CN104797521A - 用于获得氢气的方法和设备 - Google Patents

用于获得氢气的方法和设备 Download PDF

Info

Publication number
CN104797521A
CN104797521A CN201380060532.8A CN201380060532A CN104797521A CN 104797521 A CN104797521 A CN 104797521A CN 201380060532 A CN201380060532 A CN 201380060532A CN 104797521 A CN104797521 A CN 104797521A
Authority
CN
China
Prior art keywords
pressurized vessel
hydrogen
semipermeable materials
unstripped gas
interior region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380060532.8A
Other languages
English (en)
Inventor
A.休伯
H.洛伦岑
C-L.马恩肯
S.雷克
S.罗斯坎普
D.蒂森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ma Enken Partner LLC
Original Assignee
Ma Enken Partner LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ma Enken Partner LLC filed Critical Ma Enken Partner LLC
Priority to CN201910036218.5A priority Critical patent/CN110078022A/zh
Publication of CN104797521A publication Critical patent/CN104797521A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/161Process or apparatus coating on selected surface areas by direct patterning from plating step, e.g. inkjet
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/285Sensitising or activating with tin based compound or composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Electrochemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明按照第一思路涉及一种用于从原料气体中获得高纯度氢气的方法。所述方法用于,在该方法开始时加热或处理由金属或金属合金构成的半透性材料,优选在该方法开始时使电流通过所述半透性材料,用来提高渗透的氢气量。此外,提供一种用于从原料气体中获得高纯度氢气的设备,这种设备包括半透性材料,所述半透性材料在压力容器的内部空间内与压力容器的外部区域相分离,并且这种半透性材料对于氢气是渗透性的,其中,这样地设计这种设备,使得尤其通过电能至少分段地能够加热或处理所述半透性材料。

Description

用于获得氢气的方法和设备
本发明按照第一思路涉及一种用于从原料气体中获得高纯度氢气的方法。所述方法用于,在该方法开始时加热或处理由金属或金属合金构成的半透性材料,优选在该方法开始时使电流通过所述半透性材料,用来提高渗透的氢气量。此外,提供一种用于从原料气体中获得高纯度氢气的设备,这种设备包括半透性材料,所述半透性材料在压力容器的内部空间内将压力容器的内部区域与外部区域相分离,并且这种半透性材料对于氢气是渗透性的,其中,这样地设计这种设备,使得尤其通过电能至少分段地在至少选择的时间段内能够加热或处理所述半透性材料。
背景技术
提纯的氢气可以用于不同的技术领域内。因此,能够例如从再生的原料中的热解气中分离出氢气。热解气的其它部分是一氧化碳、二氧化碳和甲烷。
已知不同的设备和方法用于获得纯的或者至少大部分纯的氢气,其中,能够借助较大的压强和非常低的温度通过冷凝将氢气从其它的气体或混合气体中导出。但这是极其耗费和昂贵的。此外,利用这种设备或方法不能够产生高纯度的氢气,因为还有其它气体或杂质残留在液化的氢气状态中。
此外,还建议利用半透性材料、如氢气可渗透的半透性隔板分离氢气。
例如由DE 28 23 521已知利用半透性材料的方法。DE 33 19 305也描述了相应地用于从混合气体中浓缩和分离氢气的方法,其中使用多孔材料。例如玻璃可作为合适的多孔材料。在此,例如在含钯的材料的范围内描述了对材料持续的加热。由DE 600 20 772 T2已知一种用于借助由钙钛型(Perovskittyps)的氧化物构成的导电的薄膜将氢气从含氢的混合气体中分离的方法。
DE 10 2010 049 792描述了一种小型发电站,其中,存在用于从热解气中分离出高纯度氢气的设备,这种设备包括环绕内部空间的壳体,该壳体具有至少一个安置在壳体内的与至少部分填充热解气的区域隔离的半透性隔板。通过这种隔板可从热解气中离析出高纯度的氢气。此外,这篇文献还建议了一种用于离析高纯度氢气的方法,这种方法借助半透性隔板来实现。建议使用铁素体或铁氧体、例如生铁作为用于半透性隔板的合适材料。尤其在此描述,例如存在以铁管形式的半透性隔板,被导电体包围例如用来提供磁场,促进氢气的扩散。此外还优选的是,输入处于超过400℃的加热状态的热解气。
但是,对隔板持续地加载电流和对热解气持续地加热是费用高的。理论上已知,铁的扩散常数随着温度的升高而成指数地增加,因而在较高的温度情况下可实现氢气的较高的扩散速率。
本发明所要解决的技术问题是,提供一种方法和设备,它能够成本低廉地例如从热解气或者其它初始气体中分离出氢气。
发明内容
令人惊奇地确定,通过半透性材料能够容易地加强来自初始气体的氢气的扩散,方法是,在至少一个较短的时间段内加热或处理半透性材料,并且在开始扩散后不再需要加热的措施,并且能够至少中断这种措施,但是氢气的扩散通过半透性的材料继续进行。
在第一发明思路中,本发明涉及一种用于从原料气体中获得高纯度氢气的方法,其中,将原料气体在压强下导入第一压力容器,并且所述第一压力容器至少局部借助半透性材料与第二压力容器相分隔,并且所述第一压力容器相对于所述第二压力容器被完全地封闭,其中,通过所述半透性材料在所述第二压力容器中离析出高纯度的氢气,其特征在于,所述半透性材料是金属或者金属合金,并且至少在方法开始时加热所述半透性材料,并且至少在提高通过这种半透性材料穿透的氢气量后至少中断所述加热。
在实施方式中,第一压力容器具有内部区域,该内部区域相对于第一压力容器的内部空间完全地被封闭,这种内部区域至少局部地、例如完全地借助半透性材料相对于第一压力容器的内部空间而分隔,并且通过这种半透性材料在内部区域内离析出高纯度的氢气。所述方法的特征在于,所述半透性材料是金属或者金属合金,并且这种半透性材料至少在方法开始时被加热。这种加热在一定时间段内进行,这段时间足够提高通过这种半透性材料穿透的氢气量。
令人惊喜的是,通过暂时的或者局部的加热或处理半透性材料可提高通过半透性材料的氢气的扩散,并且在终止向加热材料供应能量之后,通过半透性材料的氢气扩散处于升高的量值。由此根据本发明能够实现,经济地进行氢气的离析,即在没有持续地输入能量、持续地加热半透性材料或者原料气体的情况下。
关于“加热材料”应该这样理解,向半透性材料提供电能和/或热能形式的能量。“加热”或“处理”材料也能够通过不同的措施、优选通过电能实现。“加热”或“处理”导致用于氢气的材料的渗透性的提高。
“半透性材料”应该这样理解,这种材料适合用于离析氢气,同时其它气体不能够穿过这种材料。
在优选实施方式中,半透性材料是一种包括铁素体铁和/或生铁和/或纯铁、优选由铁素体铁和/或生铁和/或纯铁构成的材料。在此,优选使用具有铁含量高于99.8%的纯铁。更高的铁含量有利于在保留其它的在初始气体或原料气体中的气体的情况下氢气通过半透性材料的渗透。
在此可以得出,在铁管的外表面上将分子氢分解为原子氢。这种原子氢将首先被吸附。在此可以得出,将质子与电子分离,并且质子能够相应地通过铁元素扩散,以便随后在铁管的内表面上再次结合成原子氢并且随后结合为分子氢。
令人惊喜地是,通过短时间地加热或处理半透性材料(例如以管状的形状)、例如通过配置电能可以提高氢气的渗透性并且保持在较高的水平上,而无需进一步地能量输入。因此,能够较大地降低用于调节管的温度的能量耗费,这在获取高纯度氢气的情况下明显地降低了成本。
在此优选地是,直接地在半透性材料上设置作为交流电的电流,例如直接地在金属管上设置电流。在此,电流密度优选是每平方厘米10安培、例如每平方厘米20安培或者更大。
表述方式“短时间”应该这样理解,进行加热或者处理的时间段,这段时间提高了半透性材料用于氢气的渗透性。随后,结束或者中断加热或处理。在过程开始时进行短时间的加热或处理,并且在必要时例如在扩散速率降低时可重复加热或处理。
因此,尤其优选地是,在方法开始时加热半透性材料一段时间,可充足地提高渗透的氢气量。备选地例如借助电流、交流电脉冲式地进行加热。表述方式“脉冲式”可这样理解,在一段时间内设置电流并且在中断之后重新接通电流。设置电流的时间段能够在此被适合地调节。
至少分段地进行这种加热。这种分段的加热可通过输入热量地加热来进行。但是,借助电能对半透性薄膜实施至少分段的加热。因此优选的是,借助电流、尤其交流电加热半透性材料。在此,优选在纵向方向上设置电流并且不绕着半透性材料缠绕导体。
能够设置具有50Htz频率的普通交流电,但是备选地还能够使用直流电、例如脉冲式直流电。一旦在半透性材料上设置电流,就可提高通过半透性材料的氢气的渗透。
在此示出,氢气的渗透性与设置的电流强度成指数关系。优选地是,电流密度至少是每平方厘米10安培,例如至少是每平方厘米20安培。
与现有技术的措施(必须对半透性材料进行持续地加热或升温,并且还必须加热原料气体到高于400℃的温度)相比能够确定,开始的加热是足够提高氢气通过半透性材料的扩散。随后,扩散速率保留在一个相对较高的水平,而不需进一步输入作为热能或者电能的能量。半透性材料(例如金属)能够在此在方法开始之前进行高温加热。这种高温加热能够通过热能或者电流来实现。
优选地是,所述加热是对金属或金属合金进行的软化退火,优选至少短时间的加热到400℃至800℃之间的温度。加热优选通过电能、例如通过设置交流电来实现。在此尤其优选的是,设置较高的电流强度,因为已经可以得知,氢气渗透性与设置的电流强度成指数关系。
此外,通过开始设置电流强度能够比单纯升高温度、例如通过输入热能更高地提高氢气渗透性。
在另一个优选实施方式中,在压强下将原料气体导入压力容器,同时在氢气离析的内部区域内通过低压导出离析的氢气。
原料气体能够在此包含运载气体,例如惰性气体、例如CO2,但是还会包含碳氢化合物、例如甲烷(CH4)。
装入压力容器的原料气体能够具有较高的温度,但是优选的是,导入压力容器内的原料气体具有的温度小于400℃、例如小于300℃、尤其小于200℃、例如小于100℃,尤其具有室温。也就是说,根据本发明不必将原料气体提前加热,以便必要时加热半透性材料。相对地,在实施方式中优选的是,不加热原料气体。
所述方法还能够包括移除、例如冲洗在半透性材料上的离析的氢气的步骤,以便降低氢气的局部浓度并且保持离析物在较高的水平上。
在实施方式中,将原料气体在压强下导入内部区域内。这种内部区域至少局部地借助半透性材料与第一压力容器的内部空间相分隔。通过这种半透性材料在第一压力容器的内部空间内离析出高纯度的氢气,并且例如借助低压将其抽出。
此外,本发明还涉及一种用于从原料气体中获取高纯度氢气的设备,所述设备具有第一压力容器和用于原料气体或离析出氢气后的原料气体的导入和导出管路,并且所述设备还具有第二压力容器,所述第二压力容器相对于第一压力容器被完全地封闭并且至少局部借助半透性材料与所述第一压力容器相分隔,其中,所述半透性材料对于氢气是可渗透的,其特征在于,所述半透性材料尤其通过电能可至少分段地被加热,所述半透性材料是金属或者金属合金,尤其设置用于执行根据本发明的方法。
在实施方式中,本发明还涉及一种用于从原料气体中获取高纯度氢气的设备,所述设备具有压力容器和用于原料气体或离析出氢气后的原料气体的导入和导出管路和布置在压力容器的内部空间内的内部区域,所述内部区域相对于压力容器的内部空间被完全地封闭并且至少局部借助半透性材料与所述压力容器的内部空间相分隔,其中,所述半透性材料对于氢气是可渗透的,用于从原料气体中离析出高纯度的氢气,其特征在于,所述半透性材料尤其通过电能至少分段地可被加热或处理,并且所述设备被这样设置,即短时间地至少在过程开始时进行加热或处理。
所述设备尤其是这样一种设备,在该设备中半透性材料包含铁素体铁和/或生铁和/或纯铁,半透性材料尤其由这种材料构成。
根据本发明的设备能够包括相应地用于产生超压和低压的器件。
半透性材料优选制成为管,优选能够在此在压力容器内设多个、具有半透性材料的优选多个管。由此能够实现,紧凑地构造根据本发明的设备。半透性材料相应设计为管,则能够扩大表面,从而能够离析出更多的氢气。在压力容器内部或者外部安置相应的分配件,用于分配原料气体或汇合用完的原料气体或者离析的氢气。优选将这种分配器或相应的分配装置安置在压力容器内部,因此只存在相应的入口和出口。
可能的是,例如管状的半透性材料在不同的部段内具有不同的壁厚。由此能够必要时通过半透性材料提高氢气的扩散度。
在半透性材料上安置相应的电触头,它与电源相连接。借助这种电触头能够在半透性材料上加载电能,以便至少在开始时加热这种半透性材料。例如能够通过交流电或者直流电来实现相应的加载。在此沿着例如管状设计的半透性材料的纵向加载电流。所述设备尤其包括调节和控制单元,它利用电流、尤其交流电调节和控制对半透性材料的加载,例如脉冲式电流的输入等。
根据本发明的设备还可具有用于氢气的相应出口和必要时用于汇集的容器。
根据本发明的设备还能够设有普通的装置、例如气体洗涤装置等,用来净化原料气体或进一步反应生成被离析的气体。
为了产生用于原料气体的超压(也称为过程气体),可设置压缩机或泵。为了排除离析的纯氢气,根据需要的低压设置真空泵。
根据本发明的设备能够包括具有相应传感器的控制单元、调节单元和测量单元。测量单元在此确定离析的氢气量或在原料气体内氢气的比例或剩余的原料气体以及其它的方法参数、例如温度等。控制单元和调节单元调节相应的用于输入和输入不同气体的压强。此外,控制单元和调节单元能够控制设置的能量、例如热能或电能,用来加热半透性材料。
根据本发明的设备还能够涉及一种用于从原料气体中获取高纯度氢气的设备,所述设备具有配备用于高纯度氢气的导出管路的第一压力容器、设在内部区域的第一压力容器的内部空间内的第二压力容器,所述第二压力容器相对于第一压力容器的内部空间被封闭,并且所述内部区域至少局部借助半透性材料与第一压力容器的内部空间相分隔,其中,所述半透性材料对于氢气是可渗透的,用于从原料气体中离析出高纯度的氢气,其特征在于,所述半透性材料是金属或者金属合金、尤其通过电能可至少分段地被加热,尤其设置用于执行根据本发明的方法。
此外,半透性材料能够被电磁地激励,例如通过磁力交变场激励。对于本领域技术人员来说已知用于设置磁场的合适的器件。
所述设备还具有用于局部降低在半透性材料上的氢气浓度的装置。
下面结构附图详细地阐述本发明的优选实施例。为此,在附图中:
图1示出根据本发明的设备的示意图。
图2示出剖切压力容器所得的截面图,在压力容器中安置两个具有半透性材料的螺旋管。
图3示出与时间相关的H2的浓度曲线。
图4示出电流强度对H2浓缩的影响。
下面详细阐述附图:
图1示意性示出根据本发明的用于提纯高纯度氢的设备。在此,在具有内部空间2的压力容器1中,将具有半透性材料的密闭内部区域3安置在内部空间2内。这种内部区域3在此通过电触头11a和11b与电源10相连接。此外,这种内部区域通过用于离析氢的排出口6与低压容器7相连接。借助真空泵8在低压容器7内产生用于抽出被离析的氢的低压,在压力容器内或上或在系统的其它区域内为了导引被离析的氢可安置用于确定氢9浓度的传感器,以便确定被离析的氢的量。根据本发明的设备能够同样地还具有热敏元件等形式的其它传感器,用来在反应过程中确定相应的过程参数。通过传感器将采集的相应的过程参数为了进一步加工而继续传导到控制单元和调节单元(未示出)上。随后,通过这种控制单元和调节单元能够通过相应的装置调节原料气体的压强或被离析后的原料气体的压强或被离析的氢的压强,如同控制待用的能量、例如相应的电流,用来控制过程。通过排出口5将被离析后的原料气体从压力容器1中导出。
在图2中,示出根据本发明的设备的压力罐的截面图。将原料气体通过输入管路4输入压力容器1中。在图中示出外螺旋管3a和内螺旋管3b,它们是具有半透性材料的内部区域。通过电触头11a和11b能够相应地通过合适的器件导入电能来进行加热。
得到的离析的氢气通过导管6借助低压被抽出。
在图3中示出与时间和能量输入相关的氢气浓度曲线。
如从测量中得到的结果所示,通过设置电流可快速地和明显地提高半透性材料的渗透性,明显地升高H2的浓度。与之相比,没有能量输入的情况下H2的浓度只是较缓慢地提高。在停止能量输入之后、在大约300秒之后也可明显地提高在被离析的气体中的H2浓度。
在图4中示出在设置电能的情况下电流强度的影响。如图所示,氢气的渗透性与设置的电流强度成指数比例关系。
附图标记列表
1       压力容器
2       内部空间
3,3a,3b 具有半透性的内部区域
4       原料气体输入
5       原料气体排出
6       氢气排出
7       低压容器
8       真空泵
9       H2测量传感器
10      电源
11a/11b 电触头

Claims (17)

1.一种用于从原料气体中获得高纯度氢气的方法,其中,将原料气体在压强下导入第一压力容器(1),并且所述第一压力容器(1)至少局部借助半透性材料与第二压力容器(3)相分隔,并且所述第一压力容器相对于所述第二压力容器被完全地封闭,其中,通过所述半透性材料在所述第二压力容器(3)中离析出高纯度的氢气,其特征在于,所述半透性材料是金属或者金属合金,并且至少在方法开始时加热所述半透性材料,在一段时间内充足地提高渗透的氢气量,并且至少中断所述加热。
2.根据权利要求1所述的用于从原料气体中获得高纯度氢气的方法,其中,将原料气体在压强下导入压力容器(1),并且所述压力容器(1)具有构成第二压力容器的内部区域(3),所述内部区域(3)相对于所述压力容器(1)的内部空间(2)被完全地封闭,所述内部区域(3)至少局部通过半透性材料与所述压力容器(1)的内部空间(2)相分隔,并且其中,通过这种半透性材料在所述内部区域(3)内离析出高纯度的氢气。
3.根据权利要求1或2所述的方法,其特征在于,所述半透性材料是一种包含铁素体铁和/或生铁和/或纯铁的材料,优选由铁素体铁和/或生铁和/或纯铁构成。
4.根据权利要求1至3之一所述的方法,其特征在于,在方法开始后短时间地加热所述半透性材料一段时间,用来充足地提高渗透的氢气量。
5.根据上述权利要求之一所述的方法,其特征在于,借助电流、尤其交流电加热所述半透性材料。
6.根据上述权利要求之一所述的方法,其特征在于,至少在方法开始时沿着纵向导引电流、尤其交流电通过所述半透性材料。
7.根据上述权利要求之一所述的方法,其特征在于,在每平方厘米至少10安培、优选每平方厘米至少20安培的电流密度下通过交流电进行加热。
8.根据上述权利要求之一所述的方法,其特征在于,具有运载气体、尤其惰性气体、例如CO2的原料气体被装入压力容器内。
9.根据上述权利要求之一所述的方法,其特征在于,在所述内部区域内离析的氢气通过低压被导出。
10.根据上述权利要求之一所述的方法,其特征在于,将具有温度小于400℃、例如小于300℃、尤其小于200℃、如具有室温的原料气体导入所述压力容器内。
11.根据上述权利要求之一所述的方法,其中,尤其借助交流电脉冲式地进行加热。
12.根据上述权利要求之一所述的方法,其中,金属或者金属合金是铁或者包含铁,并且所述半透性材料在方法开始时短时间地被加载具有至少50Hz频率的交流电并且必要时在之后的流程中被再次加载具有至少50Hz频率的交流电。
13.一种用于从原料气体中获取高纯度氢气的设备,所述设备具有压力容器(1)和用于原料气体或离析氢气后的原料气体的导入管路和导出管路(4、5、6),并且所述设备还具有第二压力容器(3),所述第二压力容器(3)相对于第一压力容器(1)被完全地封闭,并且所述第二压力容器(3)至少局部借助半透性材料与所述第一压力容器相分隔,其中,所述半透性材料对于氢气是渗透性的,以便从原料气体中离析出高纯度的氢气,其特征在于,所述半透性材料尤其通过电能可被至少分段地加热,所述设备尤其被设置用于执行根据权利要求1至12之一所述的方法。
14.根据权利要求13所述的用于从原料气体中获取高纯度氢气的设备,所述设备具有第一压力容器(1)和用于原料气体或离析出氢气后的原料气体的导入和导出管路(4、5、6),所述设备还具有作为第二压力容器的安置在所述压力容器(1)的内部空间(2)内的内部区域(3),所述内部区域(3)相对于所述压力容器(1)的内部空间(2)被完全地封闭,并且所述内部区域(3)至少局部借助半透性材料与所述第一压力容器的内部空间(2)相分隔,其中,所述半透性材料对于氢气是可渗透的并且用于从原料气体中离析出高纯度的氢气,其特征在于,所述半透性材料尤其通过电能可至少分段地被加热,并且所述半透性材料是金属或金属合金,并且所述设备被设置用于执行权利要求1至12所述的方法。
15.根据权利要求13所述的设备,其特征在于,所述半透性材料是一种包含铁素体铁和/或生铁和/或纯铁的材料,优选由铁素体铁和/或生铁和/或纯铁构成。
16.根据权利要求13所述的用于从原料气体中获取高纯度氢气的设备,所述设备具有配备用于高纯度氢气的导出管路的第一压力容器(1)、在所述第一压力容器的内部空间内设在内部区域(3)内的第二压力容器,所述第二压力容器相对于所述第一压力容器(1)的内部空间(2)被封闭,并且所述内部区域(3)至少局部借助半透性材料与所述第一压力容器的内部空间(2)相分隔,其中,所述半透性材料对于氢气是可渗透的,用于从原料气体中离析出高纯度的氢气,其特征在于,所述半透性材料是金属或者金属合金,并且所述半透性材料尤其通过电能可至少分段地被加热,所述设备尤其设置用于执行根据权利要求1至12之一所述的方法。
17.根据权利要求1至12之一所述的用于从原料气体中获取高纯度氢气的方法,其中,在压强下将原料气体导入内部区域(3)内,所述内部区域(3)相对于压力容器(1)的内部空间(2)被完全地封闭,在压强下导引原料气体,所述内部区域(3)至少局部借助半透性材料与所述压力容器的内部空间(2)相分隔,并且其中,通过所述半透性材料在所述压力容器(1)中离析出高纯度的氢气。
CN201380060532.8A 2012-09-27 2013-09-27 用于获得氢气的方法和设备 Pending CN104797521A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910036218.5A CN110078022A (zh) 2012-09-27 2013-09-27 用于获得氢的方法和用于此的设备

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012109154.4 2012-09-27
DE102012109154.4A DE102012109154B4 (de) 2012-09-27 2012-09-27 Verfahren zur Gewinnung von Wasserstoff
PCT/EP2013/070179 WO2014049115A1 (de) 2012-09-27 2013-09-27 Verfahren zur gewinnung von wasserstoff und vorrichtung hierfür

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201910036218.5A Division CN110078022A (zh) 2012-09-27 2013-09-27 用于获得氢的方法和用于此的设备

Publications (1)

Publication Number Publication Date
CN104797521A true CN104797521A (zh) 2015-07-22

Family

ID=49263311

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910036218.5A Pending CN110078022A (zh) 2012-09-27 2013-09-27 用于获得氢的方法和用于此的设备
CN201380060532.8A Pending CN104797521A (zh) 2012-09-27 2013-09-27 用于获得氢气的方法和设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201910036218.5A Pending CN110078022A (zh) 2012-09-27 2013-09-27 用于获得氢的方法和用于此的设备

Country Status (6)

Country Link
US (1) US9656204B2 (zh)
EP (1) EP2900592B1 (zh)
JP (1) JP6271561B2 (zh)
CN (2) CN110078022A (zh)
DE (2) DE102012109154B4 (zh)
WO (1) WO2014049115A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108771944A (zh) * 2018-08-01 2018-11-09 北京无线电计量测试研究所 一种镍提纯器和氢原子频标
CN110846673A (zh) * 2019-12-11 2020-02-28 陈静玲 一种甲醇和水的蒸煮喷淋旋剃桨裂解的多功能制氢系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019115711A1 (de) * 2019-06-11 2020-12-17 4 Innovation GmbH Verfahren und Anlage zur Aufarbeitung von Klärschlamm, Gärresten und/oder Gülle unter Gewinnung von Wasserstoff

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3279154A (en) * 1964-02-06 1966-10-18 Engelhard Ind Inc Gas purification apparatus
US3972695A (en) * 1975-05-12 1976-08-03 Trienco, Inc. Hydrogen purifier
DE2823521A1 (de) * 1978-05-30 1979-12-06 Deutsche Automobilgesellsch Wasserstoffpermeationszelle und verfahren zu ihrer herstellung
DE102010049792A1 (de) * 2009-11-02 2011-05-05 Mahnken & Partner Gbr (vertretungsberechtigter Gesellschafter: Sebastian Rosskamp, 27751 Delmenhorst) Kleinkraftwerk sowie Verfahren und Vorrichtung zur Gewinnung von hochreinem Wasserstoff

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2962123A (en) * 1960-11-29 Treatment of hydrogen or gaseous mix-
US2536610A (en) * 1945-05-22 1951-01-02 King L D Percival Hydrogen purification system
US3350846A (en) * 1964-12-29 1967-11-07 Tyco Laboratories Inc Separation of hydrogen by permeation
US3392510A (en) * 1965-04-01 1968-07-16 Engelhard Ind Inc Hydrogen diffusion apparatus
US4468235A (en) * 1979-02-15 1984-08-28 Hill Eugene F Hydrogen separation using coated titanium alloys
US4482360A (en) 1982-05-29 1984-11-13 Nippon Steel Corporation Porous materials for concentration and separation of hydrogen or helium, and process therewith for the separation of the gas
US5089122A (en) * 1984-08-31 1992-02-18 Fraunhofer Gesellschaft Device for the separation of fluid mixtures
DE3434150A1 (de) * 1984-09-18 1986-03-27 Kernforschungsanlage Jülich GmbH, 5170 Jülich Verfahren und vorrichtung zur abtrennung von wasserstoff aus einem stoffgemisch, insbesondere einer gasmischung
US4810485A (en) * 1986-08-25 1989-03-07 Institute Of Gas Technology Hydrogen forming reaction process
CN1074669A (zh) * 1992-01-21 1993-07-28 Abb·鲁姆斯克雷斯特公司 裂化气的膜分离方法
JPH08257376A (ja) * 1995-03-28 1996-10-08 Ngk Insulators Ltd 水素分離膜の水素ガス透過性能の回復及び安定化方法、並びにそれを用いた水素分離装置
US5888273A (en) * 1996-09-25 1999-03-30 Buxbaum; Robert E. High temperature gas purification system
JPH11285613A (ja) * 1998-04-03 1999-10-19 Mitsubishi Research Institute Inc 水素透過膜ポンプシステム
JP2000140584A (ja) * 1998-11-16 2000-05-23 Mitsubishi Kakoki Kaisha Ltd 水素分離膜の水素透過性能回復方法
US6478853B1 (en) * 1999-03-09 2002-11-12 Secretary Of Agency Of Industrial Science And Technology Amorphous Ni alloy membrane for separation/dissociation of hydrogen, preparing method and activating method thereof
US6296687B2 (en) 1999-04-30 2001-10-02 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Natural Resources Hydrogen permeation through mixed protonic-electronic conducting materials
DE19920517C1 (de) * 1999-05-05 2000-08-17 Daimler Chrysler Ag Membranmodul zur selektiven Permeatgasabtrennung
DE60113596T2 (de) * 2000-06-27 2006-06-22 Nisshin Steel Co., Ltd. Gasreformer zur Rückgewinnung von Wasserstoff
DE10040539A1 (de) * 2000-08-18 2002-03-07 Aral Ag & Co Kg Membranreaktor und Verfahren zur Herstellung von hochreinem Wasserstoffgas
JP2002128505A (ja) * 2000-10-17 2002-05-09 Toyota Motor Corp 水素抽出装置
AUPS076502A0 (en) * 2002-02-26 2002-03-21 Ceramic Fuel Cells Limited A fuel cell gas separator plate
DE10222568B4 (de) * 2002-05-17 2007-02-08 W.C. Heraeus Gmbh Kompositmembran und Verfahren zu deren Herstellung
US6896717B2 (en) * 2002-07-05 2005-05-24 Membrane Technology And Research, Inc. Gas separation using coated membranes
US7727596B2 (en) * 2004-07-21 2010-06-01 Worcester Polytechnic Institute Method for fabricating a composite gas separation module
JP2007030013A (ja) * 2005-07-29 2007-02-08 Hitachi Ltd 通電接合方法及び装置
JP4860961B2 (ja) * 2005-08-24 2012-01-25 株式会社日本製鋼所 水素透過合金
US7655183B2 (en) * 2005-12-23 2010-02-02 Utc Power Corporation Durable pd-based alloy and hydrogen generation membrane thereof
US20080210088A1 (en) * 2006-10-23 2008-09-04 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
JP2008248934A (ja) * 2007-03-29 2008-10-16 Nippon Oil Corp 水素ガスの供給方法およびシステム
DE102007044918A1 (de) * 2007-09-19 2009-04-09 Bayer Technology Services Gmbh Wasserstoffpermeable Membranen aus metallischem Verbundwerkstoff
US8876959B2 (en) * 2007-12-06 2014-11-04 Technion Research and Development Ltd Self-heated dense ceramic tubes for separating gases
JP2010042397A (ja) * 2008-07-14 2010-02-25 Ngk Insulators Ltd 水素分離装置及び水素分離装置の運転方法
US8313556B2 (en) * 2009-02-17 2012-11-20 Mcalister Technologies, Llc Delivery systems with in-line selective extraction devices and associated methods of operation
JP2011101871A (ja) * 2009-11-12 2011-05-26 Sinfonia Technology Co Ltd 水素透過膜構造体
IT1401192B1 (it) * 2010-06-16 2013-07-12 Enea Agenzia Naz Per Le Nuove Tecnologie L En E Lo Sviluppo Economico Sostenibile Reattore a membrana per il trattamento di gas contenenti trizio

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3279154A (en) * 1964-02-06 1966-10-18 Engelhard Ind Inc Gas purification apparatus
US3972695A (en) * 1975-05-12 1976-08-03 Trienco, Inc. Hydrogen purifier
DE2823521A1 (de) * 1978-05-30 1979-12-06 Deutsche Automobilgesellsch Wasserstoffpermeationszelle und verfahren zu ihrer herstellung
DE102010049792A1 (de) * 2009-11-02 2011-05-05 Mahnken & Partner Gbr (vertretungsberechtigter Gesellschafter: Sebastian Rosskamp, 27751 Delmenhorst) Kleinkraftwerk sowie Verfahren und Vorrichtung zur Gewinnung von hochreinem Wasserstoff

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108771944A (zh) * 2018-08-01 2018-11-09 北京无线电计量测试研究所 一种镍提纯器和氢原子频标
CN108771944B (zh) * 2018-08-01 2024-03-19 北京无线电计量测试研究所 一种镍提纯器和氢原子频标
CN110846673A (zh) * 2019-12-11 2020-02-28 陈静玲 一种甲醇和水的蒸煮喷淋旋剃桨裂解的多功能制氢系统

Also Published As

Publication number Publication date
CN110078022A (zh) 2019-08-02
EP2900592B1 (de) 2019-12-04
WO2014049115A1 (de) 2014-04-03
US9656204B2 (en) 2017-05-23
JP6271561B2 (ja) 2018-01-31
DE202012013304U1 (de) 2016-02-15
JP2015530352A (ja) 2015-10-15
DE102012109154B4 (de) 2016-01-07
DE102012109154A1 (de) 2014-03-27
US20150246311A1 (en) 2015-09-03
EP2900592A1 (de) 2015-08-05

Similar Documents

Publication Publication Date Title
CN104797521A (zh) 用于获得氢气的方法和设备
JP2001506961A (ja) プラズマ形成器による水素生成の方法と装置
KR101566841B1 (ko) 플라즈마 증가 합성
CN110383551A (zh) 配备有燃料电池系统的运输装置
Wang et al. Activation energy for the gas phase reaction of hydrogen atoms with carbon monoxide
US20100300872A1 (en) Methods for Low Temperature Hydrogen Sulfide Dissociation
CN106139890A (zh) 冷轧钢板热处理用氮氢混合尾气回收提纯的装置和方法
CN111243978B (zh) 半导体加工设备和半导体加工方法
US9938618B2 (en) Method for rapid and efficient chemical vapor infiltration and densification of carbon fiber preforms, porous substrates and close packed particulates
US10240815B2 (en) Efficient dissociation of water vapor in arrays of microchannel plasma devices
CN113165913A (zh) 用于等离子体诱导的水净化的方法和设备
CN104925756A (zh) 氢提纯装置及使用其的氢提纯系统
CN104332210A (zh) 一种脱除后处理料液中亚硝酸的设备
US20220259699A1 (en) Rare earth extraction apparatus and method of use thereof
CN206666145U (zh) 四氯化硅制备三氯氢硅的系统以及多晶硅生产系统
US20110262313A1 (en) Device for producing hydrogen by means of an electron cyclotron resonance plasma
CN104261413B (zh) 低温等离子体还原四氯化硅生产三氯氢硅方法及其装置
US20210025025A1 (en) Rare earth extraction apparatus and method of use thereof
CN108373156A (zh) 一种将二氧化碳转化为化学能源物质的方法
CN204637983U (zh) 冷轧钢板热处理用氮氢混合尾气回收提纯的装置
US20110262314A1 (en) Device for producing hydrogen from a plasma with electron cyclotron resonance
CN118004967A (zh) 一种低温下微波调控活性氧空位裂解水制氢气方法及装置
CN211262911U (zh) 一种将有机质转化成二氧化碳的转化装置
CN117482746A (zh) 一种增压低温等离子体耦合催化co2气体的系统及方法
Nguyen et al. An experimental study of hydrogen production by dissociation of water vapor in a radio frequency plasma source

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150722

RJ01 Rejection of invention patent application after publication