的GM046451的国家支持下完成,美国政府对本发明享有一定的权力。
序列表的并入
本申请还提供包含文件名为“31377-21_IURTC13057_ST25.txt”(大小为17,844字节(由MicrosoftExplorer)测定)的纸件和计算机可读形式的序列表,其并入本申请作为参考。该序列表由SEQ ID NOs:1-28组成。
发明背景
总体而言,本申请涉及植物遗传学和植物分子生物学,更具体而言,涉及在植物细胞中基于对病原体-特异性的蛋白酶的识别,赋予对表达病原体-特异性的蛋白酶的植物病原体的抗性的组合物、系统和方法。
植物病是对农业生产率的严重限制,并且影响农业耕作的发展和历史。植物病害由多种植物病原体造成,包括细菌、真菌、昆虫、线虫和病毒。
可以通过农业措施控制植物病害的发生率,包括常规育种技术、轮作以及使用合成的农药。然而,常规育种技术耗时且由于植物病原体逐渐演变,为了保持抗病性需要持续的努力。参见Grover&Gowthaman(2003)Curr.Sci.84:330-340。类似地,农药增加农民的生产成本,还对生态环境造成有害的影响。有鉴于此,管理者禁止或限制使用一些危害性最大的农药。
现在,农业科学家能将植物遗传工程化,使其表达抗-病原体多肽,由此增强对植物病原体的抗性。例如,已经培育出对基于叶片和土壤传播的真菌病原体具有增强抗性的马铃薯和烟草植物。参见Lorito等(1998)Proc.Natl.Acad.Sci.USA 95:7860-7865。此外,还培养出了对真菌病原体具有增强的抗性的转基因大麦。参见Horvath等(2003)Proc.Natl.Acad.Sci.USA 100:364-369。而且,也培育出了产生Cry内毒素的转基因玉米和棉花。参见例如Aronson(2002)Cell Mol.Life Sci.59:417-425;和Schnepf等(1998)Microbiol.Mol.Biol.Rev.62:775-806。包括马铃薯在内的其他作物也经过遗传工程化包含类似的内毒素。参见Hussein等(2006)J.Chem.Ecol.32:1-8;Kalushkov&Nedved(2005)J.Appl.Entomol.129:401-406和Dangl等(2013)Science 341:746-751。
鉴于植物病原体对植物产量和品质的显著影响,还存在对保护植物不受植物病原体侵害的其他组合物、系统和方法的需求。
发明概述
本申请提供组合物、系统和方法,其通过修饰植物中用来检测病原体-特异性蛋白酶的蛋白质对(protein pairs)中至少一个成员,赋予对表达病原体-特异性的蛋白酶的植物病原体的抗病性。这些蛋白质对能使植物激活应答病原体-特异性蛋白酶的内源防御系统。简言之,所述的组合物、系统和方法基于蛋白质对,所述蛋白质对中的至少一个成员是核苷酸结合-富含亮氨酸重复(NB-LRR)抗病性蛋白质,蛋白质对中的其他成员是与其天然/相应NB-LRR蛋白质物理上相关联的、病原体-特异性蛋白酶的底物蛋白质,当所述底物蛋白质被病原体-特异性蛋白酶切割时激活上述的NB-LRR蛋白质。用针对所关注的病原体-特异性蛋白酶的识别序列(即,异源蛋白酶识别序列)替换底物蛋白质中的内源蛋白酶识别序列,可将此种蛋白质对对给定的病原体-特异性蛋白酶的特异性工程化。
所述的组合物包含重组核酸分子,所述重组核酸分子具有编码病原体-特异性蛋白酶的经修饰底物蛋白质的核苷酸序列,其中所述经修饰的底物蛋白质具有异源蛋白酶识别序列。所述异源蛋白酶识别序列可以在,例如所述经修饰的底物蛋白质的暴露环(exposed loop)中。任选地,所述重组核酸分子可以具有编码NB-LRR蛋白质的核苷酸序列,由此该核酸分子编码所述的蛋白质对。例如,在一个具体实施方案中,具有编码NB-LRR蛋白质的核苷酸序列的重组核酸分子与具有编码病原体-特异性蛋白酶的经修饰底物蛋白质的核苷酸序列的重组核酸分子共转化,由此经修饰的底物蛋白质和NB-LRR蛋白质共表达。NB-LRR蛋白质可与病原体-特异性的蛋白酶的经修饰底物蛋白质相关联并被其激活。
所述组合物还可以包括本申请描述的、经分离的病原体-特异性蛋白酶的经修饰底物蛋白质,及其活性片段和变体。
所述组合物还包括核酸构建体,其具有与在植物细胞、植物部分或植物中驱动表达的启动子可操作连接的、编码本申请描述的病原体-特异性蛋白酶的经修饰底物蛋白质的核苷酸序列,如表达盒和载体。此种核酸构建体可用于向天然表达相应NB-LRR蛋白质的植物细胞、植物部分或植物提供经修饰的底物蛋白质。所述经修饰的底物蛋白质可与所述NB-LRR蛋白质相关联并将其激活。
任选地,所述构建体,包括表达盒和载体,可包括与在植物细胞、植物部分或植物中驱动表达的启动子可操作连接的、编码NB-LRR蛋白质的核苷酸序列。具有编码本申请描述的病原体-特异性蛋白酶的经修饰底物蛋白质的核苷酸序列的核酸构建体,和具有编码NB-LRR蛋白质的核苷酸序列的核酸构建体可在植物细胞、植物部分或植物中共表达。NB-LRR蛋白质可与病原体-特异性的蛋白酶的经修饰底物蛋白质相关联并被其激活。此种核酸构建体可用于向不天然表达所述蛋白质对两种成员的植物细胞、植物部分或植物提供所述的蛋白质对。
所述组合物还包括经转化的植物细胞、植物部分和植物,其具有与在植物细胞、植物部分或植物中驱动表达的启动子可操作连接的、编码本申请描述的至少一种病原体-特异性蛋白酶的经修饰底物蛋白质的核苷酸序列。任选地,所述植物细胞、植物部分和植物经转化以包括与在植物细胞、植物部分或植物中驱动表达的启动子可操作连接的、编码NB-LRR蛋白质的核苷酸序列。NB-LRR蛋白质可与病原体-特异性的蛋白酶的经修饰底物蛋白质相关联并被其激活。
所述的系统包括核酸构建体,所述核酸构建体具有在植物细胞、植物部分或植物中驱动表达的、与编码本申请描述的病原体-特异性蛋白酶的经修饰底物蛋白质的核苷酸序列可操作连接的第一启动子的核苷酸序列,和在植物细胞、植物部分或植物中驱动表达的、与编码NB-LRR蛋白质的核苷酸序列可操作连接的第二启动子的核苷酸序列。NB-LRR蛋白质可与病原体-特异性的蛋白酶的经修饰底物蛋白质相关联并被其激活。此种系统可用于向不天然表达所述蛋白质对两种成员的植物细胞、植物部分或植物提供所述的蛋白质对。
所述系统还包括具有在植物细胞、植物部分或植物中驱动表达的、与编码本申请描述的病原体-特异性蛋白酶的经修饰底物蛋白质的核苷酸序列可操作连接的启动子的核苷酸序列的第一核酸构建体,和具有在植物细胞、植物部分或植物中驱动表达的、与编码NB-LRR蛋白质的核苷酸序列可操作连接的启动子的核苷酸序列的第二核酸构建体。所述系统还可包括另外的核酸构建体,其中每一构建体具有编码不同的(distinct)经修饰的底物蛋白质的核苷酸序列,每一构建体具有针对单独的(separate)病原体-特异性的蛋白酶的异源识别序列。尽管各经修饰的底物蛋白质具有彼此不同的异源识别序列,每一经修饰的底物蛋白质均与NB-LRR蛋白质相关并可使其激活。可供选择地,所述第一核酸构建体可编码一种以上经修饰的底物蛋白质,其中,各经修饰的底物蛋白质具有彼此不同的异源识别序列,且其中,每一经修饰的底物蛋白质均与NB-LRR蛋白质相关并可使其激活。可供选择地,所述第二核酸构建体可编码一种以上经修饰的底物蛋白质,其中,各经修饰的底物蛋白质具有彼此不同的异源识别序列,且其中,每一经修饰的底物蛋白质均与NB-LRR蛋白质相关并可使其激活。所述系统可用于向非天然地表达所述蛋白对的植物细胞,植物部分或植物提供该蛋白质对,或可用于向植物细胞,植物部分或植物提供一种以上经修饰的底物蛋白质。
举例而言,所述病原体-特异性蛋白酶的底物蛋白质可以是来自拟南芥(Arabidopsis thaliana)的PBS1或RIN4同系物,所述NB-LRR蛋白质可以是来自拟南芥的RPS5或RPS2,其中,PBS1或RIN4同系物经修饰以包含异源蛋白酶识别序列。本领域技术人员可以理解,“PBS1”指avrPphB敏感(susceptible)1。本领域技术人员可以理解,“RIN4”指抗丁香假单胞菌斑点致病变种(Pseudomonas syringae pv.maculicola 1)(“RPM1”)相互作用蛋白质4。本领域技术人员可以理解,“avrRpt2”指来自丁香假单胞菌(Pseudomonassyringae)的细菌无毒性基因,其编码在植物-丁香假单胞菌相互作用中起作用的“AvrRpt2”多肽(参见Innes等(1993)J.Bacteriol 175:4859-4869)。本领域技术人员可以理解,“avrPphB”指来自丁香假单胞菌的细菌无毒性基因,其编码在植物-丁香假单胞菌相互作用中起作用的“AvrPphB”多肽。
如上所述,本申请的方法包括向植物细胞,植物部分或植物引入至少一种本申请所描述的核酸分子,构建体,表达盒或载体,以赋予其对表达病原体-特异性蛋白酶的植物病原体的抗病性。
因此,所述的组合物、系统和方法通过向植物细胞,植物部分或植物转移核苷酸序列赋予其对植物病原体的抗病性,所述核苷酸序列编码至少一种病原体-特异性蛋白酶的经修饰底物蛋白质,和任选地编码NB-LRR蛋白质(当所述NB-LRR蛋白质对所述植物细胞,植物部分或植物为非天然存在时)。所述的对经工程化以特异于植物病原体-特异性蛋白酶,所述的工程化通过使经修饰的底物蛋白质包含植物病原体-特异性蛋白酶的异源蛋白酶识别序列。当被植物病原体-特异性蛋白酶激活后,所述的对启动包括细胞程序性死亡在内的宿主防御性应答。
以下的描述将有助于更好地理解本申请的以上这些以及其他的特征,目的和有益效果。在所述描述中参照了附图,其简述如下。
附图简述
结合以下详细说明,将更容易明白本申请进一步的特征,目的和有益效果。所述的详细描述参照以下附图,其中:
图1是一张照片,其显示当与含AvrRpt2切割位点的经修饰的PBS1(植物病原体-特异性蛋白酶的底物蛋白质)共表达时,RPS5(NB-LRR抗病性蛋白质)可被AvrRpt2(植物病原体-特异性蛋白酶)激活。通过注射载有所示核酸分子的根瘤土壤杆菌(Agrobacteriumtumefaciens),所示核酸分子在粘毛烟草(Nicotiana glutinosa)叶中瞬时表达。各核酸分子在地塞米松-诱导型启动子的控制之下,在施用地塞米松24小时后,对叶拍照。可见的叶萎陷(leaf collapse)显示细胞程序性死亡被激活。
图2是图表,说明从用与图1所使用的相同菌株接种的粘毛烟草(N.glutinosa)叶圆盘(leaf disks)的电解液泄漏。电解液泄漏增加表示由于细胞死亡导致质膜丧失完整性。PBS1RCS2表示其中的AvrPphB(植物病原体-特异性蛋白酶)切割位点(GDKSHVS;SEQ IDNO:1)被AvrRpt2切割位点(VPKFGDW;SEQ ID NO:2)替代的PBS1。
图3是表达PBS1RCS2(即,其中的AvrPphB切割位点被AvrRpt2切割位点替代的PBS1)的转基因拟南芥的被感染叶的照片。示出的是来自右侧接种了丁香假单胞菌菌株DC3000(AvrRpt2)的五个不同的初级转化子的叶。照片是在接种后24小时拍摄的,即未转化的拟南芥叶不显示细胞死亡的时间点。用于该试验的拟南芥在RIN4和RPS2中包含突变,其避免在不存在经修饰的PBS1的情况下由AvrRpt2激活细胞死亡。
图4是PBS1RCS2构建体的示意图,说明实施例5中所讨论的、RIN4切割位点2(RCS2)对PBS1激活环(activation loop)中的AvrPphB切割位点的替换。
图5是诱导后24小时拍摄的照片,示出PBS1RCS2与AvrRpt2和PRS5的共表达诱导了RPS5-依赖的细胞死亡应答,而如实施例5中所讨论的,在不存在AvrRpt2或PBS1RCS2时没有检测到细胞死亡。
图6是图表说明如实施例5中所讨论的,PBS1RCS2与AvrRpt2与经AvrPphB切割的野生型PBS1诱导了等量的电解液泄漏,而PBS1RCS2与C122A仅微弱地激活RPS5。数据代表平均值与标准偏差(n=4)。
图7是免疫印迹,其确认如在实施例5中所讨论的,在诱导后6小时AvrRpt2切割了PBS1RCS2,而C122A或AvrPphB不然。
图8是照片,其显示如实施例5中所讨论的,应答接种丁香假单胞菌在转基因系2和5中HR的诱导,而系1和3不然。“Col”表示野生型拟南芥(Arabidopsis)亲本。
图9是图表,其显示如实施例5中所讨论的,在拟南芥中PBS1RCS2赋予对DC3000(avrRpt2)细菌生长的抗性。数据代表平均cfu cm-2(n=4),误差棒表示标准偏差。
图10包含免疫印迹,其显示如实施例5中所讨论的,与PBS1RCS2表达相关的对DC3000(avrRpt2)细菌生长的抗性。
图11是免疫印迹,显示如实施例5中所讨论的,通过由DC3000递送的AvrRpt2在转基因拟南芥中表达的PBS1RCS2的切割。星号表示C-末端PBS1RCS2切割产物的预期大小。
图12是照片,显示DC3000(avrPphB)注射后21小时PBS1RCS2转基因拟南芥也显示HR,如实施例5中所讨论的,证明在这些转基因系中保留了RPS5的天然识别特异性。
图13描述的是PBS1TCS构建体,如实施例5中所讨论的,用TEV切割位点替换AvrPphB切割位点侧翼的7个氨基酸。
图14包含免疫印迹,显示如实施例5中所讨论的,由抗-HA(上部的图)检测出的PBS1TCS–HA切割。
图15是本氏烟草(N.benthamiana)的照片,如实施例5中所讨论的、共表达PBS1TCS和TEV蛋白酶激活RPS5。每片叶子的左侧渗入(infiltrated)了递送PBS1TCS,TEV蛋白酶和RPS5的土壤杆菌菌株。
图16是说明PBS1TCS连同TEV蛋白酶诱导的RPS5-介导的细胞死亡,所述细胞死亡由电解液泄漏表示。如实施例5中所讨论的、所述的电解液泄漏水平与由AvrPphB切割的野生型PBS1所诱导的电解液泄漏水平类似。数据代表平均值与标准偏差(n=4)。
图17是照片,如实施例6所讨论的,应用大豆显示AvrPphB识别。
本发明可以有多种修饰和替代形式,附图中以举例的方式给出了示例性的具体实施方案,以下进行具体描述。应当理解,对于示例性具体实施方式的描述并非旨在将本发明限定到所公开的特定形式,相反地,其旨在涵盖落入以上的具体实施方案以及所附的权利要求所定义的、本发明范围内的全部修饰的、等价的以及替代形式。因此,应参照上述的具体实施方案以及后附的权利要求来解释本发明的范围。
发明详述
以下参照附图对本发明的组合物、系统以及方法进行更为完整的描述,所述的附图中显示出了本发明的一些但非全部的具体实施方案。事实上,本发明可以体现为许多中不同的形式,不应被局限于所列出的具体实施方案,然而,本申请提供了这些具体实施方案以满足法律的要求。
类似地,得意于体现在上述描述和相关附图中的教导,本领域技术人员可以想到本发明适用的、本申请所描述的组合物、系统和方法的多种修饰和其他具体实施方案。因此,可以理解本申请不限于所公开的特定具体实施方案,还有其他的具体实施方案也落入后附的权利要求的范围之内。尽管本申请中应用了特定的术语,它们仅用于一般性的和描述性的意义,不是用于限定的目的。
除非另有定义,本申请所使用的技术和科学术语具有本发明适用领域技术人员所通常理解的相同含义。本申请中描述了优选的方法和材料,但是,也可以使用与本申请所描述的材料和方法类似或等价的任意方法和材料来实施或检测本发明。
此外,涉及(英文原文中的)不定冠词“一种”(“a”或“an”)的情况时,其并不排斥出现“一种以上”的可能性,除非上下文中明确要求是一种且仅为一种。由此,不定冠词“一种”通常包括“至少一种”。
许多植物病原体应用蛋白酶作为毒力因子,包括细菌、真菌和病毒。本申请中所用的,"植物病原体"或"病原体"指干扰或有害于植物发育和/或生长的生物。植物病原体的示例包括但不限于,细菌(例如黄单胞菌(Xanthomonas spp.)和假单胞菌(Pseudomonasspp.)),真菌(例如子囊或担子菌门(phylum Ascomycetes or Basidiomycetes)的成员或包括卵菌纲(Oomycetes)如腐霉菌(Pythium spp)和疫霉菌(Phytophthora spp.)在内的真菌样生物),昆虫,线虫(例如土传线虫,包括华支睾吸虫(Clonorchis spp.),片吸虫(Fasciola spp.),异皮线虫(Heterodera spp.),Globodera spp.,后睾吸虫(Opisthorchis spp.)和并殖吸虫(Paragonimus spp.)),原生动物(例如植鞭毛虫(Phytomonas spp.)),和病毒(例如豇豆花叶病毒(Comovirus spp.),南瓜花叶病毒(Cucumovirus spp.),Cytorhabdovirus spp.,黄矮病毒(Luteovirus spp.),线虫传球体病毒(Nepovirus spp.),马铃薯Y病毒(potYvirus spp.),烟草花叶病毒(Tobamovirusspp.),番茄丛矮病毒(Tombusvirus spp.)和Tospovirus spp.)。
然而,植物包含对大多数植物病原体的先天抗病性。植物育种者和病理学家已鉴定出了抗植物病原体的天然变异,并可育成许多植物。这些天然抗病性基因提供对植物病原体的高水平抗性(和免疫力),代表植物保护的经济且环保的形式。
植物中对植物病原体的先天抗病性通常由植物中的显性和半显性的抗性(R)基因以及病原体中的显性的无毒性(avr)控制。最大的R基因组编码以存在NB-LRR为特征的蛋白质。这种先天抗病性形式通常启动受感染植物细胞/组织中的细胞程序性死亡。
例如,利用R基因赋予对表达avr基因,avrPphB的丁香假单胞菌菌株的抗性。AvrPphB的特异性识别要求至少两种基因,RPS5和PBS1。RPS5编码NB-LRR抗病性蛋白质,PBS1编码丝氨酸/苏氨酸蛋白激酶。
本申请所描述的工作首次显示PBS1激活环(PBS1蛋白质表面一种暴露的环)内的内源丁香假单胞菌AvrPphB蛋白酶识别序列可以被异源蛋白酶识别序列替换。具体而言,所述工作表明,PBS1的内源AvrPphB切割位点(GDKSHVS;SEQ ID NO:1),可以被来自拟南芥RPM1相互作用蛋白质4(RIN4)的异源AvrRpt2切割位点(VPKFGDW;SEQ ID NO:2)替换,由此产生经修饰的PBS1(SEQ ID NO:6),其可与RPS5一同赋予对表达AvrRpt2而非AvrPphB的病原体的抗性。所述工作还显示PBS1的内源AvrPphB切割位点(GDKSHVS;SEQ ID NO:1)可以被TEV多蛋白(polyprotein)的异源TEV蛋白酶切割位点(VPKFGDW;SEQ ID NO:4)替换,由此产生另一种经修饰的PBS1(SEQ ID NO:8),其可与RPS5一同赋予对表达TEV蛋白酶而非AvrPphB的病原体的抗性。所述工作还进一步考虑到RIN4的内源丁香假单胞菌AvrRpt2切割位点(VPKFGDW;SEQ ID NO:2)可以被其他病原体-特异性蛋白酶的切割位点替换,导致在此种病原体-特异性蛋白酶存在下,其相应的NB-LRR蛋白质,RPS2激活。所述工作也考虑到大豆花叶病毒(Soybean mosaic virus)切割识别位点(SMV NIa蛋白酶;EPVSTQG;SEQ ID NO:27)可被AvrPphB切割位点替换,由此产生又一种经修饰的PBS1。所述工作还考虑到豆荚斑驳病毒(Bean Pod Mottle Virus)切割识别位点(BPMV NIa蛋白酶;PVVQAQS;SEQ ID NO:28)可被AvrPphB切割位点替换,由此产生另一种经修饰的PBS1。
由此,本申请提供利用具有异源蛋白酶识别序列的病原体-特异性蛋白酶的经修饰的底物与其相应的NB-LRR蛋白质一同,赋予对在植物细胞,植物部分或植物中表达特定蛋白酶的植物病原体另外的抗病性的组合物、系统和方法。
组合物
重组核酸和氨基酸分子
本申请的组合物包括病原体-特异性蛋白酶的经修饰底物蛋白质的重组的核酸和氨基酸序列,其中所述底物中的内源蛋白酶识别序列被异源蛋白酶识别序列替换。
一方面,本申请涉及包含下述核苷酸序列的重组的核酸分子,所述核苷酸序列编码至少一种植物病原体-特异性蛋白酶的底物蛋白质,其具有所述底物蛋白质中的异源病原体-特异性蛋白酶识别序列。所述的底物蛋白质可以是,例如AvrPphB敏感1(PBS1)和抗丁香假单胞菌斑点致病变种1(RPM1)相互作用蛋白质4(RIN4)。具体而言,合适的底物蛋白质可以是,例如拟南芥AvrPphB敏感1(PBS1)和拟南芥抗丁香假单胞菌斑点致病变种1(RPM1)相互作用蛋白质4(RIN4)。
本申请中所用的"核酸"序列指DNA或RNA序列。该术语涵盖包含任意DNA和RNA的已知碱基类似物的序列,所述碱基类似物包括但不限于4-乙酰胞密啶,8-羟基-N6-甲基腺苷,氮丙啶基胞嘧啶,假异胞嘧啶(pseudoisocytosine),5-(羧基羟甲基)尿嘧啶,5-氟尿嘧啶,5-溴尿嘧啶,5-羧基甲基氨基甲基-2-硫尿嘧啶,5-羧基甲基氨基甲基尿嘧啶,二氢尿嘧啶,次黄嘌呤核苷,N6-异戊烯腺嘌呤,1-甲基腺嘌呤,1-甲基假尿嘧啶,1-甲基鸟嘌呤,1-甲基肌苷,2,2-二甲基鸟嘌呤,2-甲基腺嘌呤,2-甲基鸟嘌呤,3-甲胞嘧啶,5-甲基胞嘧啶,N6-甲基腺嘌呤,7-甲基鸟嘌呤5-甲基氨基甲基尿嘧啶,5-甲氧氨基甲基-2-硫尿嘧啶,β-D-甘露糖基Q核苷(beta-D-mannosylqueosine),5'-甲氧基羰基甲基尿嘧啶,5-甲氧基尿嘧啶,2-甲硫基-N6-异戊烯腺嘌呤,尿嘧啶-5-氧乙酸甲基酯,尿嘧啶-5氧乙酸,oxybutoxosine,假尿嘧啶,Q核苷,2-α-硫胞嘧啶,5-甲基-2-硫尿嘧啶,2-硫尿嘧啶,4-硫尿嘧啶,5-甲基尿嘧啶,-尿嘧啶-5-氧乙酸甲基酯,尿嘧啶-5-氧乙酸,假尿嘧啶,Q核苷,2-α-硫胞嘧啶和2,6-二氨基嘌呤。
本申请所用的“重组的”当用于核酸分子时,指已被创建或通过诸如遗传工程之类的有意人为干预修饰的分子。例如重组的核酸分子是经修饰以包含人工核苷酸序列或包含一些不存在于其天然(非-重组的)形式中的其他核苷酸序列的核苷酸序列。
此外,重组的核酸分子具有与任意天然存在的核酸分子不同一的,或天然地存在于跨越一个以上基因的基因组核酸分子的任意片段不同一的结构。重组的核酸分子还包括但不限于,(a)核酸分子,所述核酸分子具有天然地存在于基因组或染色体外核酸分子的、但其侧翼不是相应天然位置序列侧翼的编码序列的序列;(b)核酸分子,其被掺入到构建体,表达盒或载体或宿主细胞基因组中,以使得所的多核苷酸与任意天然存在的载体或基因组DNA不同一;(c)单独的核酸分子,诸如cDNA,基因组片段,由多核苷酸链式反应(PCR)产生的片段或限制性片段;和(d)具有作为作为杂合基因(即编码融合蛋白的基因)一部分的核苷酸序列的重组核酸分子。由此,重组的核酸分子可以是经(化学或酶学)修饰的或非修饰的DNA或RNA,无论是完全的、或部分单链的、或双链的、甚或三链的。
可以与本申请所描述的任意连续的核苷酸序列在高度严格或中度严格的条件下杂交的核酸分子(或其互补物),也包含在本申请的范围内。
本申请所用的“严格条件”指在该条件下一种核酸分子可以以比与其他序列可检测的更高的程度与其靶杂交(例如至少高于背景2倍)。严格条件可以是序列依赖性的,在不同的环境下有所不同。通过控制杂交和/或洗涤条件的严格性,可以鉴定出与核酸分子100%互补的靶序列(即同源探测)。可供选择地,可调整严格条件以允许序列中的一些错配,从而检测较低程度的相似性(即异源探测)。
通常,严格条件可以是盐浓度小于约1.5M Na+,通常约0.01M到1.0M Na+(或其他盐),约pH 7.0到8.3,对于短分子(例如10到50个核苷酸)温度至少约30℃,对于长分子(例如大于50个核苷酸)至少约60℃。也可以通过添加甲酰胺之类的去稳定剂实现严格条件。
本申请中所用的"约"指统计学意义范围内的值,如所称的浓度、长度、分子量、pH、序列同一性、时间范围、温度或体积。这种值或范围可以在一个数量级的范围内,通常在给定数值或范围的20%以内,更通常在10%以内,更加通常在5%以内。“约”所包含的可允许的变化依赖于研究中的具体系统,本领域技术人员可以容易地理解。
示例性的低严格条件包括于约37℃下,在约30%到约35%甲酰胺,1M NaCl,1%SDS(十二烷基硫酸钠)的缓冲溶液中杂交,在约50℃到约55℃下,在约1X至2X SSC(20X SSC=3.0M NaCl/0.3M柠檬酸钠)中清洗。清洗缓冲液任选地可包含约0.1%到约1%SDS。
示例性的中等严格条件于约37℃下,在约40%到约45%甲酰胺,1.0M NaCl,1%SDS的缓冲溶液中杂交,在约55℃到约60℃下,在约0.5X至1X SSC中清洗。清洗缓冲液任选地可包含约0.1%到约1%SDS。
示例性的高等严格条件于约37℃下,在约50%甲酰胺,1M NaCl,1%SDS的缓冲溶液中杂交,在约60℃到约65℃下,在约0.1X SSC中清洗。清洗缓冲液任选地可包含约0.1%到约1%SDS。
杂交过程一般可以是小于约24小时,常为约4到约12小时。清洗过程可以是至少足以达到平衡的时间长度。有关此种条件的其他教导是在本领域容易获得的,例如在Molecular Cloning:A Laboratory Manual,3rd ed.(Sambrook&Russell eds.,ColdSpring Harbor Press 2001);以及Current Protocols in Molecular Biology(Ausubel等eds.,John Wiley&Sons 1995)中。
异源病原体-特异性蛋白酶识别序列可以是从约5个氨基酸到约15个氨基酸。植物病原体-特异性蛋白酶,植物病原体起源,蛋白酶底物蛋白质以及内源蛋白酶识别序列的列表示于表1,其可用作异源蛋白酶识别序列资源。
表1:植物病原体-特异性蛋白酶,植物病原体起源,蛋白酶底物蛋白质和内源蛋白酶识别序列.
另外的无毒性和抗病性对可见于,如Jones等(1994)Science 266:789-793;Martin等(1993)Science 262:1432-1436;和Mindrinos等(1994)Cell78:1089-1099)。
以下示例涉及拟南芥的RPS5底物蛋白质和PBS1NB-LRR蛋白质对。RPS5的核酸序列和蛋白质序列是已知的并已被表征,参见例如,Accession Nos.NM_001198041.1,NM_101094.2和O64973.2。还请参见Warren等(1998)Plant cell 10:1439-1452;以及DeYoung等(2012)Cell.Microbiol.14:1071-1084。同样地,PBS1的核酸序列和蛋白质序列是已知的并已被表征,参见例如,Accession Nos.NM_121319.4,NM_115403.3,AF314176.1,NP_196820和AAG38109.1。还请参见Swiderski&Innes(2001)PlantJ.26:101-112;以及DeYoung等(2012),如前,以及US Patent No.5,648,599。与所述对天然相关的病原体-特异性蛋白酶是AvrPphB(Accession No.CAI36057.1)。
其他示例涉及拟南芥的RIN4底物蛋白质和RPS2NB-LRR蛋白质对。RIN4和RPS2的核酸序列和蛋白质序列是已知的并已被表征。参见例如,AccessionNos.Q8GYN5.1和AAA21874.1。与该对天然相关的病原体-特异性蛋白酶是AvrRpt2(Accession No.Q6LAD6.1)。
由此,编码病原体-特异性蛋白酶的经修饰底物蛋白质的重组核酸分子的示例包括编码PBS1的核苷酸序列,其中如在SEQ ID NO:5中所示,其内源AvrPphB切割位点(SEQ IDNO:1)被异源AvrRpt2切割位点(SEQ ID NO:2)替换。另一编码病原体-特异性蛋白酶的经修饰底物蛋白质的重组核酸分子的示例包括编码PBS1的核苷酸序列,其中如在SEQ ID NO:7中所示,其内源AvrPphB切割位点(SEQ ID NO:1)被异源TEV蛋白酶切割位点(SEQ ID NO:4)替换。再一编码病原体-特异性蛋白酶的经修饰底物蛋白质的重组核酸分子的示例包括编码PBS1的核苷酸序列,其中其内源AvrPphB切割位点(SEQ ID NO:1)被异源HopN1切割位点(SEQ ID NO:3)替换。又一编码病原体-特异性蛋白酶的经修饰底物蛋白质的重组核酸分子的示例包括编码RIN4的核苷酸序列,其中其内源AvrRpt2切割位点(SEQ ID NO:2)被异源AvrPphB切割位点(SEQ ID NO:1)替换。另一编码病原体-特异性蛋白酶的经修饰底物蛋白质的重组核酸分子的示例包括编码RIN4的核苷酸序列,其中其内源AvrRpt2切割位点(SEQID NO:2)被异源TEV蛋白酶切割位点(SEQ ID NO:4)替换。再一编码病原体-特异性蛋白酶的经修饰底物蛋白质的重组核酸分子的示例包括编码RIN4的核苷酸序列,其中其内源AvrRpt2切割位点(SEQ ID NO:2)被异源HopN1切割位点(SEQ ID NO:3)替换。又一编码病原体-特异性蛋白酶的经修饰底物蛋白质的重组核酸分子的示例包括编码PBS1的核苷酸序列,其中其内源AvrPphB切割位点(SEQ ID NO:1)被异源SMV切割位点(SEQ ID NO:27)替换。另一编码病原体-特异性蛋白酶的经修饰底物蛋白质的重组核酸分子的示例包括编码PBS1的核苷酸序列,其中其内源AvrPphB切割位点(SEQ ID NO:1)被异源BPMV切割位点(SEQ IDNO:28)替换。再一编码病原体-特异性蛋白酶的经修饰底物蛋白质的重组核酸分子的示例包括编码RIN4的核苷酸序列,其中其内源AvrRpt2切割位点(SEQ ID NO:2)被异源SMV切割位点(SEQ ID NO:27)替换。又一编码病原体-特异性蛋白酶的经修饰底物蛋白质的重组核酸分子的示例包括编码RIN4的核苷酸序列,其中其内源AvrRpt2切割位点(SEQ ID NO:2)被异源BPMV切割位点(SEQ ID NO:28)替换。所述内源蛋白酶切割序列(异源蛋白酶识别序列的优选位置)可以定位于底物蛋白质的暴露环中,例如在所述底物蛋白质特别适合的具体实施方案中,当底物蛋白质是PBS1时,内源蛋白酶切割序列可定位于,例如第约240位到第约250位氨基酸。在另一特别适合的具体实施方案中,当底物蛋白质是RIN4时,内源蛋白酶切割序列可定位于,例如第约142位到第约165位氨基酸。
合成核酸分子的方法是本领域已知的,例如克隆和适当序列的消化,以及直接的化学合成(例如喷墨沉淀(ink-jet deposition)和电化学合成)。克隆核酸分子的方法描述于,例如Ausubel等(1995),如前;Copeland等(2001)Nat.Rev.Genet.2:769-779;PCRCloning Protocols,2nd ed.(Chen&Janes eds.,Humana Press 2002);和Sambrook&Russell(2001),如前。直接化学合成核酸分子的方法包括但不限于,Reese(1978)Tetrahedron 34:3143-3179和Narang等(1979)Methods Enzymol.68:90-98的磷酸三酯法;Brown等(1979)Methods Enzymol.68:109-151的磷酸二酯法;Beaucage等(1981)Tetrahedron Lett.22:1859-1862的二乙基亚磷酰胺(diethylphosphoramidate)法;和Fodor等(1991)Science251:767-773;Pease等(1994)Proc.Natl.Acad.Sci.USA 91:5022-5026;和Singh-Gasson等(1999)Nature Biotechnol.17:974-978;以及US Patent No.4,485,066的固体支持物法。还请参见Peattie(1979)Proc.Natl.Acad.Sci.USA 76:1760-1764;以及EP Patent No.1721908;Int'l Patent Application Publication Nos.WO2004/022770和WO 2005/082923;US Patent Application Publication No.2009/0062521;以及US Patent Nos.6,521,427;6,818,395和7,521,178。
除了编码经修饰的底物蛋白质的核酸分子的全长核苷酸序列,所述的核酸分子也可以是能形式底物功能的片段或变体。对于核苷酸序列,“片段”指核酸分子的核苷酸序列的部分,例如编码经修饰的底物蛋白质的核苷酸序列的部分。核苷酸序列的片段可以保留参照核酸分子的生物活性。例如,可以使用小于所公开的SEQ ID NO:5或7的完整序列的序列,其编码与病原体-特异性蛋白酶相互作用、并保留与相应的NB-LRR蛋白质相互作用的能力的经修饰的底物蛋白质。类似地,可以使用编码经修饰的底物蛋白质的核苷酸序列的片段,条件是其编码与病原体-特异性蛋白酶相互作用、并保留与相应的NB-LRR蛋白质相互作用的能力的经修饰的底物蛋白质。可供选择地,可用作杂交探针的核苷酸序列的片段通常不需要保留生物活性。因而,所述核酸分子的片段可以是至少约10,15,20,25,50,75,100,125,150,175,200,250,300,350,400,450,500,550,600,650,700,750,800,850或900个核苷酸,或高达存在于全长核酸分子中的核苷酸的数目。
因此,核酸分子的片段可以包括功能/生物活性部分,或者其可包括能用作杂交探针或PCR引物的片段。核酸分子的生物活性部分可通过下述方式制备,分离所述核酸分子的一部分,可操作地将片段连接于启动子,表达编码所述蛋白质的核苷酸序列,评估所述蛋白质的量或活性。评估蛋白质表达的方法是本领域已知的。参见例如,Chan等(1994)J.Biol.Chem.269:17635-17641;Freyssinet&Thomas(1998)Pure&Appl.Chem.70:61-66;和Kirby等(2007)Adv.Clin.Chem.44:247-292;以及US Patent Application PublicationNos.2009/0183286和2009/0217424;和US Patent Nos.7,294,711和7,408,055。类似地,评估蛋白质表达的试剂盒可通过商业途径获得,例如购自Applied Biosystems,Inc.(FosterCity,CA),Caliper Life Sciences(Hopkinton,MA),Promega(Madison,WI),和SABiosciences(Frederick,MD)。也可以利用本领域已知的其他方法分析蛋白质表达,包括但不限于Western印迹分析,酶联免疫吸附等等。参见之前的例如Sambrook&Russel(2001)。另外,分析病原体-特异性蛋白酶底物蛋白质活性的方法是本领域已知的,参见之前的DeYoung等(2012)。
对于核苷酸序列,"变体"指与本申请所描述的重组核酸分子的核苷酸序列基本上类似的核苷酸序列,例如与经修饰的底物蛋白质基本上类似的核苷酸序列。就核苷酸序列而言,变体包含与本申请所描述的重组核酸分子的核苷酸序列相比,在5'和/或3'端具有缺失(即,截短),在内部位点具有一个或以上核苷酸缺失和/或添加的核苷酸序列;和/或与本申请所描述的重组核酸分子的核苷酸序列相比,在一个或以上的位点具有一个或以上氨基酸取代的核苷酸序列;本领域技术人员理解变体的构建是以保持开放阅读框的方式进行的。
保守变体包括那些由于遗传密码的简并(参见表2)形成的具有本申请所描述的经修饰的底物蛋白质的功能活性的核苷酸序列。天然出现的等位变体可利用已知的分子生物学技术,如聚合酶链式反应(PCR)和杂交技术鉴定。变体核苷酸还可以包括合成的衍生序列,如那些通过定点诱变产生的序列,其仍可提供功能活性的经修饰的底物蛋白质。通常,通过本申请其他部分所描述的序列比对程序和参数确定,本申请所描述的重组核酸分子的核苷酸序列的变体具有与所述重组核酸分子至少约70%,75%,80%,85%,90%,91%,92%,93%,94%,95%,96%,97%,98%,99%或以上的同一性。
在制备本申请所描述的重组核酸分子和其变体时,本领域技术人员可以进一步参考下述表2所示的遗传密码冗余性信息。
表2:遗传密码的冗余
残基 编码所述残基的三联体密码
Ala(A) GCU,GCC,GCA,GCG
Arg(R) CGU,CGC,CGA,CGG,AGA,AGG
Asn(N) AAU,AAC
Asp(D) GAU,GAC
Cys(C) UGU,UGC
Gln(Q) CAA,CAG
Glu(E) GAA,GAG
Gly(G) GGU,GGC,GGA,GGG
His(H) CAU,CAC
Ile(I) AUU,AUC,AUA
Leu(L) UUA,UUG,CUU,CUC,CUA,CUG
Lys(K) AAA,AAG
Met(M) AUG
Phe(F) UUU,UUC
Pro(P) CCU,CCC,CCA,CCG
Ser(S) UCU,UCC,UCA,UCG,AGU,AGC
Thr(T) ACU,ACC,ACA,ACG
Trp(W) UGG
Tyr(Y) UAU,UAC
Val(V) GUU,GUC,GUA,GUG
起始密码 AUG
终止密码 UAG,UGA,UAA
重组核酸分子的缺失、插入和/或取代并非预期其特征产生根本性的改变。但是,当难于在操作之前预测缺失、插入和/或取代的确切效果,本领域技术人员理解,可以通过表达试验评估所述的效果。
变体核酸分子也胞苷通过诱变和DNA穿梭之类的重组遗传过程衍生的核苷酸序列。经由所述过程,可操作本申请的重组核酸分子的核苷酸序列创建具有所需性能的新核酸分子。在此种方式中,可由包含序列基本同一并能在体内或在体外进行同源重组的序列区域的核酸分子群产生重组核酸分子的文库。例如,利用这种方法,编码所关注的结构域的序列基序可以在本申请所描述的核酸分子以及其他已知的启动子之间穿梭,以获得具有诸如提高的启动子活性之类改善的性能的新核酸分子。
突变和改变核苷酸序列以及DNA穿梭的方法是本领域公知的。参见Crameri等(1997)Nature Biotech.15:436-438;Crameri等(1998)Nature391:288-291;Kunkel(1985)Proc.Natl.Acad.Sci.USA 82:488-492;Kunkel等(1987)Methods in Enzymol.154:367-382;Moore等(1997)J.Mol.Biol.272:336-347;Stemmer(1994)Proc.Natl.Acad.Sci.USA91:10747-10751;Stemmer(1994)Nature 370:389-391;Zhang等(1997)Proc.Natl.Acad.Sci.USA 94:4504-4509;和Techniques in Molecular Biology(Walker&Gaastra eds.,MacMillan Publishing Co.1983)以及本申请所引用的参考文献;和USPatent Nos.4,873,192;5,605,793和5,837,458。由此,本申请的核酸分子可以具有多种修饰。
也可以通过比较由变体编码的多肽与由参照核酸分子编码的多肽的序列百分同一性来评估本申请所描述的重组核酸分子的变体。由此,例如,经分离的核酸分子可以是编码与所关注的多肽具有给定的序列百分同一性的核酸分子。任意两条多肽之间的序列百分同一性可利用本申请其他部分描述的序列比对程序和参数计算。可以通过比较它们所编码的两条多肽之间的序列百分同一性来评估本发明的任何给定的所核苷酸对,所编码的两条多肽之间的序列同一性可以是至少约70%,75%,80%,85%,90%,91%,92%,93%,94%,95%,96%,97%,98%,99%或以上的序列同一性。
可利用数学算法确定任意两个序列之间的序列百分同一性。此种数学算法的非限定性示例包括但不限于,Myers&Miller(1988)CABIOS 4:11-17的算法;Smith等(1981)Adv.Appl.Math.2:482-489的局部比对算法;Needleman&Wunsch(1970)J.Mol.Biol.48:443-453的整体比对算法;Pearson&Lipman(1988)Proc.Natl.Acad.Sci.USA 85:2444-2448的局部比对检索(search-for-local alignment)法;Karlin&Altschul(1990)Proc.Natl.Acad.Sci.USA 87:2264-2268的比对方法,其在Karlin&Altschul(1993)Proc.Natl.Acad.Sci.USA 90:5873-5877中进行了修改。
由此,本发明包括具有编码病原体-特异性蛋白酶的经修饰底物蛋白质的核苷酸序列的重组核酸分子,其中所述的经修饰的底物蛋白质具有异源蛋白酶识别序列,并能够参入到诸如表达盒以及载体之类的核酸构建体中。
核酸构建体
本申请的组合物还包括核酸构建体,如表达盒或载体,具有与编码具有异源病原体-特异性蛋白酶识别序列的病原体-特异性蛋白酶的底物蛋白质的核酸分子可操作连接的植物启动子,用于转化植物细胞,植物部分和植物。此外,所述构建体可以包括编码NB-LRR蛋白质的核酸分子,尤其是当这种NB-LRR蛋白质对被转化的植物细胞,植物部分或植物是非天然/非内源的。
本申请中的“核酸构建体”指由脱氧核糖核苷酸,核糖核苷酸或其组合构成的、其中参入了本申请的核苷酸序列的寡核苷酸或多核苷酸。所述的核苷酸构建体可用于转化生物,如植物。在此种方式中,在所述构建体中提供植物启动子,所述启动子与本申请所描述的病原体-特异性蛋白酶的经修饰底物蛋白质的核苷酸序列可操作连接,用于在植物细胞,植物部分或植物中表达。
本申请中的“表达盒”指具有至少一个可操作地连接于编码序列的控制序列的核酸分子。
本申请中的“可操作地连接”指配制表达盒的元件以使得它们行使通常的功能。因此,控制序列(即,启动子)可操作地连接于编码序列能使得所述编码序列表达。控制序列无需毗邻所述编码序列,只要控制序列能指导其表达即可。因而,例如在启动子和编码序列之间存在不被翻译但仍可转录的序列,所述的启动子仍可被认为是与所述编码序列“可操作地连接”。
本申请所用的,“编码序列(coding sequence)”或“编码序列(codingsequences)”指编码特定多肽的序列,是当被置于适当的调节序列控制之下时,在体外或在体内被转录(对于DNA)和翻译(对于mRNA)成多肽的核苷酸序列。所述编码序列的边界由5'(氨基)末端的起始密码子和3'(羧基)末端的翻译终止密码子确定。编码序列包括但不限于病毒核酸序列,来自原核或真核mRNA的cDNA,来自原核或真核DNA的基因组DNA,甚至是合成的DNA序列。转录终止序列通常位于编码序列的3'。本申请所使用的编码序列的示例包括编码病原体-特异性蛋白酶的经修饰底物蛋白质,NB-LRR蛋白质或其两者的核苷酸序列。
本申请中的“控制序列(control sequence)”或“控制序列(control sequences)”指启动子,聚腺苷酸信号,转录和翻译终止序列,上游调节结构域,复制起点,内在核糖体进入位点(“IRES”),增强子,等等,它们共同在受体宿主细胞中提供编码序列的复制、转录和翻译。这些控制序列并非总是需要存在,只要所选择的编码序列能够在合适的宿主细胞中被复制、转录和翻译即可。
本申请所用的,“启动子”指包含(即,DNA)调节序列的核酸核苷酸区域,其中所述调节序列衍生自基因或通过合成创建,其能够结合RNA聚合酶并启动下游(3'-方向)编码序列的转录。很多启动子可用于所述表达盒,包括经修饰的底物蛋白质或NB-LRR蛋白质的天然启动子。
可供选择地,可根据所需要的结果选择启动子。这种启动子包括但不限于,“组成型启动子”(其中可操作地连接于启动子的多核苷酸序列的表达是非调节的,并因此是连续的),“诱导型启动子”(其中可操作地连接于启动子的多核苷酸序列的表达被分析物,辅因子,调节蛋白质,等诱导),和“阻抑型启动子”(其中可操作地连接于启动子的多核苷酸序列的表达被分析物,辅因子,调节蛋白等抑制)。
本申请中的“植物启动子”指在植物中驱动表达的启动子,如组成型,诱导型(例如化学-,环境-,病原体-或创伤-诱导的),阻抑型的,组织优选的,或其他在植物中使用的启动子。
组成型启动子的示例包括但不限于,稻肌动蛋白1启动子(Wang等(1992)Mol.Cell.Biol.12:3399-3406;和US Patent No.5,641,876),CaMV 19S启动子(Lawton等(1987)Plant Mol.Biol.9:315-324),CaMV 35S启动子(Odell等(1985)Nature 313:810-812),nos启动子(Ebert等(1987)Proc.Natl.Acad.Sci.USA 84:5754-5749),Adh启动子(Walker等(1987)Proc.Natl.Acad.Sci.USA 84:6624-6628),蔗糖合酶启动子(Yang&Russell(1990)Proc.Natl.Acad.Sci.USA 87:4144-4148),遍在启动子,等等。还请参见USPatent Nos.5,608,149;5,608,144;5,604,121;5,569,597;5,466,785;5,399,680;5,268,463;5,608,142和6,177,611。
化学-诱导型启动子的示例包括但不限于,玉米Tn2-2启动子,其被苯磺酰胺除草剂安全剂激活;玉米GST启动子,其被用作的预防性(pre-emergent)除草剂的疏水的亲电化合物激活;和烟草PR-1a启动子,其被水杨酸激活。其他所关注的化学-诱导型启动子包括固醇-应答型启动子(例如糖皮质激素-诱导型启动子,参见Aoyama&Chua(1997)Plant J.11:605-612;McNellis等(1998)Plant J.14:247-257;和Schena等(1991)Proc.Natl.Acad.Sci.USA 88:10421-10425);四环素-诱导型和四环素-阻抑型启动子(Gatz等(1991)Mol.Gen.Genet.227:229-237;以及US Patent Nos.5,814,618和5,789,156);ABA-和膨胀-诱导型启动子,植物生长素-结合蛋白基因启动子(Schwob等(1993)Plant J.4:423-432),UDP葡萄糖类黄酮糖基-转移酶基因启动子(Ralston等(1988)Genetics 119:185-187),MPI蛋白质酶抑制剂启动子(Cordero等(1994)Plant J.6:141-150),和甘油醛-3-磷酸脱氢酶基因启动子(Kohler等(1995)Plant Mol.Biol.29:1293-1298;Martinez等(1989)J.Mol.Biol.208:551-565;和Quigley等(1989)J.Mol.Evol.29:412-421)。还包括苯磺胺诱导型的(US.Patent No.5,364,780)和乙醇诱导型的(Int'lPatent Application Publication Nos.WO 97/06269和WO 97/06268)系统以及谷胱甘肽S-转移酶启动子。因此,化学-诱导型启动子可通过应用外源的化学调节剂调节所关注的核苷酸序列在植物中的表达。根据目的,启动子可以是化学-诱导型启动子,应用化学物质诱导基因的表达,或是化学-阻抑型启动子,引用化学物质阻抑基因的表达。还请参见Gatz(1997)Annu.Rev.Plant Physiol.Plant Mol.Biol.48:89。
其他的诱导型启动子包括启动子来自应答环境胁迫或刺激,诸如干旱,病原体,盐度和创伤,诱导调节的基因。参见Graham等(1985)J.Biol.Chem.260:6555-6560;Graham等(1985)J.Biol.Chem.260:6561-6564;和Smith等(1986)Planta 168:94-100。伤口-诱导型启动包括金属羧肽酶-抑制蛋白启动子(Graham等(1981)Biochem.Biophys.Res.Comm.101:1164-1170)。
组织优选的启动子的示例包括但不限于,rbcS启动子,ocs,nos和mas启动子,其在根或受伤的叶组织具有较高的活性,截短的(-90到+8)35S启动子,其指导在根中的增强表达,α-微管蛋白基因启动子,其指导在根中的表达,以及衍生自玉米醇溶蛋白的储存蛋白质的启动子,其指导在胚乳中的表达。另外的组织优选的启动子的示例包括但不限于,编码种子储存蛋白(例如β-伴大豆球蛋白(β-conglycinin),十字花科蛋白(cruciferin),油菜籽蛋白和菜豆蛋白),玉米醇溶蛋白或油体蛋白质(例如油质蛋白)的基因的启动子,或参与脂肪酸生物合成的基因(例如酰基载体蛋白质,硬脂酰-ACP去饱和酶和脂肪酸去饱和酶(例如fad 2-1))的启动子,和在胚发育过程中表达的其他基因(例如Bce4;Kridl等(1991)种子Sci.Res.1:209-219)的启动子。组织-特异性启动子的其他是列包括但不限于凝集素启动子(Lindstrom等(1990)Dev.Genet.11:160-167;and Vodkin(1983)Prog.Clin.Biol.Res.138:87-98),玉米乙醇脱氢酶1启动子(Dennis等(1984)NucleicAcids Res.12:3983-4000;和Vogel等(1989)J.Cell.Biochem.13:Part D,M350(Abstract)),玉米集光复合体(Bansal等(1992)Proc.Natl.Acad.Sci.USA 89:3654-3658;和Simpson(1986)Science 233:34-380),玉米热激蛋白(Odell等(1985)Nature 313:810-812;和Rochester等(1986)EMBO J.5:451-458),豌豆小亚基RuBP羧化酶启动子(Cashmore,"Nuclear genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase"29-38In:Gen.Eng.of Plants(Plenum Press 1983);和Poulsen等(1986)Mol.Gen.Genet.205:193-200),Ti质粒甘露氨酸合酶启动子(Langridge等(1989)Proc.Natl.Acad.Sci.USA 86:3219-3223),Ti质粒胭脂碱合酶启动子(Langridge等(1989),如前),牵牛花苯基苯乙烯酮异构酶启动子(van Tunen等(1988)EMBO J.7:1257-1263),豆富含甘氨酸蛋白质1启动子(Keller等(1989)Genes Dev.3:1639-1646),截短的CaMV 35s启动子(Odell等(1985),如前),马铃薯patatin启动子(Wenzler等(1989)PlantMol.Biol.13:347-354),根细胞启动子(Yamamoto等(1990)Nucleic Acids Res.18:7449),玉米醇溶蛋白启动子(Langridge等(1983)Cell 34:1015-1022;Kriz等(1987)Mol.Gen.Genet.207:90-98;Reina等(1990)Nucleic Acids Res.18:6425;Reina等(1990)Nucleic Acids Res.18:7449;和Wandelt等(1989)Nucleic Acids Res.17:2354),球蛋白-1基因(Belanger等(1991)Genetics 129:863-872),α-微管蛋白,cab启动子(Sullivan等(1989)Mol.Gen.Genet.215:431-440),PEPCase启动子(Hudspeth&Grula(1989)PlantMol.Biol.12:579-589),R基因复合物相关启动子(Chandler等(1989)Plant Cell 1:1175-1183),和苯基苯乙烯酮合酶启动子(Franken等(1991)EMBO J.10:2605-2612)。还请参见Canevascini等(1996)Plant Physiol.112:513-524;Guevara-Garcia等(1993)Plant J.4:495-505;Hansen等(1997)Mol.Gen.Genet.254:337-343;Kawamata等(1997)Plant CellPhysiol.38:792-803;Lam(1994)Results Probl.Cell Differ.20:181-196;Matsuoka等(1993)Proc.Natl.Acad.Sci.USA 90:9586-9590;Orozco等(1993)Plant Mol.Biol.23:1129-1138;Rinehart等(1996)Plant Physiol.112:1331-1341;Russell等(1997)Transgenic Res.6:157-168;Van Camp等(1996)Plant Physiol.112:525-535;Yamamoto等(1994)Plant Cell Physiol.35:773-778;和Yamamoto等(1997)Plant J.12:255-265。
有些情况下,组织优选的启动子是叶-优选的启动子。参见Gan等(1995)Science270:1986-1988;Gotor等(1993)Plant J.3:509-518;Kwon等(1994)Plant Physiol.105:357-367;Matsuoka等(1993),如前;Orozco等(1993),如前;Yamamoto等(1994),如前;和Yamamoto等(1997),如前。
有些情况下,组织优选的启动子是根-优选的启动子。参见Capana等(1994)PlantMol.Biol.25:681-691(rolB启动子);Hire等(1992)Plant Mol.Biol.20:207-218(大豆根-特异性谷氨酰胺合成酶基因);Keller&Baumgartner(1991)Plant Cell 3:1051-1061(French bean GRP 1.8基因中的根-特异性控制元件);Kuster等(1995)PlantMol.Biol.29:759-772(VfENOD-GRP3基因启动子)Miao等(1991)Plant Cell 3:11-22(编码胞质谷氨酰胺合成酶(GS)的全长cDNA克隆,其在大豆的根和根瘤中表达);和Sanger等(1990)Plant Mol.Biol.14:433-443(根瘤突然杆菌的甘露氨酸合酶(MAS)基因的根-特异性启动子);还请参见US Patent Nos.5,837,876;5,750,386;5,633,363;5,459,252;5,401,836;5,110,732;和5,023,179。类似的,Bogusz等(1990)Plant Cell 2:633-641描述了由来自固氮的非豆科植物Parasponia andersonii以及相关的非-固氮非豆科植物Trematomentosa的血红蛋白的基因分离的两种根-特异性启动子。Leach&Aoyagi(1991)PlantSci.79:69-76描述了对发根土壤杆菌(Agrobacterium rhizogenes)的高表达的rolC和rolD根-诱导基因的分析。Teeri等(1989)EMBO J.8:343-335描述了基因与lacZ融合显示编码章鱼碱合酶的基因在根尖的表皮尤其活跃,在完整植物中TR2'基因是根特异性的,在叶组织中受创伤的刺激。
有些情况下,组织优选的启动子是种子-优选的启动子,其包括“种子-特异性”启动子(即,在种子发育过程中激活的启动子,如种子贮藏蛋白启动子)和”种子-萌发”启动子(即,在种子萌发过程中激活的启动子)。参见Thompson等(1989)BioEssays 10:108-113。种子-优选的启动子包括但不限于,Cim1(cytokinin-induced message)启动子;cZ19B1启动子(玉米19kDa玉米醇溶蛋白);肌醇-1-磷酸合酶(milps)启动子(Int'l PatentApplication Publication No.WO 00/11177;和US Patent No.6,225,529);γ-玉米醇溶蛋白启动子;和球蛋白1(Glb-1)启动子。单子叶植物,种子-特异性启动子包括但不限于来自玉米15kDa玉米醇溶蛋白,22kDa玉米醇溶蛋白,27kDa玉米醇溶蛋白,γ-玉米醇溶蛋白,蜡质的,干枯1,干枯2和Glb-1的启动子。还请参见Int'l Patent ApplicationPublication No.WO 00/12733,其中描述了来自end1和end2基因的种子-优选的启动子。对于双子叶植物,种子-特异性启动子包括但不限于,来自豆β-菜豆蛋白,油菜籽蛋白,β-伴大豆球蛋白,大豆凝集素,十字花科蛋白和豌豆球蛋白的启动子(Czako等(1992)Mol.Gen.Genet.235:33-40)。还请参见US Patent No.5,625,136。
有些情况下,组织优选的启动子是柄-优选的启动子。柄-优选的启动子的示例包括但不限于,玉米MS8-15基因启动子(Int'l Patent Application Publication No.WO98/00533;和US Patent No.5,986,174),以及在Graham等(1997)Plant Mol.Biol.33:729-735中所公开的启动子。
有些情况下,组织优选的启动子是脉管组织优选的启动子。例如,脉管组织优选的启动子可用于在polypexylem和韧皮部组织中表达经修饰的底物蛋白质。脉管组织优选的启动子的示例包括但不限于,野黑樱(Prunus serotina)野黑樱苷水解酶基因启动子(Int'l Patent Application Publication No.WO 03/006651),以及在US Patent No.6,921,815中公开的启动子。
作为上述启动子的备选,有些情况下需要低水平表达,其可使用弱启动子实现。本申请中的"弱启动子"指以低水平驱动编码序列表达的启动子。本申请中的“低水平”指约1/1000转录物到约1/100,000转录物到约1/500,000转录物水平。可供选择地,应当认识到弱启动子也包括仅在一些细胞中表达而不在其他细胞中表达从而给出总体的低表达水平。假如启动子以过高的水平表达,可以将部分启动子序列缺失或对其进行修饰以降低表达水平。
弱组成型启动子的示例包括但不限于,Rsyn7启动子的核心启动子(Int'l PatentApplication Publication No.WO 99/43838和US Patent No.6,072,050),核心35S CaMV启动子,等等。其他的弱组成型启动子描述于,例如US Patent Nos.5,608,149;5,608,144;5,604,121;5,569,597;5,466,785;5,399,680;5,268,463;5,608,142和6,177,611。
当设计NB-LRR蛋白质表达盒时可以使用弱启动子,因为鉴于NB-LRR基因优选地在低水平组成型表达,在没有病原体存在时高水平表达可导致细胞死亡。
所述的表达盒可包括其他的控制序列5'到编码序列。例如表达盒可包括5'前导序列,其可以起到增强翻译的作用。5'前导序列的示例包括但不限于,小核糖核酸病毒前导序列(例如脑心肌炎病毒(EMCV)前导序列;Elroy-Stein等(1989)Proc.Natl.Acad.Sci.USA86:6126-6130);马铃薯Y病毒前导序列(例如烟草蚀斑病毒(TEV)前导序列;Gallie等(1995)Gene 165:233-238);玉米矮化花叶病毒(MDMV)前导序列(Allison等(1986)Virology 154:9-20);人免疫球蛋白重链结合蛋白(BiP;Macejak等(1991)Nature 353:90-94);来自苜蓿花叶病毒外壳蛋白质mRNA的非翻译前导序列(AMV RNA 94;Jobling等(1987)Nature 325:622-625);烟草花叶病毒(TMV)前导序列(Gallie等,"Eukaryotic viral 5′-leaders act as translational enhancers in eukaryotes and prokaryotes"237-256In:Molecular Biology of RNA(Cech ed.,Liss 1989));和玉米褪绿斑驳病病毒(MCMV)前导序列(Lommel等(1991)Virology 81:382-385).还请参见Della-Cioppa等(1987)Plant Physiol.84:965-968;和Gallie(1996)Plant Mol.Biol.32:145-158。也可以使用增强翻译的其他方法或序列,例如内含子等。
所述的表达盒也包括病原体-特异性蛋白酶和/或NB-LRR蛋白质的经修饰的底物蛋白质的编码序列。如以上所讨论的经修饰的底物蛋白质包括异源蛋白酶识别序列。所述的异源蛋白酶识别序列可位于,例如底物蛋白质的暴露环内。如上所述,可插入到底物蛋白质中的许多蛋白酶识别序列的核酸和氨基酸序列是本领域已知的,如PBS1。此外,多种NB-LRR蛋白质的核酸和氨基酸序列是本领域已知的。在构建所述表达盒时可以应用这些序列。
举例而言,编码序列可以时SEQ ID NO:5(具有AvrRpt2蛋白酶识别序列的经修饰的PBS1)可操作地连接于天然PBS1启动子(SEQ ID NO:9)。可供选择地,所述编码序列是SEQID NO:7(具有TEV蛋白酶识别序列的经修饰的PBS1)可操作地连接于天然PBS1启动子。类似地,当经修饰的底物蛋白质基于PBS1(或RPS2,当经修饰的底物蛋白质基于RIN4时)时,所述编码序列可以包括RPS5之类的NB-LRR蛋白质。
所述控制序列和/或其编码序列对于宿主细胞或其彼此之间可以时天然的/类似的(analogous)。可供选择地,所述的控制序列和/或编码序列对于宿主细胞或彼此之间可以是异源的。本申请中的"异源的"指起源于外来种的序列,或者若是来自相同的种,则通过有意的人为干预对于天然形式的组成和/或基因座进行了实质上的修饰的序列。例如可操作地连接于异源多核苷酸的启动子是来自与衍生所述多核苷酸的种不同的种,或者如果是来自相同/类似的种,其中的一方或两者由它们的原始形式和/或基因组位点被实质上修饰,或者所述的启动子不是可操作地连接多核苷酸的天然启动子。
所述的表达盒还包括在植物中发挥功能的转录和/或翻译终止区域。所述的终止区域可以是对转录起始区(即,启动子)而言是天然的,可以是对可操作地连接编码序列言是天然的,可以是对所关注的植物而言是天然的,或是可以来自另一种来源(即,对于启动子,编码序列,植物宿主细胞,或其任意组合而言是外来的或异源的)。终止区域通常位于编码序列的下游(3'-方向)。终止区域包括但不限于,马铃薯蛋白酶抑制剂(PinII)基因或根瘤土壤杆菌的Ti-质粒,例如章鱼碱合酶和胭脂碱合酶终止区。参见例如Ballas等(1989)Nucleic Acids Res.17:7891-7903;Guerineau等(1991)Mol.Gen.Genet.262:141-144;Joshi等(1987)Nucleic Acid Res.15:9627-9639;Mogen等(1990)Plant cell2:1261-1272;Munroe等(1990)Gene 91:151-158;Proudfoot(1991)Cell64:671-674;和Sanfacon等(1991)Genes Dev.5:141-149。
所述的表达盒还可以包含一个以上的接头。本申请中的"接头"指当其存在于表达盒中时,起将表达盒中的一个元件与另一元件相连作用的核苷酸序列,不对所关注的核苷酸序列的转录或翻译起其他作用。所述的接头可以包括质粒序列,限制序列和/或5'-非翻译区(5'-UTR)的序列。可供选择地,所述的接头还可以包括来自分离所述接头的来源的核苷酸序列,所述核苷酸序列编码天然地存在于底物蛋白质中异源蛋白酶识别序列侧翼的另外的氨基酸残基。接头的长度和序列可以是多种,可为约1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,25,30,35,40,45,50,60,70,80,90,100,150,200,250,300,350,400,450,500,600,700,800,900,1000个核苷酸或以上的长度。
正如经修饰的底物蛋白质和/或NB-LRR蛋白质的表达可以通过使用合适的启动子靶向特定的组织或细胞类型,通过使用合适的信号和/或靶向肽序列其也可以靶向植物宿主的细胞内的不同位置。与启动子不同,其在转录水平起作用,信号和/或靶向肽序列是起始翻译产物的一部分。因此所述表达盒也可以包括信号和/或靶向肽序列。此类序列的示例包括但不限于,用于酰基载体蛋白的转运肽,RUBISCO的小亚基,植物EPSP合酶,等等。参见Archer等(1990)J.Bioenerg.Biomemb.22:789-810;Clark等(1989)J.Biol.Chem.264:17544-17550;Daniell(1999)Nat.Biotech.17:855-856;de Castro Silva Filho等(1996)Plant Mol.Biol.30:769-780;Della-Cioppa等(1987)Plant Physiol.84:965-968;Lamppa等(1988)J.Biol.Chem.263:14996-14999;Lawrence等(1997)J.Biol.Chem.272:20357-20363;Romer等(1993)Biochem.Biophys.Res.Commun.196:1414-1421;Schmidt等(1993)J.Biol.Chem.268:27447-27457;Schnell等(1991)J.Biol.Chem.266:3335-3342;Shah等(1986)Science233:478-481;Von Heijne等(1991)Plant Mol.Biol.Rep.9:104-126;和Zhao等(1995)J.Biol.Chem.270:6081-6087;以及US Patent No.6,338,168。
有可能需要将经修饰的底物蛋白质和/或NB-LRR蛋白质定位在特定的植物的细胞膜上,例如质膜或液泡膜。这可以通过,例如向表达盒中添加特定的序列来向这些蛋白质的N-末端添加特定的氨基酸序列来实现,如Raikhel&Chrispeels,"蛋白质sorting andvesicle traffic"In:Biochemistry and Molecular Biology of Plants(Buchanan等eds.,American Society of Plant Physiologists2000)中所描述的。还请参见Denecke等(1992)EMBO J.11:2345-2355;Denecke等(1993)J.Exp.Bot.44:213-221;Gomord等(1996)Plant Physiol.Biochem.34:165-181;Lehmann等(2001)Plant Physiol.127:436-449;Munro&Pelham(1986)Cell 46:291-300;Munro&Pelham(1987)Cell 48:899-907;Vitale等(1993)J.Exp.Bot.44:1417-1444;和Wandelt等(1992)Plant J.2:181-192。
有关在植物中亚细胞靶向蛋白质的其他指导可参见例如,Bruce(2001)BiochimBiophys Acta 1541:2-21;Emanuelsson等(2000)J.Mol.Biol.300:1005-1016;Emanuelsson&von Heijne(2001)Biochim Biophys Acta1541:114-119;Hadlington&Denecke(2000)Curr.Opin.Plant Biol.3:461-468;Nicchitta(2002)Curr.Opin.CellBiol.14:412-416;和Silva-Filho(2003)Curr.Opin.Plant Biol.6:589-595。
表达盒还可以包括编码土壤和杀虫多肽等的核苷酸序列此类序列可与核苷酸序列的任意组合叠(stacked)在一起,以创建具有所需表型的植物细胞,植物部分和植物。例如编码经修饰的底物蛋白质和/或NB-LRR蛋白质核酸分子可以与编码诸如δ-内毒素之类的杀虫多肽的核苷酸序列叠在一起。所产生的组合液可以包括任一所关注的序列的多个拷贝。所关注的其他核苷酸序列的示例包括但不限于,编码高级油(high oil)的序列(USPatent No.6,232,529);经平衡的氨基酸(hordothionins;US Patent Nos.5,703,409;5,885,801;5,885,802和5,990,389);大麦高赖氨酸(Williamson等(1987)Eur.J.Biochem.165:99-106;和Int'l Patent Application Publication No.WO 98/20122);高甲硫氨酸蛋白质(Pedersen等(1986)J.Biol.Chem.261:6279-6284;Kirihara等(1988)Gene71:359-370;和Musumura等(1989)Plant Mol.Biol.12:123-130);提高的消化率(经修饰的贮存蛋白;US Patent No.6,858,778);和硫氧还蛋白(US Patent No.7,009,087)。
编码经修饰的底物蛋白质和/或NB-LRR抗病性蛋白质的核苷酸序列也可以与编码抗除草剂(例如草甘膦或HPPD抗性)的多肽的核苷酸序列叠在一起,参见例如,EPSPS基因,GAT基因(Int'l Patent Application Publication Nos.WO 02/36782和WO 03/092360;以及US Patent Application Publication No.2004/0082770);凝集素(Van Damme等(1994)Plant Mol.Biol.24:825-830);串珠镰饱菌素去毒化(fumonisin detoxification)(USPatent No.5,792,931);导致除草剂抗性的乙酰乳酸合酶(ALS)突变体,如S4和/或Hra突变;谷氨酰胺合酶抑制剂如草胺磷或basta(例如bar基因);变性淀粉(ADPG焦磷酸化酶(AGPase),淀粉合酶(SS),淀粉分支酶(SBE)和淀粉脱支酶(SDBE));和聚合物或生物塑料(bioplastics)(US Patent No.5,602,321);β-酮硫解酶,聚羟基丁酸合酶和乙酰乙酰-CoA还原酶(Schubert等(1988)J.Bacteriol.170:5837-5847)。
编码经修饰的底物蛋白质和/或NB-LRR抗病性蛋白质的核苷酸序列也可以与编码农业性状,诸如雄性不育(US Patent No.5,583,210),柄强度,开花期或转换技术特性,如细胞周期调节或基因寻靶的核苷酸序列叠在一起(Int'l Patent ApplicationPublication Nos.和WO 99/25821;WO 99/61619和WO 00/17364)。
可利用任意的方法创建这些叠组合,其包括但不限于通过任何常规或TopCrossTM方法(DuPont Specialty Grains;Des Moines,IA),锌指核酸酶(ZFNs),转录激活物-样效应物核酸酶(TALENs)或其他遗传转化,进行植物杂交育种。如果通过遗传转化植物叠了性状,所关注的核苷酸序列可以在任何时间以任意顺序进行组合。举例而言,包含一种或以上所需性状的转基因植物可用作靶,通过后续的转化引入更多的性状。所述性状可以与由任意的转化盒组合提供的所关注的多核苷酸在共转化过程中同时引入。例如,如有两个序列待引入,所述的序列可以处于相分离的表达盒(反式)或包含在相同的转化盒中(顺式)。可通过相同或不同的启动子驱动所述序列的表达。在某些情况下,可能需要引入抑制所关注的多核苷酸表达的表达盒。可以与其他的抑制表达盒或过表达盒的任意组合相结合,以在植物中产生所需的特性组合。还可以认识到,可以利用位点-特异性组合系统在所需的基因组位置叠多核苷酸序列。参见Int'l Patent Application Publication Nos.WO 99/25821;WO 99/25840;WO 99/25853;WO 99/25854和WO 99/25855。
除了上述内容之外,应当理解所述的核酸构建体可以以系统的形式使用,尤其是当用于缺少病原体-特异性蛋白酶和NB-LRR蛋白质对的底物蛋白质的植物细胞,植物部分和植物中时。此类系统可包括一个或以上核酸构建体,如表达盒或载体,其具有在植物,植物部分或植物细胞中驱动表达的、可操作地连接于病原体-特异性蛋白酶的经修饰底物蛋白质的编码序列的启动子,其中所述底物蛋白质具有异源蛋白酶识别序列,并且在在植物,植物部分或植物细胞中驱动表达的启动子可操作地连接于NB-LRR蛋白质的编码序列。所述启动子可以相同或不同,例如,第一启动子可以是诱导型启动子,第二启动子可以是组成型启动子,尤其是弱组成型启动子。可供选择地,第一和第二启动子都是诱导型,阻抑型或组成型的。所述的NB-LRR蛋白质可以与经修饰的底物相关联柄被其激活。因此,所述系统可用于向不天然表达所述蛋白质对的植物细胞,植物部分或植物提供所述蛋白质对。
可供选择地,所述系统可以包括第一核酸构建体,其具有在植物细胞,植物部分或植物中驱动表达、可操作地连接于本申请描述的病原体-特异性蛋白酶的经修饰底物蛋白质编码序列的启动子的核苷酸序列,和第二核酸构建体,其具有在植物细胞,植物部分或植物中驱动表达、可操作地连接于NB-LRR蛋白质编码序列的启动子的核苷酸序列。
所述系统还可以包括其他的核酸构建体,其中,每种构建体具有编码不同的经修饰的底物蛋白质的核苷酸序列,各自具有不同的病原体-特异性蛋白酶的异源识别序列。尽管各经修饰的底物蛋白质具有彼此不同的异源识别序列,每一经修饰的底物蛋白质均与NB-LRR蛋白质相关并可使其激活。例如,所述核酸构建体可编码(1)PBS1,其中其内源AvrPphB切割位点(SEQ ID NO:1)被异源AvrRpt2切割位点(SEQ ID NO:2)替换,(2)PBS1,其中其内源AvrPphB切割位点(SEQ ID NO:1)被异源TEV蛋白酶切割位点(SEQ ID NO:4)替换,和/或(3)PBS1,其中其内源AvrPphB切割位点(SEQ ID NO:1)被异源HopN1切割位点(SEQ IDNO:3)替换。类似地,核酸构建体可编码(1)PBS1,其中其内源AvrPphB切割位点(SEQ ID NO:1)被异源SMV切割位点(SEQ ID NO:27)替换,和/或(2)PBS1,其中其内源AvrPphB切割位点(SEQ ID NO:1)被异源BPMV蛋白酶切割位点(SEQ ID NO:28)替换。尽管这些经修饰的底物蛋白质中的每一种被不同的病原体-特异性蛋白酶靶定,其均预期与RPS5蛋白质相关联并将其激活。在另一个示例中,所述的核酸构建体可编码(1)RIN4,其中其内源AvrRpt2切割位点(SEQ ID NO:2)被异源AvrPphB切割位点(SEQ ID NO:1)替换。(2)RIN4,其中其内源AvrRpt2切割位点(SEQ ID NO:2)被异源TEV蛋白酶切割位点(SEQ ID NO:4)替换,和/或(3)RIN4,其中其内源AvrRpt2切割位点(SEQ ID NO:2)被异源HopN1切割位点(SEQ ID NO:3)替换。类似地,所述核酸构建体(s)可编码(1)RIN4,其中其内源AvrRpt2切割位点(SEQ ID NO:2)被异源SMV切割位点(SEQ ID NO:27)替换,和/或(2)RIN4,其中其内源AvrRpt2切割位点(SEQ ID NO:2)被异源BPMV蛋白酶切割位点(SEQ ID NO:28)替换。尽管这些经修饰的底物蛋白质中的每一种可被不同的病原体-特异性蛋白酶靶定,可预期其均RPS2蛋白质相关联并将其激活。
由此,所述第一核酸构建体可编码一种以上经修饰的底物蛋白质,其中,各经修饰的底物蛋白质具有彼此不同的异源识别序列,且其中,每一经修饰的底物蛋白质均与NB-LRR蛋白质相关并可使其激活。可供选择地,第二核酸构建体可编码一种以上经修饰的底物蛋白质,其中,各经修饰的底物蛋白质具有彼此不同的异源识别序列,且其中,每一经修饰的底物蛋白质均与NB-LRR蛋白质相关并可使其激活。如上所述,启动子可以相同或不同。此类系统可用于向非天然地表达所述蛋白对的植物细胞,植物部分或植物提供该蛋白质对,或可用于植物细胞,植物部分或植物提供一种以上经修饰的底物。
无论是用作单独的核酸构建还是系统,适当时,可对所述核苷酸序列进行优化以提高其在植物中的表达。所述核苷酸序列可利用植物优选的密码子合成以改善表达。优化核苷酸序列在植物中表达的方法是本领域公知的。参见Campbell&Gowri(1990)PlantPhysiol.92:1-11;Murray等(1989)Nucleic Acids Res.17:477-498;和Wada等(1990)Nucl.Acids Res.18:2367-2411;以及US Patent Nos.5,096,825;5,380,831;5,436,391;5,625,136;5,670,356和5,874,304。
同样的,可提高核苷酸序列在植物中表达的另外的序列修饰是已知的。这些修饰包括去除编码假聚腺苷酸化信号、外显子-内含子剪接位点信号、转座子样重复序列,以及其他此类已被充分表征的可能损害基因表达的序列。可参照已知在宿主植物中表达的基因计算出并调节序列的G-C含量至给定细胞宿主的平均水平。可能的情况下,可对核苷酸序列进行修饰以避免预测出的发夹二级mRNA结构。
表达盒的构建方法是本领域公知的,可参见例如,Balbás&Lorence,RecombinantGene Expression:Reviews and Protocols,2nd ed.(Humana Press2004);Davis等,BasicMethods in Molecular Biology(Elsevier Press 1986);Sambrook&Russell(2001),如前;Tijssen,Laboratory Techniques in Biochemistry and Molecular Biology–Hybridization with Nucleic Acid Probes(Elsevier 1993);Ausubel等(1995),如前;以及US Patent Nos.6,664,387;7,060,491;7,345,216和7,494,805。
由此,所述表达盒至少可包括,按转录方向(即5'到3'方向),在植物细胞,植物部分或植物中起作用的植物启动子,所述启动子可操作地连接于编码具有异源蛋白酶识别序列的经修饰的底物蛋白质的核苷酸序列。有些情况下,表达盒还包括编码抗病性蛋白质的核苷酸序列。
为了辅助所关注的核苷酸序列引入到合适的宿主细胞中,可将表达盒参入到或连接于载体。本申请中的“载体”指可附着另一种核酸节段并使得所附着的节段复制的复制子,如质粒、噬菌体或黏粒。载体能够将核酸分子转移到宿主细胞。细菌载体通常是质粒或噬菌体来源的。
通常,术语“载体构建体”、“表达载体”、“基因表达载体”、“基因递送载体”、“基因转移载体”和“表达盒”均指能指导所关注的基因表达的组装集合(assembly)。
载体通常包含一个或少量的限制性内切酶识别位点,其中,可以以可确定的方式在不丧失载体的基本生物学功能的情况下插入所关注的核酸分子,以及可用于鉴定由所述载体转化的细胞的选择标记。
因此,载体可以将核酸分子转移到靶细胞(例如细菌质粒载体,微粒载体(particulate carriers)和脂质体)。载体的选择依赖于优选的转化技术和靶定转化的种。最通常使用的植物转化载体是二元载体,因为它们能在诸如大肠杆菌和根瘤土壤杆菌之类的中间宿主细胞中复制。所述的宿主细胞能提高克隆载体的拷贝数和/或介导不同宿主细胞的转化。拷贝数提高了,可以更大量的分离含所关注表达盒的载体,以将其引入到所需植物中。关于植物载体的概述请参见例如,Gruber等,"Vectors for plant transformation"89-119In:Methods in Plant Molecular Biology&Biotechnology(Glich等eds.,CRCPress 1993)。与根瘤土壤杆菌一起使用的载体的示例可参见例如,US Patent No.7,102,057。
可以利用限制酶向靶核酸分子(例如编码经修饰的底物蛋白质和/或NB-LRR蛋白质核苷酸序列)和便于将靶插入到质粒之类的载体中的质粒中,引入切口。此外,当所需的限制酶位点不存在与靶mRNA中时,可以将限制酶衔接头,如EcoRI/NotI衔接头,添加到靶mRNA中。添加限制酶衔接头的方法是本领域公知的。参见Krebs等(2006)Anal.Biochem.350:313-315;和等(1995),如前。同样的,用于添加限制酶位点的试剂盒可通过商业途径获得,例如购自Invitrogen(Carlsbad,CA)。
可供选择地,可将噬菌体之类的病毒用作载体递送靶mRNA到感受态宿主细胞。可利用如Sambrook&Russell(2001),如前.中描述的标准分子生物学技术构建载体。
如上所述,选择标记可用于鉴定和选择经转化的植物,植物部分或植物宿主细胞。选择标记包括但不限于,编码抗生素抗性的核苷酸序列,例如编码新霉素磷酸转移酶II(NEO),潮霉素磷酸转移酶(HPT)以及编码抗氨苄青霉素,卡那霉素,壮观霉素或四环素的核苷酸序列,甚至编码除莠化合物,诸如草铵膦(glufosinate ammonium),溴苯腈(bromoxynil),咪唑啉酮(imidazolinones)和2,4-二氯苯氧乙酸(2,4-D)的核苷酸序列。
另外的选择标记可包括表型标记,诸如编码以下标记的核酸序列:β-半乳糖苷酶,β-葡萄糖苷酶(GUS;Jefferson(1987)Plant Mol.Biol.Rep.5:387-405);荧光素酶(Teeri等(1989)EMBO J.8:343-350);花青素产物(Ludwig等(1990)Science 247:449-450),和荧光蛋白,如绿色荧光蛋白(GFP;Chalfie等(1994)Science 263:802-805;Fetter等(2004)Plant cell 16:215-228;和Su等(2004)Biotechnol.Bioeng.85:610-619);青色荧光蛋白(CYP;Bolte等(2004)J.Cell Science 117:943-954;和Kato等(2002)Plant Physiol.129:913-942),以及黄色荧光蛋白(PhiYFPTM,可购自Evrogen(Moscow,Russia);Bolte等(2004)J.Cell Science 117:943-954)。对于另外的选择标记可参见Baim等(1991)Proc.Natl.Acad.Sci.USA 88:5072-5076;Barkley&Bourgeois,"Repressor recognitionof operator and effectors"177-120In:The Operon(Miller&Reznikoff eds.,ColdSpring Harbor Laboratory Press 1980);Bonin(1993)Ph.D.Thesis,University ofHeidelberg;Brown等(1987)Cell 49:603-612;Christopherson等(1992)Proc.Natl.Acad.Sci.USA 89:6314-6318;Degenkolb等(1991)Antimicrob.AgentsChemother.35:1591-1595;Deuschle等(1989)Proc.Natl.Acad.Sci.USA 86:5400-5404;Deuschle等(1990)Science 248:480-483;Figge等(1988)Cell52:713-722;Fuerst等(1989)Proc.Natl.Acad.Sci.USA 86:2549-2553;Gill等(1988)Nature 334:721-724;Gossen等(1992)Proc.Natl.Acad.Sci.USA 89:5547-5551;Gossen(1993)Ph.D.Thesis,University of Heidelberg;Hillenand-Wissman(1989)Topics Mol.Struc.Biol.10:143-162;Hlavka等,Handbook of Experimental Pharmacology,Vol.78(Springer-Verlag1985);Hu等(1987)Cell 48:555-566;Kleinschnidt等(1988)Biochemistry 27:1094-1104;Labow等(1990)Mol.Cell.Biol.10:3343-3356;Oliva等(1992)Antimicrob.AgentsChemother.36:913-919;Reines等(1993)Proc.Natl.Acad.Sci.USA 90:1917-1921;Reznikoff(1992)Mol.Microbiol.6:2419-2422;Yao等(1992)Cell71:63-72;Yarranton(1992)Curr.Opin.Biotech.3:506-511;Wyborski等(1991)Nucleic Acids Res.19:4647-4653;和Zambretti等(1992)Proc.Natl.Acad.Sci.USA 89:3952-3956。上述列出的选择标记并不作为限制,任何选择标记均可使用。
可以选择载体以将表达盒引入到合适的宿主细胞中,如植物宿主细胞。细菌载体通常是质粒和噬菌体来源的。用噬菌体载体颗粒感染或用裸噬菌体载体DNA转染合适的细菌细胞。如果使用质粒载体,用质粒载体DNA转染所述细胞。
由此,本申请包括核苷酸构建体,如表达盒和载体,其具有编码病原体-特异性蛋白酶的经修饰底物蛋白质的核苷酸序列,其中,经修饰的底物蛋白质具有异源蛋白酶识别序列。此外,核酸构建体可包括编码NB-LRR蛋白质的核苷酸序列。可将所述核酸构建体引入到诸如植物之类的生物中,以赋予其对表达特异性蛋白酶的植物病原体的抗性。
重组的肽、多肽和蛋白质
本申请的组合物还包括经分离的或纯化的、病原体-特异性蛋白酶的经修饰底物蛋白质,其中所述的底物蛋白质具有异源蛋白酶识别序列,以及其片段和/或变体。在植物细胞,植物部分和植物中生产肽,多肽和蛋白质的方法在本申请的其他部分进行讨论。
分离或纯化肽、多肽和蛋白质的方法是本领域公知的。参见Ehle&Horn(1990)Bioseparation 1:97-110;Hengen(1995)Trends Biochem Sci.20:285-286;BasicMethods in protein Purification and Analysis:A Laboratory Manual(Simpson等eds.,Cold Spring Harbor Laboratory Press 2008);Regnier(1983)Science 222:245-252;Shaw,"Peptide purification by reverse-phase HPLC"257-287In:Methods inMolecular Biology,Vol.32(Walker ed.,Humana Press 1994);以及US PatentApplication Publication No.2009/0239262;和US Patent Nos.5,612,454;7,083,948;7,122,641;7,220,356和7,476,722。
本申请中的“肽”,“多肽”和“蛋白质”可互换使用,指氨基酸残基聚合物。该术语用于氨基酸聚合物,其中一个或以上的氨基酸残基是相应天然存在的氨基酸以及天然存在的氨基酸聚合物的人工化学类似物。
本申请中的“残基”、“氨基酸残基”和“氨基酸”可互换使用,指参入到诸如肽,多肽或蛋白质中的分子。所述氨基酸可以是天然存在的氨基酸,除非另有限定,可以包含可以以与天然存在的氨基酸类似的方式形式功能的、已知的天然氨基酸类似物。
本申请中的“重组(的)”,当与肽,多肽或蛋白质一起使用时指通过有意人为介入,如蛋白质工程,创建或修饰的分子。例如重组多肽具有经修饰以包括人工氨基酸序列或包括一些其他不存在于天然的/内源/非-非重组形式的氨基酸序列的氨基酸序列。
此外,重组的肽,多肽或蛋白质具有与任意天然存在的肽,多肽或蛋白质不同一的结构。如此,可以通过本领域技术人员公知的那些合成方法来制备重组的肽,多肽或蛋白质。
如果或是当经修饰的底物蛋白质待被分离时,需要完全纯化。例如,本申请的经修饰的底物蛋白质可以以常规的方式从天然与之相联系的材料中分离和纯化出来,因此,在经纯化的制备物中,所述蛋白质是主要的种类。最起码地,纯化程度是制备物中的外来材料不干扰所述蛋白质以本申请所公开的方式使用。肽,多肽或蛋白质可以是至少约80%,至少约85%,至少约90%,至少约91%,至少约92%,至少约93%,至少约94%,至少约95%,至少约96%,至少约97%,至少约98%或至少约99%纯。作为选择地,所述多肽基本上没有细胞材料,由此,所述多肽制备物可包含小于约30%,25%,20%,15%,10%,9%,8%,7%,6%,5%,4%,3%,2%,或1%(干重)的污染蛋白质。当多肽或其活性变体或片段是重组产生的时,培养基代表小于约30%,25%,20%,15%,10%,9%,8%,7%,6%,5%,4%,3%,2%,或1%(干重)的化学前体或非所关注的蛋白质的化学物质。
本领域已知在相同的保守组中的氨基酸通常可以相互取代而基本上不影响蛋白质的功能。鉴于本发明的目的,此种保守组列于表3,其基于共同的属性。另请参见Alberts等,"Small molecules,energy,and biosynthesis"56-57In:Molecular Biology of theCell(Garland Publishing Inc.3rd ed.1994)。
表3.氨基酸保守取代
残基 侧链极性 侧链pH 亲水性系数 优选的保守取代
Ala(A) 非-极性 中性 1.8 Ser
Arg(R) 极性 碱性(强) -4.5 Lys,Gln
Asn(N) 极性 中性 -3.5 Gln,His
Asp(D) 极性 酸性 -3.5 Glu
Cys(C) 非-极性 中性 2.5 Ser
Gln(Q) 极性 中性 -3.5 Asn,Lys
Glu(E) 极性 酸性 -3.5 Asp
Gly(G) 非-极性 中性 -0.4 Pro
His(H) 极性 碱性(弱) -3.2 Asn,Gln
Ile(I) 非-极性 中性 4.5 Leu,Val
Leu(L) 非-极性 中性 3.8 Ile,Val
Lys(K) 极性 碱性 -3.9 Arg,Gln
Met(M) 非-极性 中性 1.9 Leu,Ile
Phe(F) 非-极性 中性 2.8 Met,Leu,Tyr
Pro(P) 非-极性 中性 -1.6 Gly
Ser(S) 极性 中性 -0.8 Thr
Thr(T) 极性 中性 -0.7 Ser
Trp(W) 非-极性 中性 -0.9 Tyr
Tyr(Y) 极性 中性 -1.3 Trp,Phe
Val(V) 非-极性 中性 4.2 Ile,Leu
以下六组各包含通常但并不必排他的相互保守取代:1.丙氨酸(A),丝氨酸(S),苏氨酸(T);2.天冬氨酸(D),谷氨酸(E);3.天冬酰胺(N),谷氨酰胺(Q);4.精氨酸(R),赖氨酸(K);5.异亮氨酸(I),亮氨酸(L),甲硫氨酸(M),缬氨酸(V);和6.苯丙氨酸(F),酪氨酸(Y),色氨酸(W)。
肽,多肽或蛋白质功能实质上的改变可通过选择比上表中所列的保守性低的取代,即选择在保持以下方面的效果区别更明显的残基:(a)取代区域中多肽骨架的结构,(b)靶位点多肽的电荷或疏水性,或(c)侧链的体积。可以预期通常对多肽性能产生最大改变的取代是那些:(a)亲水残基(如丝氨酰或苏氨酰)被疏水残基(如亮氨酰或异亮氨酰,苯丙氨酰,缬氨酰或丙氨酰)取代;(b)半胱氨酸或脯氨酸被任意氨基酸取代;(c)具有正电性侧链的残基(如赖氨酰,精氨酰或组氨酰)被待负电性侧链的残基(如谷氨酰或天冬氨酰)取代;(d)具有大体积侧链的残基(如苯丙氨酰)被没有侧链的残基(如甘氨酰)取代,或(e)通过提高硫酸化或糖基化的数量。
一方面,本申请涉及经分离的多肽,所述多肽由重组核酸分子编码、包含与选自SEQ ID NO:5,SEQ ID NO:6,SEQ ID NO:7和SEQ ID NO:8的氨基酸序列约90%同一的氨基酸序列,其中所述多肽是植物病原体-特异性蛋白酶的底物蛋白质。在另一具体实施方案中,所述经分离的多肽可包含与选自SEQ ID NO:5,SEQ ID NO:6,SEQ ID NO:7和SEQ IDNO:8的氨基酸序列约95%同一性,其中所述多肽是植物病原体-特异性蛋白酶的底物蛋白质。在另外的具体实施方案中,所述经分离的多肽可包含与选自SEQ ID NO:5,SEQ ID NO:6,SEQ ID NO:7和SEQ ID NO:8的氨基酸序列约96%同一性,约97%同一性,约98%同一性和约99%同一性,其中所述多肽是植物病原体-特异性蛋白酶的底物蛋白质。
病原体-特异性蛋白酶的经修饰底物蛋白质的示例包括SEQ ID NO:6(具有AvrRpt2蛋白酶识别序列的经修饰的PBS1)。本申请描述的病原体-特异性蛋白酶的经修饰底物蛋白质的另一示例包括SEQ ID NO:8(具有TEV蛋白酶识别序列的经修饰的PBS1)。病原体-特异性蛋白酶的经修饰底物蛋白质的另一示例包括PBS1,其中其内源AvrPphB切割位点(SEQ ID NO:1)被异源HopN1切割位点(SEQ ID NO:3)替换。病原体-特异性蛋白酶的经修饰底物蛋白质的另一示例包括PBS1,其中其内源AvrPphB切割位点(SEQ ID NO:1)被异源SMV切割位点(SEQ ID NO:27)替换。病原体-特异性蛋白酶的经修饰底物蛋白质的另一示例包括PBS1,其中其内源AvrPphB切割位点(SEQ ID NO:1)被异源BPMV切割位点(SEQ ID NO:28)替换。病原体-特异性蛋白酶的经修饰底物蛋白质的另一示例包括RIN4,其中其内源AvrRpt2切割位点(SEQ ID NO:2)被异源AvrPphB切割位点(SEQ ID NO:1)替换。病原体-特异性蛋白酶的经修饰底物蛋白质的另一示例包括RIN4,其中其内源AvrRpt2切割位点(SEQID NO:2)被异源TEV蛋白酶切割位点(SEQ ID NO:4)替换。病原体-特异性蛋白酶的经修饰底物蛋白质的另一示例包括RIN4,其中其内源AvrRpt2切割位点(SEQ ID NO:2)被异源HopN1切割位点(SEQ ID NO:3)替换。病原体-特异性蛋白酶的经修饰底物蛋白质的另一示例包括RIN4,其中其内源AvrRpt2切割位点(SEQ ID NO:2)被异源SMV切割位点(SEQ ID NO:27)替换。病原体-特异性蛋白酶的经修饰底物蛋白质的另一示例包括RIN4,其中其内源AvrRpt2切割位点(SEQ ID NO:2)被异源BPMV切割位点(SEQ ID NO:28)替换。如上所述,内源蛋白酶切割序列,其是异源蛋白酶识别序列的优选位置,通常位于底物蛋白质的暴露环中。
除了病原体-特异性蛋白酶的经修饰底物蛋白质的全长氨基酸序列外,应当理解所述经修饰的底物蛋白质可以是能够被植物病原体蛋白酶和/或其相应的NB-LRR蛋白质识别的片段或变体。对氨基酸序列而言,"片段"指参照多肽或蛋白质的氨基酸序列的部分。氨基酸序列的片段可以保持参照多肽或蛋白质的生物活性。例如可以使用小于经修饰的底物蛋白质完整氨基酸序列的序列,其可具有底物蛋白质活性和/或NB-LRR蛋白质结合活性。因而,参照多肽或蛋白质的片段可以是至少约150,200,250,300,350,400或450个氨基酸残基,或多达存在于全长经修饰的底物蛋白质中的氨基酸数量。例如,可以从PBS1的N-末端缺失约80个氨基酸同时保持其功能。参见之前的DeYoung等(2012)。同上,可供选择地,可以从PBS1的C-末端缺失约100个氨基酸同时保持其功能。
同样的,“变体”肽,多肽或蛋白质指与参照肽,多肽或蛋白质的氨基酸序列基本上类似的氨基酸序列。对氨基酸序列而言,变体包含衍生自参照肽、多肽或蛋白质的氨基酸序列,其可通过以下方式实现:在参照的氨基酸序列的N-末端和/或C-末端缺失(所谓截短)一个或以上氨基酸;在参照的氨基酸序列中的一个或以上内部位点缺失和/或添加一个或以上的氨基酸;在参照的氨基酸序列中一个或以上位点取代一个或以上氨基酸。本申请所包含的变体肽、多肽或蛋白质是具有生物活性的,即它们仍具有本申请所述的参照肽,多肽或蛋白质的所需生物活性。此类变体可由如遗传多态性和人工操作获得。经上述的序列比对程序和参数确定,生物活性变体具有与参照肽、多肽或蛋白质的氨基酸序列至少约70%,75%,80%,85%,90%,91%,92%,93%,94%,95%,96%,97%,98%,99%或以上的序列同一性。例如,经修饰的底物蛋白质的生物活性变体可以相差少至1-15个氨基酸残基,少至1-10个,如6-10个,少至5个,少至4,3,2,甚或1个氨基酸残基。可以设想来自其他植物种的PBS1直向同源物可用于取代拟南芥PBS1,其通常具有约90%或更高的同一性。
预期经修饰的底物蛋白质的缺失,插入或取代不引起所述多肽特征的根本性改变。然而,当难于在操作之前预测缺失、插入和/或取代的确切效果时,本领域技术人员理解,可以通过常规的活性试验评估所述的效果。
如上所述,变体肽、多肽和蛋白质也包括由诱变和如DNA穿梭之类的重组遗传(recombinogenic)过程衍生的序列。通过此种过程可以操作一个以上的核酸分子,以编码新的、具有所需性能的经修饰的底物蛋白质。以这种方式,可以由包含具有基本的序列同一性并可以在体内或体外同源重组的序列区域的一群相关的分子建立重组核酸分子文库。例如,利用这种方法,编码所关注的结构域的序列基序可以在通过本申请的方法鉴定的核酸分子和其他已知的底物蛋白质-编码核酸分子之间穿梭,以获得编码具有诸如提高的活性、扩展的pH或温度范围之类改进的特性的经修饰的底物蛋白质的新核酸分子。如此,本申请的肽,多肽或蛋白质可以由多种修饰。
因此,本申请包括重组的、病原体-特异性蛋白酶的经修饰底物蛋白质,其中所述的底物蛋白质具有异源蛋白酶识别序列,及其活性片段或其变体。
转化的植物细胞,植物部分和植物
本申请的组合物还包括经转化的植物细胞、植物部分和植物(即,受试植物细胞,植物部分或植物),与对照/天然植物细胞,植物部分或植物相比,经转化的植物细胞、植物部分和植物对增加数量的植物病原体具有抗性。
经转化的植物细胞,植物部分或植物可以具有本申请描述的至少一种核酸分子,核酸构建体,表达盒或载体,其编码病原体-特异性蛋白酶的经修饰底物蛋白质,其中所述的经修饰的底物蛋白质具有异源蛋白酶识别序列。
本申请中的“受试植物细胞”、“受试植物部分”或“受试植物”指对其中所关注的核酸分子实施了遗传改变(如转化)的植物细胞,植物部分或植物、或是经所述改变的植物细胞,植物部分或植物的后代,其包含所述改变。
本申请中的“对照植物细胞”,“对照植物部分”或“对照植物”指用于测定受试植物细胞,植物部分或植物表型改变的参照点。对照植物细胞,植物部分或植物可包含,例如:(a)野生型植物细胞,植物部分或植物(即,与用于遗传改变导致所述受试植物细胞,植物部分或植物的起始材料相同的基因型);(b)与起始材料基因型相同的植物细胞,植物部分或植物,但是被零构建体(null construct)(即,对所关注的性状没有已知的作用的构建体,如包含标记基因的构建体);(c)植物细胞,植物部分或植物,其是受试植物细胞,植物部分或植物子代当中非-转化的分离子;(d)植物细胞,植物部分或植物,其与植物细胞,植物部分或植物在遗传上同一,但是其没有被曝露在将诱导所关注的基因表达的条件或刺激下;或(e)处于所关注的核酸分子/构建体不表达的条件下的、所述受试植物细胞,植物部分或植物本身。
将核苷酸序列引入植物、植物部分或植物宿主细胞的方法是本领域已知的,并且在下文中将更详细地讨论。
本申请中的“植物细胞(plant cell)”或“植物细胞(plant cells)”指在种子,悬浮培养物,胚,分生组织区域,愈伤组织(callus tissue),叶,根,茎(shoots),配子体,孢子体,花粉和小孢子中获得或发现的细胞。植物细胞还包括由上述的组织获得的经修饰的细胞,如原生质体,以及可再生植物的植物细胞组织培养物,植物愈伤组织(plant calli)和植物团块(plant clumps)。
本申请中的“植物部分(plant part)”或“植物部分(plant parts)”指器官,如胚,花粉,胚珠,种子,花,核(kernels),穗(ears),穗轴(cobs),叶,壳(husks),柄(stalks),干(stems),根,根尖,花药,丝(silk),等等。
本申请中的“植物(plant)”或“植物(plants)”指完整的植物和它们的子代。也包括再生的植物的子代、变体和突变体,只要其包含所引入的核酸分子即可。
本申请中的“谷粒(grain)”指商业种植者非以生长或繁殖所述物种目的生产的、成熟的种子。可用于本申请所描述方法的植物种类,一般而言,可以是适用转化技术的全部高等植物,包括单子叶和双子叶植物。
本申请中所关注的植物种包括但不限于,玉米(Zea mays),芸苔(例如甘蓝型油菜(B.napus),芜菁(B.rapa),芥菜(B.juncea),尤其是那些可以用作种子油来源的芸苔种,苜蓿(Medicago sativa),稻(Oryza sativa),黑麦(Secale cereale),高粱(双色高梁(Sorghum bicolor),甜高梁(Sorghum vulgare)),黍(例如珍珠黍(Pennisetum glaucum),黍(Panicum miliaceum),狐尾黍(Setaria italica),手指黍(Eleusine coracana),向日葵(Helianthus annuus),红花(Carthamus tinctorius),小麦(Triticum aestivum),大豆(Glycine max),烟草(Nicotiana tabacum),马铃薯(Solanum tuberosum),花生(Arachishypogaea),棉(Gossypium barbadense,Gossypium hirsutum),甘薯(Ipomoea batatus),木薯(Manihot esculenta),咖啡(Coffea spp.),椰子(Cocos nucifera),菠萝(Ananascomosus),柑橘树(Citrus spp.),可可(Theobroma cacao),茶(Camellia sinensis),香蕉(Musa spp.),鳄梨(Persea americana),无花果(Ficus casica),石榴(Psidiumguajava),芒果(Mangifera indica),橄榄(Olea europaea),番木瓜(Carica papaya),腰果(Anacardium occidentale),澳大利亚坚果(Macadamia integrifolia),杏仁(Prunusamygdalus),甜菜(Beta vulgaris),甘蔗(Saccharum spp.),燕麦(Avena sativa),大麦(Hordeum vulgare),蔬菜,观赏植物和针叶树。
所关注的蔬菜包括但不限于,番茄(Lycopersicon esculentum),莴苣(例如Lactuca sativa),青豆(Phaseolus vulgaris),菜豆(Phaseolus limensis),豌豆(Lathyrus spp.),以及黄瓜属(Cucumis)的成员,如黄瓜(C.sativus),哈密瓜(C.cantalupensis),以及甜瓜(C.melo)。
所关注的观赏植物包括但不限于,杜鹃花(Rhododendron spp.),绣球花(Macrophylla hydrangea),木槿(Hibiscus rosasanensis),玫瑰(Rosa spp.),郁金香(Tulipa spp.),水仙花(Narcissus spp.),矮牵牛(Petunia hybrida),康乃馨(Dianthuscaryophyllus),一品红(Euphorbia pulcherrima),和菊花。
所关注的针叶树包括但不限于,松树,如火炬松(Pinus taeda),湿地松(Pinuselliotii),黄松(Pinus ponderosa),黑松(Pinus contorta),和辐射松(Pinus radiata);黄杉(Pseudotsuga menziesii);异叶铁杉(Tsuga canadensis);西加云杉(Piceaglauca);红杉(SEQuoia sempervirens);银杉,如冷杉(Abies amabilis)和香酯冷杉(Abies balsamea);以及香柏,如北美香柏(Thuja plicata)和黄扁柏(Chamaecyparisnootkatensis)。
一些情况下,所关注的植物细胞,植物部分或植物是作物植物(例如玉米、苜蓿、向日葵、芸苔、大豆、棉、红花、花生、高粱、小麦、黍、烟草等等)。
所关注的其他植物包括提供所关注的种子的谷类植物,油料种子植物和豆科植物。所关注的种子包括谷物种子,如玉米,小麦,大麦,稻,高粱,黑麦等等。油料种子植物包括棉,大豆,红花,向日葵,芸苔,玉米,苜蓿,棕榈,椰子等等。豆科植物包括豆类和豌豆。豆类包括瓜尔胶,槐豆,胡芦巴,大豆,四季豆,豇豆,绿豆,利马豆,蚕豆,扁豆,鹰嘴豆等等。
由此,本申请包括其中参入了至少一种编码病原体-特异性蛋白酶的经修饰底物蛋白质核酸分子的转基因植物细胞,植物部分和植物,其中所述经修饰的底物蛋白质具有异源蛋白酶序列,以赋予其对表达特异性蛋白酶的植物病原体的抗性。
方法
本申请的方法包括在植物细胞,植物部分或植物中引入或表达本申请所描述的核酸分子或构建体。本申请中的“引入”指向植物细胞,植物部分或植物呈递核酸分子或构建体,以这样的方式使其得以进入植物细胞内部。所述方法不依赖于将核酸分子或核酸构建体引入到植物细胞,植物部分或植物中的特定方法,只要得以进入植物或植物部分的至少一个细胞即可。引入核苷酸序列,选择转化子以及再生完整植株的方法,可能需要根据具体的植物种进行常规修饰,其是本领域公知的。所述方法包括但不限于,稳定的转化法,瞬时转化法,病毒介导的方法和有性繁殖。由此,核酸分子或构建体可以以附加的形式携带或整合进宿主细胞的基因组中。
本申请中的“稳定的转化”指引入到植物中的所关注的核酸分子或构建体整合进所述植物的基因组中,并能够遗传至其子代。本申请中的“瞬时转化”指引入到植物中的所关注的核酸分子或构建体,不遗传至其子代。
转化植物和将所关注的核苷酸序列引入植物中的方法因转化所靶向的植物、植物部分或植物宿主细胞(即单子叶的或双子叶的)的类型不尽相同。将核苷酸序列引入到植物宿主细胞中的方法包括土壤杆菌-介导的转化(例如发根土壤杆菌(A.rhizogenes)或根瘤土壤杆菌;US Patent Nos.5,563,055和5,981,840),氯化钙直接基因转移(Paszkowski等(1984)EMBO J.3:2717-2722),电穿孔(Riggs等(1986)Proc.Natl.Acad.Sci.USA 83:5602-5606),微注射(Crossway等(1986)Biotechniques 4:320-334),微粒轰击/粒子加速(McCabe等(1988)Biotechnology 6:923-926;和Tomes等,"Direct DNA transfer intointact plant cells via microprojectile bombardment"In:Plant Cell,Tissue,andOrgan Culture:Fundamental Methods(Gamborg&Phillips eds.,Springer-Verlag1995);以及US Patent Nos.4,945,050;5,879,918;5,886,244和5,932,782),聚乙二醇(PEG),噬菌体感染,病毒感染和本领域已知的其他方法。还请参见EP Patent Nos.0295959和0138341。
可以使用各种瞬时转化方法将以上描述的核酸分子或构建体引入植物细胞,植物部分或植物中。瞬时转化植物细胞,植物部分或植物的方法包括但不限于,土壤杆菌感染,微注射或粒子轰击。参见Crossway等(1986)Mol.Gen.Genet.202:179-185;Hepler等(1994)Proc.Natl.Acad.Sci.USA 91:2176-2180;Hush等(1994)J.Cell Sci.107:775-784;和Nomura等(1986)Plant Sci.44:53-58。可供选择地,可以利用病毒载体系统或以排除DNA随后释放的方式沉淀核酸分子或构建体,来转化植物细胞,植物部分或植物。由此,可以出现颗粒-结合的核苷酸序列的转录,但是其释放以整合进基因组的频率大大降低。此类方法包括使用聚乙亚胺(polyethylimine(PEI);Sigma;St.Louis,MO)包被的颗粒。
同样的,可以通过使本申请描述的核酸分子或构建体与病毒或病毒核酸接触,将其引入到植物细胞,植物部分或植物中。一般而言,此类方法包括将核酸分子或构建体参入病毒DNA或RNA分子中。应了解,最初核苷酸序列可作为病毒多蛋白的一部分合成出来,其后在体内或在体外通过蛋白水解缠身所需的重组蛋白。将核苷酸序列引入植物中并在其中表达所编码的蛋白质,包括病毒DNA或RNA分子,的方法是本领域公知的。参见Porta等(1996)Mol.Biotechnol.5:209-221;以及US Patent Nos.5,866,785;5,889,190;5,889,191和5,589,367。
在植物基因组的特定位置靶向插入核酸分子或构建体的方法也是本领域已知的。有些情况下,在所需的基因组的位置插入核酸分子或构建体可利用位点-特异性重组系统实现。参见Int'l Patent Application Publication Nos.WO 99/025821,WO 99/025854,WO 99/025840,WO 99/025855和WO 99/025853。
单子叶植物转化技术是本领域公知的,包括通过原生质体或细胞(例如通过PEG-或电穿孔-介导的摄入,以及颗粒轰击进入愈伤组织)的直接外源核酸分子摄入。通过土壤杆菌转化单子叶植物也有描述。参见Int'l Patent Application Publication No.WO 94/00977和US Patent No.5,591,616;还请参见Christou等(1991)Bio/Technology 9:957-962;Datta等(1990)Bio/Technology8:736-740;Fromm等(1990)Biotechnology 8:833-844;Gordon-Kamm等(1990)Plant Cell 2:603-618;Koziel等(1993)Bio/Technology 11:194-200;Murashige&Skoog(1962)Physiologia Plantarum 15:473-497;Shimamoto等(1989)Nature338:274-276;Vasil等(1992)Bio/Technology 10:667-674;Vasil等(1993)Bio/Technology 11:1553-1558;Weeks等(1993)Plant Physiol.102:1077-1084;和Zhang等(1988)Plant Cell Rep.7:379-384;以及EP Patent Application Nos.0 292 435;0332 581和0 392 225;Int'l Patent Application Publication Nos.WO 93/07278和WO93/21335;和US Patent No.7,102,057。
双子叶植物转化技术是本领域公知的,包括土壤杆菌-介导的技术和无需土壤杆菌的技术。非-土壤杆菌-介导的技术包括通过原生质体或细胞(例如通过PEG-或电穿孔-介导的摄入,以及颗粒轰击,或微注射)的直接外源核酸分子摄入。参见Klein等(1987)Nature327:70-73;Paszkowski等(1984)EMBO J.3:2717-2722;Potrykus等(1985)Mol.Gen.Genet.199:169-177;和Reich等(1986)Bio/Technology 4:1001-10041;以及USPatent No.7,102,057。
可通过已知的方法使经过转化的植物细胞长成植物。参见McCormick等(1986)Plant Cell Rep.5:81-84。这些植物长成,用相同的转化株或不同的株授粉,鉴定具有所需表型特征的子代。生长两个或以上世代,以确定所需的表型特征的表达被稳定的保留并遗传,收获种子确保已实现了所需的表型特征。
本申请提供将本申请的核酸构建体引入到植物、植物部分和植物宿主细胞的方法,所述的核酸构建体例如,本申请的病原体-特异性蛋白酶的经修饰底物蛋白质的表达盒,其中所述底物蛋白质具有异源蛋白酶识别序列。
实施例
参照下述非限定性的实施例可以更加充分地理解本申请,提供所述实施例的目的在于说明而非限定。
实施例1
当与AvrRpt2切割位点的经修饰的PBS1蛋白质瞬时共-表达时通过AvrRpt2激活 RPS5
方法:
瞬时转化:如之前的DeYoung等(2012)中描述的,PBS1RCS2(SEQ ID NO:4;含AvrRpt2切割位点的经修饰的PBS1)被插入含地塞米松-诱导型启动子的载体(pTA7002;Aoyama&Chua(1997),如前)。将所述载体转化进根瘤土壤杆菌菌株GV3101(pMP90)中。如DeYoung等(2012)所描述的,RPS5和AvrRpt2基因也被插入pTA7002(单独的构建体)中,并被独立地转化进入GV3101(pMP90)。用空载体pTA7002,含野生型PBS1基因的pTA7002,以及含AvrPphB的pTA7002转化GV3101(pMP90),用作对照,总计创建了6株菌(列于下文)。
为了在植物中瞬时表达这些基因,如之前的DeYoung等(2012)中所述制备土壤杆菌菌株,在图1A和1B所示的组合中以等比例混合,注入4-周龄粘毛烟草(N.glutinosa)扩展的叶中。在注入后40小时用50μM地塞米松喷洒叶诱导蛋白质表达。
为评价细胞死亡,施用地塞米松24小时后,针对可见的萎陷对叶进行评分。根据DeYoung等(2012),如前中的描述测定电解液泄漏(细胞死亡的定量指标)。
构建体(均于pTA7002中):
1.野生型PBS1;
2.具有AvrRpt2切割位点的PBS1(PBS1RCS2);
3.AvrRpt2;
4.AvrPphB;
5.RPS5;和
6.空载体(pTA7002)。
结果:如图1所示,当野生型PBS1与RPS5和AvrPphB共表达时,叶萎陷强烈(图中最右侧)。这是正对照,证明当被激活后拟南芥RPS5能在烟草中诱导防御性应答(细胞死亡)。野生型PBS1和RPS5与AvrRpt2共表达不诱导明显的萎陷(最左侧的叶,右半部),此与AvrRpt2不能切割野生型PBS1一致。
相比之下,PBS1RCS2与RPS5和AvrRpt2共表达诱导了强烈的叶萎陷(叶1和2的左边),证明RPS5可通过PBS1RCS2切割被激活。图2对各次处理中的细胞死亡进行定量,与图1A中所示的可见症状一致。
这一实施例显示PBS1激活环中的AvrPphB切割位点可被名为AvrRpt2的、来自丁香假单胞菌的不同蛋白酶识别序列替换。这一替换使得PBS1成为AvrRpt2而非AvrPphB的底物蛋白质。由此,经修饰的PBS1与AvrRpt2和RPS5的共表达导致RPS5激活,而野生型PBS1与AvrRpt2和RPS5共表达则不。
实施例2
用含AvrRpt2切割位点的经修饰的PBS1蛋白质转化拟南芥赋予对表达AvrRpt2的 丁香假单胞菌菌株的抗性
方法:
稳定的转化:根据Clough&Bent的方法,通过根瘤土壤杆菌菌株GV3101(pMP90),用PBS1RCS2构建体稳定转化在RPS2和RIN4基因中包含突变(使得拟南芥对表达AvrRpt2的丁香假单胞菌敏感)的拟南芥突变系,利用对除草剂草胺磷的抗性作为选择标记。参见Clough&Bent(1998)Plant J.16:735-743。选择了5株独立的转基因植物。用无针1mL注射器以0.5x107克隆形成单位(cfu)每毫升的浓度,用表达AvrRpt2的丁香假单胞菌菌株DC3000接种这些单个植物的叶。注射后24小时,针对可见的萎陷(细胞死亡)对叶进行评分。野生型拟南芥用作正对照。
结果:如图3所示,应答丁香假单胞菌菌株DC3000(AvrRpt2)接种,转基因系1,2,4和5显示在右侧叶萎陷,其表明RPS5应答AvrRpt2激活细胞程序性死亡。系3未显示叶萎陷,可能是由于PBS1RCS2转基因表达失败。这一没有叶萎陷证明,应答DC3000(AvrRpt2)接种,亲本rin4rps2突变系在这一时间点不诱导细胞死亡,其之前已被Day等报道,参见Day等(2005)Plant Cell17:1292-1305。细胞死亡的激活表示转基因系1,2,4和5已获得了对DC3000(AvrRpt2)的抗病性;由此PBS1RCS2的表达使拟南芥的内源RPS5基因赋予对该菌株的抗性。
实施例3(预见性的)
与含BEC1019切割位点的经修饰的PBS1蛋白质共表达时,来自白粉病真菌的蛋白 酶(BEC1019)激活RPS5
已确定了的几个不同种的白粉病真菌的基因组序列,所述真菌包括感染小麦和大麦(Blumeria graminis)的种和感染拟南芥的种(Golovinomyces cichoracearum和G.orontii)。对于所述基因组中存在可能在感染宿主植物的过程中分泌的蛋白酶进行了分析。已鉴定出了一种在这些真菌种中保守的此类蛋白酶,命名为BEC1019。已表明BEC1019基因沉默使得大麦白粉病毒力妥协(compromise virulence),表明需要这一蛋白酶以引起疾病,至少对于大麦是这样((Pliego,C.,Nowara,D.,Bonciani,G.,Gheorghe,D.M.,Xu,R.,Surana,P.,Whigham,E.,Nettleton,D.,Bogdanove,A.J.,Wise,R.P.,Schweizer,P.,Bindschedler,L.V.,和Spanu,P.D.2013.Host-induced gene silencing in barleypowdery mildew reveals a class of ribonuclease-like effectors.Mol PlantMicrobe Interact 26:633-642)。
BEC1019蛋白酶识别序列的核酸分子将被插入到PBS1的激活环中。所述经修饰的PBS1核酸分子将转化进缺少功能性PBS 1基因但对RPS5而言是野生型的拟南芥植物中。所述拟南芥将成为抗白粉病种,如G.cichoracearum和G.golovinomyces感染的。如果得到确认,那么含BEC1019切割位点的RPS5和PBS1可被转化进各种作物植物(例如小麦,大麦,葡糖,等等),以赋予其对白粉病的抗性。
实施例4(预见性的)
当与含TEV多蛋白切割位点的经修饰的PBS1蛋白质共表达时,RPS5被烟草蚀斑病 毒(TEV)蛋白酶激活
若干种病毒感染编码加工病毒多蛋白所需的蛋白酶的植物。编码TEV蛋白酶的蛋白酶识别序列的核酸分子将被插入到PBS1的激活环中。所述经修饰的PBS1和野生型RPS5核酸分子将用于转化烟草的同类本氏烟草(Nicotiana benthamiana)。通过RPS5激活TEV蛋白酶将首先利用实施例1中描述的瞬时表达系统验证。假定RPS5如所预计的被激活,所述经修饰的PBS1基因和RPS5将被转化进烟草,检验所得的转基因对TEV感染的抗性。这一基因对将赋予抗性。
实施例5
当与含AvrRpt2切割位点的经修饰的PBS1蛋白质瞬时共表达时RPS5被AvrRpt2激
方法:
构建质粒用于转基因表达。利用重叠PCR和pBSDONR PBS1模板,构建含有插入到AvrPphB切割位点的RIN4切割位点序列的PBS1::RCS2进入克隆(entry clone)。实施Multisite Gateway LR Clonase反应将进入克隆,pBAV154目的载体(带有地塞米松-诱导型启动子)和含3xHA C-末端表位的克隆重新组合。利用定点诱变PCR,由pBSDONR PBS1模板创建,其中的PBS1AvrPphB切割位点分别被RIN4切割位点2(RCS2)和TEV切割位点(TCS)替代的PBS1RCS2和PBS1TCS进入克隆。利用LR反应将这些进入克隆和3xHA重组进pTA7002目的载体(带有地塞米松-诱导型启动子)。PCR-扩增AvrPphB,AvrRpt2,C122A(AvrRpt2突变体)和TEV蛋白酶的编码区域,并用Gateway BP Clonase克隆进Gateway载体pBSDONR P1-P4,以创建进入克隆,其利用LR反应与pTA7002和5xMyc重组。为创建被天然PBS1调节元件(pPBS1-PBS1RCS-HA)驱动的、与3xHA融合的PBS1RCS2植物表达构建体,将跨PBS1启动子的875bpApaI/XhoI片段和跨PBS 1终止子的400bp NotI/SacI片段以及包含Gateway盒的1731bpXhoI/XbaI片段插入进pGreen0229二元载体中。利用LR克隆酶(clonase)将PBS1RCS2和3xHA重组进这一目的构建体。所有的构建体通过测序验证。克隆中所用的引物列于以下表4中。
表4.引物序列
植物材料和生长条件。拟南芥,本氏烟草和粘毛烟草植物处于9小时光照/15小时黑暗循环,24℃下,在Metro-Mix 360plotting混合物(Sun Gro Horticulture,http:// www.sungrow.com)中生长。PBS1(pbs1-7;Salk_062464C)和RPS5(rps5-3;Salk_015294C)的转移-DNA插入系经由俄亥俄州立大学的拟南芥生物资源中心从Salk T-DNA Express集合获得。
评估在拟南芥中对细菌感染的抗性。为进行过敏感应答(HR)试验,丁香假单胞菌菌株DC3000(avrPphB)和DC3000(avrRpt2)在King培养基B琼脂平板上生长,用无针注射器以108克隆形成单位(cfu)每ml(OD600=0.1)的浓度渗透到5-周龄拟南芥叶。接种后21小时对叶评分并拍照。为测定植物叶中的细菌生长,以105cfu/ml的浓度渗透DC3000(avrRpt2)5-周龄的拟南芥植物叶。用打孔器收集总计0.5cm2的叶组织,在10mM MgCl2中研磨,在选择培养基(添加有100μg/mL利福平和50μg/mL卡那霉素的King培养基B)上连续稀释铺板,在所示的时间点上四个重复。
在烟草种中的瞬时表达试验。为瞬时表达试验,将上述的地塞米松-诱导的构建体迁移(mobilized)进根瘤土壤杆菌菌株GV3101中。在液体LB培养基中过夜培养后,沉淀细菌细胞并重悬于有100μM乙酰丁香酮(Sigma-Aldrich)10mM MgCl2中,调节至OD600为0.1,室温下温育2小时,渗透4-周龄的本氏烟草或粘毛烟草叶。注射后40小时,用50μM地塞米松喷洒叶。施用地塞米松6或24小时后,收获样品提取蛋白质,施用地塞米松24小时后评估HR。
电解液泄漏试验。为测定土壤杆菌-渗透的烟草叶的电解液泄漏,地塞米松诱导后2小时,由4片单独的叶收集8个叶盘(leaf discs)(直径6mm)。用双蒸水洗三次,然后,所述的叶盘浮于5ml含0.001%Tween 20(Sigma-Aldrich)的双蒸水中。用Traceable PenConductivity Meter(VWR)在所示的时间点监控四个重复中的导电率。
免疫印迹分析。将表达所关注的蛋白质的烟草叶组织在提取缓冲液(150mM NaCl,50mM Tris[pH 7.5],0.2%Nonidet P-40[Sigma-Aldrich],1%植物蛋白酶抑制剂混合物[Sigma-Aldrich])中磨碎。12,000rpm,10min沉淀细胞碎片,收集的上清液在4-20%梯度Tris-Hepes-SDS聚丙烯酰胺凝胶(Thermo Scientific)上分离。用1:2000稀释的过氧化物酶-偶联的抗-HA抗体(Sigma-Aldrich)或用1:4000稀释的过氧化物酶-偶联的抗-c-Myc抗体(Roche)检测所述蛋白质。地塞米松诱导后16小时,制备来自表达pDEX-PBS1::RCS2-HA的转基因拟南芥组织的总蛋白质,进行免疫印迹分析。由健康的植物或用以108cfu/ml的密度接种DC3000(e.v.)或DC3000(avrRpt2)后12小时的植物制备来自表达pPBS1-PBS1RCS2-HA的转基因拟南芥组织的总蛋白质,用Pierce抗-HA琼脂糖(Thermo Scientific)进行免疫沉淀,用于免疫印迹分析。
结果:如图4所示,PBS1中AvrPphB切割位点侧翼的7个氨基酸(GDKSHVS;SEQ IDNO:1)被RIN4切割位点2(RCS2)序列(VPKFGDW;SEQ ID NO:2)替代。PBS1RCS2与AvrRpt2和PRS5的共表达诱导了RPS5-依赖的细胞死亡应答,而在不存在AvrRpt2或PBS1RCS2时没有检测到细胞死亡(图5)。AvrRpt2的蛋白酶-缺陷突变体形式(C122A)仅诱导了非常微弱的宏观应答(macroscopic response)。为定量HR,实施了电解液泄漏分析作为细胞死亡测定。与宏观症状一致,PBS1RCS2与AvrRpt2和被AvrPphB切割的野生型PBS1诱导了等量的电解液泄漏,而PBS1RCS2与C122A仅微弱地激活了RPS5(图6)。在诱导后6小时,免疫印迹试验确认了AvrRpt2切割了PBS1RCS2,而C122A或AvrPphB没有(图7)。在诱导后24小时,AvrRpt2-诱导的切割增加,C122A也诱导了少量切割(图7),与所观察到的这一构建体微弱地诱导细胞死亡一致(图5和6)。综合数据,确定了PBS1RCS2是AvrRpt2的底物,且AvrRpt2-介导的切割激活RPS5。
为了评估AvrRpt2-介导的PBS1RCS2切割是否能激活在拟南芥中以天然水平表达的RPS5,用天然PBS1调节元件(pPBS1-PBS1RCS2-HA/rin4rps2)控制下的PBS1RCS2稳定转化拟南芥rin4rps2突变体。rin4rps2突变体用于避免内源RPS2抗病性蛋白质被AvrRpt2激活。如图8所示,两个独立的转基因系(#5和#2)在用丁香假单胞菌菌株DC3000(avrRpt2)接种后21小时显示可见的HR,而未转化的rin4rps2突变体没有。植物中的(In planta)细菌生长试验表明,DC3000(avrRpt2)在转基因系#5和#2中的生长被限制在比rin4rps2少100-到200-倍的水平,而转基因系#1和#3中的细菌生长比rin4rps2低约5-10倍(图9;通过双尾Student’st-Test(P<0.01)或单向ANOVA和Tukey’s HSD(P<0.01)确定了在统计学上显著的差异)。细菌生长的限制与PBS1RCS2表达水平相关(图10)。如图8所示,抗-HA琼脂糖免疫沉淀来自转基因系的蛋白质,用抗-HA抗体实施免疫印迹。此外,用DC3000(avrRpt2)接种后12小时在转基因系#5中检测到PBS1RCS2的切割产物,而用缺少avrRpt2的DC3000(DC3000(e.v.)接种的没有;图11),表明AvrRpt2切割PBS1RCS2在拟南芥中激活RPS5。此外,这些转基因植物在DC3000(avrPphB)接种后21小时显示HR,证明RPS5的天然识别特异性在这些转基因系中保留(图12)。因而,在PBS1RCS2转基因植物中RPS5-介导的抗病性可被两种不同的蛋白酶效应物蛋白质激活,证明RPS5的识别特异性可通过添加新的PBS1‘诱饵(decoy)’拷贝得以扩展。
为测试这一诱饵方法是否可以扩展到识别丁香假单胞菌之外的病原体,创建了可被烟草蚀斑病毒的NIa蛋白酶切割的PBS1诱饵(称作PBS1TCS)(图13)。TEV是正链RNA病毒,其编码必须被其内嵌的NIa蛋白酶翻译后加工的多蛋白。这一蛋白酶是病毒复制所必需的,因而,被其酶促活性触发的R蛋白质应是高度耐久的(highly durable),这是因为,对病毒而言同时改变其蛋白酶的特异性和内嵌在其多蛋白中的蛋白酶切割位点是极其困难的。
TEV蛋白酶和RPS5在本氏烟草中与PBS1TCS瞬时共表达(图14)。仅当RPS5与PBS1TCS和TEV蛋白酶共表达时,RPS5-介导的细胞死亡被诱导,而当PBS1TCS或TEV蛋白酶被排除时则不然(图15)。利用电解液泄漏定量细胞死亡,显示PBS1TCS和TEV蛋白酶与野生型PBS1和AvrPphB诱导了等量的RPS5-介导的细胞死亡(图16)。免疫印迹分析确认了,诱导后6小时,TEV蛋白酶切割PBS1TCS,而AvrPphB不然。TEV蛋白酶也不切割野生型PBS1。这些数据确立了PBS1可被工程化以起到诱饵的作用,检测来自两个非常不同的病原体种类,病毒和细菌,的蛋白酶的存在,开启了工程化以实现对更广泛的病原体阵营的抗性的途径。
实施例6
大豆的AvrPphB识别
在这一实施例中,带有AvrPphB或AvrB::Ω的丁香假单胞菌pv.glycinea Race4菌株(非-功能性效应物,用作空载体对照)渗透到大豆培育系Flambeau具一小叶的(unifoliolate)叶中,注射后24小时,从植物上去除所述叶,用热的70%乙醇清理并拍照。
大豆以HR应答表达AvrPphB的丁香假单胞菌,显示出叶变褐(图17中所示的暗区域)。这些数据显示,如果作物植物已经具有通过类似的机制检测AvrPphB的能力,利用本申请的诱饵法在所述作物植物中工程化抗性时,可能无需拟南芥RPS5的转移。此外,PBS1在包括大豆在内的作物植物中高度保守,因而,可以工程化大豆以及其他作物植物,通过对其内源PBS1基因进行小的改变来检测各种病原体蛋白酶。
本说明书中引用的所有专利,专利申请,专利申请公开以及其他出版物均通过提述全文并入本申请。
本申请已结合目前被认为最实用且优选的具体实施方案进行了描述。本申请以举例说明的方式进行呈现,但并非旨在限定于所公开的具体实施方案。因此,本领域技术人员可认识到本申请旨在涵盖所附权利要求中阐述的所述组合物和方法的全部修饰和改变方案。

Claims (12)

1.重组核酸分子,其包含与核苷酸序列可操作连接的异源启动子,所述核苷酸序列编码至少一种具有异源病原体-特异性蛋白酶识别序列的、通过植物病原体表达的植物病原体-特异性蛋白酶的底物蛋白质,其中所述底物蛋白质选自AvrPphB敏感1(PBS1)和抗丁香假单胞菌斑点致病变种1(RPM1)相互作用蛋白质4(RIN4),且其中所述异源病原体-特异性蛋白酶识别序列选自VPKFGDW(SEQ ID NO:2)、QEHGCQL(SEQ ID NO:3)、ENLYFQG(SEQ IDNO:4)、EPVSTQG(SEQ ID NO:27)和PVVQAQS(SEQ ID NO:28)。
2.权利要求1的重组核酸分子,其中当所述底物蛋白质是PBS1时,所述异源病原体-特异性蛋白酶识别序列位于参照SEQ ID NO:6的第240位氨基酸到第250位氨基酸之间。
3.经修饰的植物病原体-特异性蛋白酶的底物蛋白质,其包含具有异源蛋白酶识别序列的氨基酸序列,其中所述底物蛋白质由权利要求1的重组核酸分子编码。
4.载体,其包含根据权利要求1的重组核酸分子。
5.制备经转化的植物细胞以赋予其对表达病原体-特异性蛋白酶的植物病原体的抗病性的方法,所述方法包含将根据权利要求1的重组核酸分子转移至所述植物细胞。
6.权利要求5的方法,其中所述经转化的植物细胞来自选自单子叶植物和双子叶植物的植物。
7.制备经转化的植物以赋予其对表达病原体-特异性蛋白酶的植物病原体的抗病性的方法,所述方法包含将根据权利要求1的重组核酸分子转移至所述植物。
8.权利要求7的方法,其中所述经转化的植物选自单子叶植物和双子叶植物。
9.保护植物免受植物病原体感染的方法,所述植物病原体分泌至少一种特异性蛋白酶,所述方法包含以下步骤:
将编码至少一种由所述植物病原体分泌的植物病原体-特异性蛋白酶的底物蛋白质的核苷酸序列引入所述植物,所述底物蛋白质内具有异源病原体-特异性蛋白酶识别序列,其中所述底物蛋白质选自AvrPphB敏感1(PBS1)和抗丁香假单胞菌斑点致病变种1(RPM1)相互作用蛋白质4(RIN4),且其中所述异源病原体-特异性蛋白酶识别序列选自VPKFGDW(SEQ IDNO:2)、QEHGCQL(SEQ ID NO:3)、ENLYFQG(SEQ ID NO:4)、EPVSTQG(SEQ ID NO:27)和PVVQAQS(SEQ ID NO:28)。
10.权利要求9的方法,其中所述核苷酸序列编码选自SEQ ID NO:6和SEQ ID NO:8的氨基酸序列的多肽,其中所述多肽是植物病原体-特异性蛋白酶的底物蛋白质。
11.重组核酸分子,其包含编码选自SEQ ID NO:6和SEQ ID NO:8的氨基酸序列的多肽的核苷酸序列,其中所述多肽是植物病原体-特异性蛋白酶的底物蛋白质。
12.由权利要求11的重组核酸分子编码的经分离的多肽,其包含选自SEQ ID NO:6和SEQ ID NO:8的氨基酸序列,其中所述多肽是植物病原体-特异性蛋白酶的底物蛋白质。
CN201380058718.XA 2012-09-13 2013-09-04 赋予植物抗病性的组合物和系统及其使用方法 Active CN104812901B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261700500P 2012-09-13 2012-09-13
US61/700,500 2012-09-13
PCT/US2013/057979 WO2014042923A1 (en) 2012-09-13 2013-09-04 Compositions and systems for conferring disease resistance in plants and methods of use thereof

Publications (2)

Publication Number Publication Date
CN104812901A CN104812901A (zh) 2015-07-29
CN104812901B true CN104812901B (zh) 2018-08-10

Family

ID=50278610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380058718.XA Active CN104812901B (zh) 2012-09-13 2013-09-04 赋予植物抗病性的组合物和系统及其使用方法

Country Status (5)

Country Link
US (2) US9816102B2 (zh)
EP (1) EP2895610B1 (zh)
CN (1) CN104812901B (zh)
BR (1) BR112015005389B1 (zh)
WO (1) WO2014042923A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6796142B2 (ja) 2016-04-06 2020-12-02 テラダイオード, インコーポレーテッド 可変レーザビームプロファイルのための光ファイバ構造および方法
WO2018102094A1 (en) 2016-12-02 2018-06-07 TeraDiode, Inc. Laser systems utilizing fiber bundles for power delivery and beam switching
WO2018187182A1 (en) * 2017-04-05 2018-10-11 Indiana University Research And Technology Corporation Compositions and systems for conferring disease resistance in soybean plants and methods of use thereof
WO2018187796A1 (en) * 2017-04-07 2018-10-11 Donald Danforth Plant Science Center Methods for increasing resistance to cotton bacterial blight and plants produced thereby
CN108709997B (zh) * 2018-05-28 2020-09-18 中国林业科学研究院林业研究所 Lrr受体激酶的底物寻找方法
EP3831946A4 (en) * 2018-07-31 2022-08-10 The University of Tokyo METHOD FOR MEASURING MEMBRANE PROTEIN ACTIVITY
WO2020219879A1 (en) * 2019-04-25 2020-10-29 Indiana University Research And Technology Corporation Use of pbs1 genes from plant species to engineer disease resistance
CN110628786B (zh) * 2019-07-13 2023-06-09 周口师范学院 基因bec1019在提高小麦的全蚀病抗性中的应用
CN110592098A (zh) * 2019-07-13 2019-12-20 周口师范学院 基因bec1019在提高小麦的白粉病抗性中的应用
CN113355302B (zh) * 2021-05-19 2023-08-11 西北农林科技大学 负调控植物免疫的cs10蛋白或cs10蛋白的编码基因的应用
CN114941008B (zh) * 2022-05-25 2023-03-24 广东省农业科学院设施农业研究所 菜心LRR受体蛋白激酶基因BraEFR在抗霜霉病中的应用

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096825A (en) 1983-01-12 1992-03-17 Chiron Corporation Gene for human epidermal growth factor and synthesis and expression thereof
US4485066A (en) 1983-02-08 1984-11-27 International Business Machines Corporation Method of making elastomer-coated hot roll
DE3474837D1 (en) 1983-09-03 1988-12-01 Bass Plc Beer and other beverages and their manufacture
US5380831A (en) 1986-04-04 1995-01-10 Mycogen Plant Science, Inc. Synthetic insecticidal crystal protein gene
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US5569597A (en) 1985-05-13 1996-10-29 Ciba Geigy Corp. Methods of inserting viral DNA into plant material
US5268463A (en) 1986-11-11 1993-12-07 Jefferson Richard A Plant promoter α-glucuronidase gene construct
US5608142A (en) 1986-12-03 1997-03-04 Agracetus, Inc. Insecticidal cotton plants
US4873192A (en) 1987-02-17 1989-10-10 The United States Of America As Represented By The Department Of Health And Human Services Process for site specific mutagenesis without phenotypic selection
EP0292435B1 (en) 1987-05-20 1995-07-26 Ciba-Geigy Ag Zea mays plants and transgenic zea mays plants regenerated from protoplasts or protoplast-derived cells
NZ225044A (en) 1987-06-19 1990-01-29 Plant Cell Res Inst Bertholletia excelsa dna molecule; sulphur rich storage protein
US5316931A (en) 1988-02-26 1994-05-31 Biosource Genetics Corp. Plant viral vectors having heterologous subgenomic promoters for systemic expression of foreign genes
EP0332581B1 (de) 1988-03-08 1996-12-11 Ciba-Geigy Ag Regeneration von fertilen Gramineen-Pflanzen aus der Unterfamilie Pooideae ausgehend von Protoplasten
US5990387A (en) 1988-06-10 1999-11-23 Pioneer Hi-Bred International, Inc. Stable transformation of plant cells
US5023179A (en) 1988-11-14 1991-06-11 Eric Lam Promoter enhancer element for gene expression in plant roots
US5110732A (en) 1989-03-14 1992-05-05 The Rockefeller University Selective gene expression in plants
AU638448B2 (en) 1989-03-17 1993-07-01 E.I. Du Pont De Nemours And Company External regulation of gene expression
ATE241699T1 (de) 1989-03-24 2003-06-15 Syngenta Participations Ag Krankheitsresistente transgene pflanze
US5879918A (en) 1989-05-12 1999-03-09 Pioneer Hi-Bred International, Inc. Pretreatment of microprojectiles prior to using in a particle gun
US5641876A (en) 1990-01-05 1997-06-24 Cornell Research Foundation, Inc. Rice actin gene and promoter
CA2057014C (en) 1990-03-30 2001-07-24 Toshihiko Kaminuma Process for purification of polypeptide
ES2187497T3 (es) 1990-04-12 2003-06-16 Syngenta Participations Ag Promotores preferentemente en tejidos.
US5498830A (en) 1990-06-18 1996-03-12 Monsanto Company Decreased oil content in plant seeds
US5932782A (en) 1990-11-14 1999-08-03 Pioneer Hi-Bred International, Inc. Plant transformation method using agrobacterium species adhered to microprojectiles
US5459252A (en) 1991-01-31 1995-10-17 North Carolina State University Root specific gene promoter
US5399680A (en) 1991-05-22 1995-03-21 The Salk Institute For Biological Studies Rice chitinase promoter
JPH06510187A (ja) 1991-08-27 1994-11-17 ノバルティス アクチエンゲゼルシャフト 同翅類昆虫に対する殺虫性質を有したタンパク質及び植物保護におけるそれらの用法
PT100930B (pt) 1991-10-04 2004-02-27 Univ North Carolina State Plantas transgenicas resistentes aos agentes patogenicos e metodo para a sua producao
UA48104C2 (uk) 1991-10-04 2002-08-15 Новартіс Аг Фрагмент днк, який містить послідовність,що кодує інсектицидний протеїн, оптимізовану для кукурудзи,фрагмент днк, який забезпечує направлену бажану для серцевини стебла експресію зв'язаного з нею структурного гена в рослині, фрагмент днк, який забезпечує специфічну для пилку експресію зв`язаного з нею структурного гена в рослині, рекомбінантна молекула днк, спосіб одержання оптимізованої для кукурудзи кодуючої послідовності інсектицидного протеїну, спосіб захисту рослин кукурудзи щонайменше від однієї комахи-шкідника
TW261517B (zh) 1991-11-29 1995-11-01 Mitsubishi Shozi Kk
WO1993021335A2 (en) 1992-04-15 1993-10-28 Plant Genetic Systems, N.V. Transformation of monocot cells
WO1994000977A1 (en) 1992-07-07 1994-01-20 Japan Tobacco Inc. Method of transforming monocotyledon
US5401836A (en) 1992-07-16 1995-03-28 Pioneer Hi-Bre International, Inc. Brassica regulatory sequence for root-specific or root-abundant gene expression
HUT70467A (en) 1992-07-27 1995-10-30 Pioneer Hi Bred Int An improved method of agrobactenium-mediated transformation of cultvred soyhean cells
CA2127807A1 (en) 1992-11-20 1994-06-09 John Maliyakal Transgenic cotton plants producing heterologous bioplastic
IL108241A (en) 1992-12-30 2000-08-13 Biosource Genetics Corp Plant expression system comprising a defective tobamovirus replicon integrated into the plant chromosome and a helper virus
AU6162294A (en) 1993-01-13 1994-08-15 Pioneer Hi-Bred International, Inc. High lysine derivatives of alpha-hordothionin
US5583210A (en) 1993-03-18 1996-12-10 Pioneer Hi-Bred International, Inc. Methods and compositions for controlling plant development
US5789156A (en) 1993-06-14 1998-08-04 Basf Ag Tetracycline-regulated transcriptional inhibitors
US5814618A (en) 1993-06-14 1998-09-29 Basf Aktiengesellschaft Methods for regulating gene expression
WO1995005731A1 (en) 1993-08-24 1995-03-02 Cornell Research Foundation, Inc. Gene conferring disease resistance to plants
JPH07177130A (ja) 1993-12-21 1995-07-14 Fujitsu Ltd エラーカウント回路
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US5837458A (en) 1994-02-17 1998-11-17 Maxygen, Inc. Methods and compositions for cellular and metabolic engineering
US5633363A (en) 1994-06-03 1997-05-27 Iowa State University, Research Foundation In Root preferential promoter
US5608144A (en) 1994-08-12 1997-03-04 Dna Plant Technology Corp. Plant group 2 promoters and uses thereof
US5792931A (en) 1994-08-12 1998-08-11 Pioneer Hi-Bred International, Inc. Fumonisin detoxification compositions and methods
US5670356A (en) 1994-12-12 1997-09-23 Promega Corporation Modified luciferase
GB9515941D0 (en) 1995-08-03 1995-10-04 Zeneca Ltd DNA constructs
WO1996038562A1 (en) 1995-06-02 1996-12-05 Pioneer Hi-Bred International, Inc. HIGH THREONINE DERIVATIVES OF α-HORDOTHIONIN
HUP9900878A2 (hu) 1995-06-02 1999-07-28 Pioneer Hi-Bred International, Inc. Alfa-hordotionin nagy metionintartalmú származéka
US5837876A (en) 1995-07-28 1998-11-17 North Carolina State University Root cortex specific gene promoter
GB9516241D0 (en) 1995-08-08 1995-10-11 Zeneca Ltd Dna constructs
US5874304A (en) 1996-01-18 1999-02-23 University Of Florida Research Foundation, Inc. Humanized green fluorescent protein genes and methods
US6072050A (en) 1996-06-11 2000-06-06 Pioneer Hi-Bred International, Inc. Synthetic promoters
US5986174A (en) 1996-06-21 1999-11-16 Pioneer Hi-Bred International, Inc. Maize promoter sequence for leaf- and stalk-preferred gene expression
JP3441899B2 (ja) 1996-11-01 2003-09-02 理化学研究所 完全長cDNAライブラリーの作成方法
US6232529B1 (en) 1996-11-20 2001-05-15 Pioneer Hi-Bred International, Inc. Methods of producing high-oil seed by modification of starch levels
US5981840A (en) 1997-01-24 1999-11-09 Pioneer Hi-Bred International, Inc. Methods for agrobacterium-mediated transformation
ES2340857T3 (es) 1997-09-16 2010-06-10 Centocor Ortho Biotech Inc. Metodo para la sintesis quimica completa y emsamblaje de genes y genomas.
ES2245487T3 (es) 1997-11-18 2006-01-01 Pioneer Hi-Bred International, Inc. Composiciones y metodos para la modificacion genetica de plantas.
EP1032692A1 (en) 1997-11-18 2000-09-06 Pioneer Hi-Bred International, Inc. Targeted manipulation of herbicide-resistance genes in plants
DE69833457T2 (de) 1997-11-18 2006-09-14 Pioneer Hi-Bred International, Inc. Neuartige methode zur integration von fremd-dna ins eukaryotische genom
CA2306053C (en) 1997-11-18 2003-01-21 Pioneer Hi-Bred International, Inc. Mobilization of viral genomes from t-dna using site-specific recombination systems
AU762993C (en) 1998-02-26 2004-06-10 Pioneer Hi-Bred International, Inc. Constitutive maize promoters
US6476292B1 (en) * 1998-02-26 2002-11-05 Pioneer Hi-Bred International, Inc. Methods for enhancing disease resistance in plants
KR100519895B1 (ko) 1998-04-23 2005-10-13 다카라 바이오 가부시키가이샤 Dna 의 합성방법
DE69928264T2 (de) 1998-08-20 2006-07-13 Pioneer Hi-Bred International, Inc. Samen-bevorzugende promotoren
WO2000012733A1 (en) 1998-08-28 2000-03-09 Pioneer Hi-Bred International, Inc. Seed-preferred promoters from end genes
US6518487B1 (en) 1998-09-23 2003-02-11 Pioneer Hi-Bred International, Inc. Cyclin D polynucleotides, polypeptides and uses thereof
US6818395B1 (en) 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
US7060491B1 (en) 1999-11-18 2006-06-13 Pioneer Hi-Bred International, Inc. Polynucleotides encoding novel BT toxin receptors from lepidopteran insects
US6338168B1 (en) 2000-09-08 2002-01-15 Carolyn E. Valentine Weight core drain covering system
US7462481B2 (en) 2000-10-30 2008-12-09 Verdia, Inc. Glyphosate N-acetyltransferase (GAT) genes
AU2018102A (en) 2000-10-30 2002-05-15 Maxygen Inc Novel glyphosate n-acetyltransferase (gat) genes
US6858778B1 (en) 2000-11-07 2005-02-22 Pioneer Hi-Bred International, Inc. Plants transformed with a DNA construct comprising a nucleic acid molecule encoding an 18 kD α-globulin
US7009087B1 (en) 2000-12-01 2006-03-07 Pioneer Hi-Bred International, Inc. Compositions and methods for altering the disulfide status of proteins
US6664387B2 (en) 2001-01-17 2003-12-16 Korea Kumho Petrochemical Co., Ltd. Expression cassette and plasmid for strong constitutive gene expression and the use thereof
US6921815B2 (en) 2001-03-29 2005-07-26 Pioneer Hi-Bred International, Inc. Cytokinin Oxidase Promoter from Maize
ES2275015T3 (es) 2001-07-13 2007-06-01 Pioneer Hi-Bred International, Inc. Promotores especificos de tejido vascular.
WO2003018766A2 (en) 2001-08-27 2003-03-06 Syngenta Participations Ag Self-processing plants and plant parts
AU2001289843A1 (en) 2001-08-28 2002-02-13 Bayer Cropscience Ag Polypeptides for identifying herbicidally active compounds
DE60231651D1 (de) 2001-12-21 2009-04-30 Immunex Corp Proteinreinigungsverfahren
WO2003092360A2 (en) 2002-04-30 2003-11-13 Verdia, Inc. Novel glyphosate-n-acetyltransferase (gat) genes
WO2004022770A2 (en) 2002-09-05 2004-03-18 Invitrogen Corporation Compositions and methods for synthesizing nucleic acids
US20040053289A1 (en) 2002-09-09 2004-03-18 The Regents Of The University Of California Short interfering nucleic acid hybrids and methods thereof
US7220356B2 (en) 2002-09-13 2007-05-22 Biogen Idec Inc. Method of purifying polypeptides by simulated moving bed chromatography
US7083948B1 (en) 2002-12-24 2006-08-01 Immunex Corporation Polypeptide purification reagents and methods for their use
NZ542316A (en) 2003-02-14 2006-04-28 Biogen Idec Inc An expression cassette and vector for transient or stable expression of exogenous molecules
CA2558581A1 (en) 2004-03-01 2005-09-09 Japan Science And Technology Agency Novel method for the synthesis of nucleic acid without protecting base moiety
US7518035B2 (en) 2004-03-23 2009-04-14 Monsanto Technology Llc Promoter molecules for use in plants
MX2007003582A (es) 2004-09-24 2007-05-23 Monsanto Technology Llc Moleculas promotoras para uso en plantas.
CA2526686A1 (en) 2004-12-11 2006-06-11 Sungene Gmbh Expression cassettes for regulating meristem-preferential or meristem-specific expression in plants
US7408055B2 (en) 2005-02-10 2008-08-05 Monsanto Technology Llc Promoter molecules for use in plants
BRPI0611681B1 (pt) * 2005-06-08 2018-01-16 E.I. Du Pont De Nemours And Company Moléculas de ácido nucléico isolada, cassete de expressão, métodos para proteger uma planta de uma praga de inseto, método de obtenção de uma planta transformada, protoxina isolada, composição, método para impactar uma praga de inseto
EP1904622B1 (en) 2005-07-08 2014-01-08 Monsanto do Brasil LTDA Constitutive promoters from poplar and uses thereof
EP1981978B1 (en) 2006-02-08 2011-01-19 USV Limited Affinity polypeptide for purification of recombinant proteins
JP4499141B2 (ja) 2007-09-05 2010-07-07 富士通株式会社 修飾核酸合成用アミダイド及び修飾核酸合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Molecular characterization of proteolytic cleavage sites of the Pseudomonas syringae effector AvrRpt2;CHISHOLM,et al;《Proc Natl Acad Sci》;20050208;第102卷(第6期);全文 *
Proteases in pathogenesis and plant defence;YIJI XIA,et al;《Cellular microbiology》;20041001;第6卷(第10期);全文 *

Also Published As

Publication number Publication date
BR112015005389A2 (pt) 2017-08-08
US9816102B2 (en) 2017-11-14
CN104812901A (zh) 2015-07-29
US20150247163A1 (en) 2015-09-03
BR112015005389B1 (pt) 2022-10-18
EP2895610B1 (en) 2019-11-06
EP2895610A4 (en) 2016-03-16
WO2014042923A1 (en) 2014-03-20
EP2895610A1 (en) 2015-07-22
US20180051297A1 (en) 2018-02-22

Similar Documents

Publication Publication Date Title
CN104812901B (zh) 赋予植物抗病性的组合物和系统及其使用方法
EP2113512B1 (en) Antifungal polypeptides
WO2018187182A1 (en) Compositions and systems for conferring disease resistance in soybean plants and methods of use thereof
US7700832B2 (en) Isolated nucleic acids encoding antipathogenic polypeptides and uses thereof
CN102245775A (zh) 增强植物对细菌病原体的抗性的方法
WO2007087567A2 (en) Antifungal polypeptides
US7714184B2 (en) Maize antimicrobial nucleic acids useful for enhancing plant resistance to pathogens
US20240150784A1 (en) Small auxin upregulated (saur) gene for the improvement of root system architecture, waterlogging tolerance, drought resistance and yield in plants and methods of uses
US7317146B2 (en) Production of cereal grain with reduced starch granule size and uses thereof
US20130097734A1 (en) Late blight resistance genes
US20200010847A1 (en) Compositions and systems for conferring disease resistance in plants and methods of use thereof
US20120291156A1 (en) Method for increasing the resistance of a plant or a part thereof to a pathogen, method for screening the resistance of a plant or part thereof to a pathogen, and use thereof
CN114450405A (zh) 工程化atrlp23模式识别受体及使用方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant