CN104764684A - 用于通过使用光分布来提高粒子成像设备中的测量精确度的装置、系统和方法 - Google Patents

用于通过使用光分布来提高粒子成像设备中的测量精确度的装置、系统和方法 Download PDF

Info

Publication number
CN104764684A
CN104764684A CN201510144425.4A CN201510144425A CN104764684A CN 104764684 A CN104764684 A CN 104764684A CN 201510144425 A CN201510144425 A CN 201510144425A CN 104764684 A CN104764684 A CN 104764684A
Authority
CN
China
Prior art keywords
particle
light
image
pixel
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510144425.4A
Other languages
English (en)
Other versions
CN104764684B (zh
Inventor
W·D·罗斯
M·S·费希尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luminex Corp
Original Assignee
Luminex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luminex Corp filed Critical Luminex Corp
Publication of CN104764684A publication Critical patent/CN104764684A/zh
Application granted granted Critical
Publication of CN104764684B publication Critical patent/CN104764684B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/09Sulfur-containing compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/07Nitrogen-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

一种用于提高成像细胞分析技术中的测量精确度的装置、系统和方法。系统可包括:光检测器,其被配置成测量粒子响应于第一光源而发出的光;以及耦合至该光检测器的处理器。处理器可被配置成通过获得光的第一测量来产生第一图像,以及通过对该第一图像进行内插来产生第二图像,其中第二图像具有比第一图像更高的分辨率。处理器可被配置成确定第二图像与预期分布之间的像素的差,以及在该差高于预定阈值的情况下丢弃光的第一测量。

Description

用于通过使用光分布来提高粒子成像设备中的测量精确度的装置、系统和方法
本申请是申请日为2011年6月29日,申请号为201180032277.7,名为“用于通过使用光分布来提高粒子成像设备中的测量精确度的装置、系统和方法”申请的分案申请。
技术领域
本发明涉及用于图像数据处理的方法和系统。一些实施例涉及用于执行用于处理粒子的图像的一个或一个以上步骤的方法和系统。
背景技术
利用诸如电荷耦合器件(CCD)检测器之类的检测器的成像被用于生物技术应用。在一些应用中,CCD被配置成测量粒子响应于光源而发出的荧光。取决于存在多少特定荧光物质,粒子可能具有不同的荧光强度。荧光物质的量可指示若干状况。例如,荧光的量可指示物质的存在或不存在,或粒子对特定物质的吸收。
发明内容
提出了一种提高粒子成像设备中的测量准确度的方法。在一个实施例中,该方法可包括测量第一粒子发出的光并测量第二粒子发出的光,其中测得的来自第二粒子的光在交迭区域中与测得的来自第一粒子的光至少部分地交迭。在一些实施例中,该方法可包括确定该交迭区域中来自第一粒子的光的贡献,并确定该交迭区域中来自第二粒子的光的贡献。此外,该方法可包括从来自第一粒子的光的贡献中减去来自第二粒子的光的贡献,并确定第一粒子发出的光的强度。
在一些实施例中,测量由第一粒子和第二粒子发出的光可利用二维 CCD检测器来执行。在一些实施例中,光检测器可以是CMOS检测器或量子点检测器。此外,在一些实施例中,确定该交迭区域中来自第二粒子的光的贡献可包括:计算来自第二粒子的光的高斯分布。在一些实施例中,测得的来自第二粒子的光的至少一部分被第一粒子反射。确定该交迭区域中来自第二粒子的光的贡献可包括:计算被第一粒子反射的来自第二粒子的光。此外,确定来自第二粒子的光的贡献可包括:测量第一粒子与第二粒子之间的距离。确定测得的来自第二粒子的光的量可包括:测量第二粒子的强度。在一些实施例中,该方法可包括丢弃对第一粒子的测量。
还提出了一种提高粒子测量设备中的测量准确度的方法。在一些实施例中,该方法包括测量由第一粒子发出的光和测量由第二粒子发出的光,其中第二粒子发出的光的至少一部分被第一粒子反射。该方法还可包括确定被第一粒子反射的来自第二粒子的光的贡献,和/或丢弃对该第一粒子的测量。在一些实施例中,如果被第一粒子反射的来自第二粒子的光的贡献高于预定值,则可丢弃对第一粒子的测量。在一些实施例中,确定被第一粒子反射的来自第二粒子的光的贡献包括:测量第一粒子与第二粒子之间的距离。此外,该方法可包括确定两个粒子之间的相对强度。
还提出了一种包括计算机可读代码的有形计算机可读介质,计算机可读代码在被计算机执行时使计算机执行操作。在一些实施例中,这些操作可包括测量第一粒子发出的光并测量第二粒子发出的光,其中测得的来自第二粒子的光在交迭区域中与测得的来自第一粒子的光至少部分地交迭。此外,这些操作可包括确定该交迭区域中来自第一粒子的光的贡献,和/或确定该交迭区域中来自第二粒子的光的贡献。在一些实施例中,这些操作可包括从来自第一粒子的光的贡献中减去来自第二粒子的光的贡献,并确定第一粒子发出的光的强度。
在一些实施例中,测量由第一粒子和第二粒子发出的光的操作可利用CCD检测器、CMOS检测器和/或量子点检测器来执行。此外,这些操作可包括确定该交迭区域中来自第二粒子的光的贡献,这可包括:计算来自第二粒子的光的高斯分布。
在一些实施例中,测得的来自第二粒子的光的至少一部分被第一粒子 反射。在一些实施例中,确定该交迭区域中来自第二粒子的光的贡献可包括:计算被第一粒子反射的来自第二粒子的光。确定来自第二粒子的光的贡献的操作可包括:测量第一粒子与第二粒子之间的距离。在一些实施例中,确定测得的来自第二粒子的光的量的操作可进一步包括:测量第二粒子的强度。在一些实施例中,这些操作可包括丢弃对第一粒子的测量。
还提出了一种光学分析系统。在一些实施例中,该系统可包括光检测器,该光检测器被配置成测量第一粒子发出的光并测量第二粒子发出的光,其中测得的来自第二粒子的光在交迭区域中与测得的来自第一粒子的光至少部分地交迭。此外,该系统可包括耦合至光检测器的处理器,其中该处理器被配置成确定该交迭区域中来自第一粒子的光的贡献,并确定该交迭区域中来自第二粒子的光的贡献。处理器还可被配置成从来自第一粒子的光的贡献中减去来自第二粒子的光的贡献,并确定第一粒子发出的光的强度。
在一些实施例中,光检测器可以是CCD检测器、CMOS检测器和/或量子点检测器。此外,该处理器可被配置成计算来自第二粒子的光的高斯分布,以确定该交迭区域中来自第二粒子的光的贡献。此外,该处理器可被配置成计算被第一粒子反射的来自第二粒子的光,且可确定该交迭区域中来自第二粒子的光的贡献。在一些实施例中,该处理器可进一步被配置成测量第一粒子与第二粒子之间的距离,以确定来自第二粒子的光的贡献。此外,该处理器可被配置成测量第二粒子的强度,以确定测得的来自第二粒子的光的量。在一些实施例中,该处理器可被配置成丢弃对第一粒子的测量。
还提出了一种用于提高粒子成像设备中的测量准确度的方法。在一些实施例中,该方法可包括利用第一光源照射粒子,并通过利用光检测器获得响应于第一光源而从粒子发出的光的第一测量来产生第一图像。该方法还包括通过对第一图像进行内插来产生第二图像,其中第二图像具有比第一图像高的分辨率。此外,该方法可包括确定第二图像中的粒子的中心。
在一些实施例中,该方法可包括通过对第二图像求积分来确定粒子的强度。此外,该方法可包括产生光的第一测量的分析表示,并通过对该分 析表示求积分来确定该粒子的强度。在一些实施例中,该方法可包括确定第二图像的像素与预期分布之间的差,并在该差高于预定阈值时丢弃该光的第一测量。
在一些实施例中,预期分布可以是高斯分布。该方法还包括利用第二光源照射该粒子,并通过利用光检测器来获得响应于第二光源而从该粒子发出的光的第二测量来产生第三图像。此外,该方法可包括确定第三图像中的该粒子的中心,并确定第二图像中的该粒子的中心与第三图像中的该粒子的中心之间的位置差。在一些实施例中,该方法可包括响应于该差来计算第二图像与第三图像之间的偏离。
在一些实施例中,该方法可包括将第一图像和第三图像对准。此外,该方法可包括利用多个粒子来计算第二图像与第三图像之间的偏离。
还提出了一种包括计算机可读代码的有形计算机可读介质,计算机可读代码在被计算机执行时使计算机执行操作。在一些实施例中,这些操作可包括利用第一光源照射粒子,并通过利用光检测器获得响应于第一光源而从粒子发出的光的第一测量来产生第一图像。此外,这些操作可包括通过对第一图像进行内插来产生第二图像,其中第二图像具有比第一图像高的分辨率,并确定第二图像中的该粒子的中心。
在一些实施例中,这些操作可包括通过对第二图像求积分来确定粒子的强度。这些操作还可包括产生光的第一测量的分析表示,并通过对该分析表示求积分来确定该粒子的强度。此外,这些操作可包括确定第二图像的像素与预期分布之间的差,并在该差高于预定阈值时丢弃该光的第一测量。
在一些实施例中,预期分布是高斯分布。此外,这些操作可包括利用第二光源照射该粒子,并通过利用光检测器来获得该粒子响应于第二光源而发出的光的第二测量来产生第三图像,和/或确定第三图像中的该粒子的中心。在一些实施例中,这些操作可包括确定第二图像中的该粒子的中心与第三图像中的该粒子的中心之间的位置差,和/或响应于该差来计算第二图像与第三图像之间的偏离。在一些实施例中,这些操作可包括将第一图像和第三图像对准。此外,这些操作可包括利用多个粒子来计算第二图像 与第三图像之间的偏离。
还提出了一种光学分析系统。在一些实施例中,该系统可包括光检测器和耦合至光检测器的处理器,该光检测器被配置成测量粒子响应于第一光源而发出的光。处理器可被配置成通过获得光的第一测量来产生第一图像,并通过对第一图像进行内插来产生第二图像,其中第二图像具有比第一图像高的分辨率。处理器还可被配置成确定第二图像中的该粒子的中心。
在一些实施例中,处理器可被配置成通过对第二图像求积分来确定粒子的强度。此外,处理器可被配置成产生光的第一测量的分析表示,并通过对该分析表示求积分来确定该粒子的强度。在一些实施例中,处理器可进一步被配置成确定第二图像的像素与预期分布之间的差,并在该差高于预定阈值时丢弃该光的第一测量。在一些实施例中,预期分布是高斯分布。
在一些实施例中,处理器可被进一步配置成利用第二光源照射该粒子,和/或通过利用光检测器来获得该粒子响应于第二光源而发出的光的第二测量来产生第三图像。此外,处理器可被配置成确定第三图像中的该粒子的中心,确定第二图像中的该粒子的中心与第三图像中的该粒子的中心之间的位置差,和/或响应于该差来计算第二图像与第三图像之间的偏离。
在一些实施例中,处理器可进一步被配置成将第一图像和第三图像对准。此外,处理器可进一步配置成利用多个粒子来计算第二图像与第三图像之间的偏离。在一些实施例中,处理器可被配置成计算第一图像与第三图像之间的偏离。
术语“耦合”被定义为连接,不过不一定直接连接,且不一定机械地连接。
术语“a”和“an”被定义为一个或一个以上,除非本公开内容明确地要求相反。
术语“基本上”及其变型被定义为在很大程度上但不一定完全是指定的内容,如本领域普通技术人员所能理解,而且在一个非限制性实施例中,“基本上”指的是在所指定内容的10%以内的范围、优选在5%以内、更优选在1%以内、最优选在0.5%以内。
术语“包括”(以及任何形式的包括,诸如“包括(comprises)”和“包 括(comprising)”)、“具有”(以及任何形式的具有,诸如“具有(has)”和“具有(having)”)、“包含”(以及任何形式的包含,诸如“includes”和“including”)、以及“含有”(以及任何形式的含有,诸如“contains”和“containing”)是开放式的连接动词。因此,“包括”、“具有”、“包含”或“含有”一个或一个以上步骤或元件的方法或装置具有那些一个或一个以上步骤或元件,但不限于仅具有那些一个或一个以上元件。类似地,“包括”、“具有”、“包含”或“含有”一个或一个以上特征的方法的步骤或装置的元件具有那些一个或一个以上特征,但不限于仅具有那些一个或一个以上特征。此外,被配置成以某种方式的设备或结构至少按照该方式来配置,但也可按照未列出的方式来配置。
参考具体实施例的以下详细描述并结合附图,其它特征和关联的优点将变得显而易见。
附图简述
以下附图形成本说明书的部分,且被包括以进一步阐述本发明的某些方面。通过参考这些附图中的一个或一个以上附图并结合本申请中呈现的特定实施例的详细描述,可更好地理解本发明。
图1是示出用于成像细胞分析技术的系统的一个实施例的示意性框图。
图2A-2B是示出两个邻近粒子的光分布的曲线图。
图3是利用CCD检测器对粒子进行的测量。
图4A是利用CCD检测器对粒子进行的测量。
图4B是图4A中示出的测量的三维图形表示。
图5A是图4A中示出的粒子的经内插图像。
图5B是图5A中示出的粒子的三维图形表示。
图6A是若干粒子的测量,其中一些粒子挨在一起。
图6B是基于图6A中的被测量粒子的经内插图像的三维图形表示。
图7是示出两个邻近粒子的光分布的曲线图。
图8是表示用于从另一粒子减去一个粒子的光的贡献的方法的流程 图。
图9是表示用于提高图像细胞分析技术测量的准确度的方法的流程图。
图10是表示用于确定细胞分析图像中的背景信号的强度的方法的流程图。
图11A是表示CCD检测器的输出的矩阵。
图11B-11D是示出在数据操纵中使用的步骤的矩阵。
具体实施方式
参考在附图中示出和在以下描述中详述的非限制性实施例,更完整地说明多个特征和有利细节。忽略了对公知的原始材料、处理技术、组件以及设备的描述,以免不必要地在细节上遮蔽本发明。然而,应理解,在指示本发明的实施例时,详述的描述和特定示例仅作为说明而非限制的方式给出。根据本公开内容,落在作为基础的发明概念的精神和/或范围内的多种替代、修改、添加和/或重新安排对于本领域普通技术人员将显而易见。
虽然在本申请中相对于粒子描述多个实施例,但应理解,本申请中描述的系统和方法可用于微球体、聚苯乙烯珠、微粒子、金纳米粒子、量子点、纳米点、纳米粒子、纳米壳、珠、微珠、橡胶粒子、橡胶珠、荧光珠、荧光粒子、有色粒子、有色珠、组织、细胞、微器官、有机物质、无机物质或本领域已知的任何其他分立物质。这些粒子可作为分子反应的载体。适当粒子的示例在以下文献中说明和描述:授予Fulton的美国专利No.5,736,330,授予Chandler等人的美国专利No.5,981,180,授予Fulton的美国专利No.6,057,107,授予Chandler等人的美国专利No.6,268,222,授予Chandler等人的美国专利No.6,449,562,授予Chandler等人的美国专利No.6,514,295,授予Chandler等人的美国专利No.6,524,793,以及授予Chandler的美国专利No.6,528,165,以上申请通过引用结合,就如同在本申请中被完整陈述。本申请中描述的系统和方法可用于这些专利中描述的任一种粒子。此外,用于本申请中描述的方法和系统的粒子可从诸如得克萨斯州的奥斯汀市的Luminex公司之类的制造商获得。术语“粒子”、“珠” 以及“微球体”在本申请中可互换地使用。
此外,与本申请中描述的系统和方法相容的粒子的类型包括具有附着至粒子表面或与粒子表面相关联的荧光材料的粒子。这些类型的粒子在授予Chandler等人的美国专利No.6,268,222和授予Chandler等人的美国专利No.6,649,414中有说明和描述,其中荧光染料或荧光粒子直接耦合至粒子的表面以提供分类荧光(即测量并使用荧光发射来确定粒子或粒子所属子集的身份),上述专利通过引用结合,就如同在本申请完整地陈述。可在本申请中描述的方法和系统中使用的粒子类型还可包括具有纳入到粒子核中的一个或一个以上荧光色素或荧光染料的粒子。
可用于本申请中描述的方法和系统的粒子包括其本身在暴露于一个或一个以上适当的光源之后自身将呈现一个或一个以上荧光信号的粒子。此外,可制造粒子,以使得这些粒子在激发时呈现多个荧光信号,每个荧光信号可单独或组合地使用,以确定粒子的身份。如下文所描述,图像数据处理可包括粒子的分类(尤其是对于多分析物流体)以及对结合至粒子的分析物的量的确定。由于表示结合至粒子的分析物的量的指示器信号在操作期间通常是未知的,所以特别经过染色的粒子可用于本申请中描述的过程,特别经过染色的粒子不仅在分类波长或波段中发射荧光,而且在指示器波长或波段中发射荧光。
本申请中描述的方法一般包括分析粒子的一个或一个以上图像,并处理从这些图像中测得的数据以确定粒子的一个或一个以上特性,诸如但不限于表示粒子在多个检测波长下的荧光发射的大小的数值。对粒子的一个或一个以上特性的后续处理(诸如使用一个或一个以上数值来确定表示粒子所属的复用子集的令牌ID和/或表示结合至粒子表面的分析物的存在和/或分析物的量的指示器值)可根据以下文献中描述的方法来执行:授予Fulton的美国专利No.5,736,330,授予Chandler等人的美国专利No.5,981,180,授予Chandler等人的美国专利No.6,449,562,授予Chandler等人的美国专利No.6,524,793,授予Chandler等人的美国专利No.6,592,822,授予Chandler等人的美国专利No.6,939,720以及美国专利公开2007/0064990,以上文献通过引用结合,就如同在本申请中完整陈述。在一 个示例中,授予Chandler等人的美国专利No.5,981,180中描述的技术可用于本申请中描述的按照复用方案进行的荧光测量,其中粒子被分类成子集以分析单个样本中的多个分析物。在一个实施例中,本申请中描述的方法可用于MagPix分子诊断仪器。MagPix是具有自动化图像处理软件的荧光显微镜,其测量数千个随机分布的磁珠的荧光强度。
现在参考附图,图1示出了用于成像细胞分析技术计量的系统100。应理解,图1未按比例绘制,而且未示出该系统的一些元件以免在细节上遮蔽本发明。
该系统具有成像室102,该成像室102可具有一个或一个以上的粒子110。如图1可见,粒子110可能沿着成像室102不均匀地分布,而且可能导致一些粒子挨在一起,诸如粒子的组112。在一些实施例中,粒子将随机分布。因此,成像室102上存在的粒子越多,两个粒子挨在一起的概率越高。图1还示出第一光源104和第二光源106,其中光源被配置成照射成像室116上的粒子110。在一些实施例中,这些光源可以是发光二极管(LED)。第一光源104可能具有与第二光源106不同的颜色(或发射光的波长)。光线114表示由第一光源104发出的光。光线114然后照射粒子110,粒子110可能发荧光。由粒子110产生的荧光然后向光检测器108发射。图1中的光线116表示由粒子110发出的荧光。
光检测器108被配置成检测由粒子110发出的荧光。光检测器可以是CCD检测器、CMOS检测器、量子点检测器或其它检测器。在一些实施例中,光检测器108具有低噪声和高分辨率会是有益的。CCD检测器可以是二维像素阵列,其产生二维图像。例如,可在本申请中使用的CCD是Kodak KAI-4021。
在一些情况下,两个或两个以上粒子可能挨在一起。在这样的情况下,在光检测器108中测得的光可能挨在一起且甚至可能交迭。因此,在两个或两个以上粒子挨在一起的这种情况下,可能存在测量来自两个不同粒子的光的像素。在致力于提高系统的测量准确度的努力中,可减去来自两个不同粒子的光的交迭以确定来自每个粒子的光贡献。替代地,可在检测到交迭之后丢弃对交迭粒子的测量。
光检测器108耦合至处理器118。处理器被配置成获取来自CCD检测器的原始数据,并处理该数据以获得与粒子110有关的有用数据。在一些实施例中,处理器可以是具有必要的存储器、数据存储设备以及输入/输出设备的专用处理器,或者它可以是被编程为执行本申请中描述的功能的个人计算机。由处理器使用的数据存储设备是有形的存储介质,诸如硬驱动器、光驱动器或闪存设备。该输入/输出设备可以是向用户输出信息的监视器,或它可以是允许所收集的与粒子110有关的信息被发送至远程位置的通信设备(诸如以太网控制器)。此外,打印机可用于将数据输出为有形的形式。
转到图2A,在一维中示出从两个粒子发出的光。存在来自粒子202的光的峰值和来自粒子204的光的峰值。在该示例中,来自粒子202的光的强度显著高于来自粒子204的光的强度。然而,这两个粒子稍微交迭,从而来自粒子202的光对测得的来自粒子204的光有贡献。在一些实施例中,可从归因于粒子202的光中减去归因于粒子204的光。因此,对粒子202的测量可更接近在不存在粒子204的情况下对粒子202的测量。该方法的一个优点是,可准确地测量更多粒子,由此提高该系统的整体准确度。
转到图2B,该曲线图也示出了从挨在一起的两个粒子发出的光。然而,粒子206的强度相对地与来自粒子208的光的强度相似。如该图中可见,这两个粒子之间存在显著更多的交迭,而且确定来自粒子208的光对粒子206的贡献可能更加困难。在该情况下,可丢弃对上述粒子的两个测量。另选地,可基于测得的峰值和受其它粒子影响最少的粒子的斜率,利用标准高斯分布来逼近粒子的分布。例如,粒子206的峰值和/或粒子206的左斜率可用于逼近粒子206的预期分布。该预期分布然后可用于确定由粒子206发出的光的强度,而不是在粒子206的峰值两边上测得的光的强度(其包括来自粒子208的光)。相同(不过是镜像)的过程可用于粒子208,以确定在没有粒子206的贡献的情况下粒子208的强度。通过减去相邻粒子的贡献,可测量更多的粒子,由此提高该系统的准确度。
转到图3,示出了利用CCD检测器对若干粒子的测量。例如,存在在交迭区域306中交迭的粒子302和粒子304。利用本申请中描述的方法,即 使这些粒子挨在一起,也能够准确地测量粒子302和304。
图3还示出其中一个粒子可向测量来自另一粒子的光的像素贡献光的另一情形。如从中心附近的白光斑可见,粒子308和310是相对较亮的粒子。在粒子308和310之间是另一粒子312,不过粒子312暗淡许多。粒子312的一个方面是其中心比其周围暗淡。典型地,如果粒子基本是圆形的,则测得的光将在中心最亮。然而,在粒子312中,最接近粒子308和310的边缘比粒子312的中心亮。在粒子312的边缘上测得的光是由从粒子308和310的反射或折射引起的。为了获得由粒子312实际产生的光的准确测量,必须减去来自粒子308和310的贡献。减去来自反射的光的贡献的一种方法是计算预期从邻近粒子的表面反射的光的量在一些实施例中,计算预期光的方法包括测量邻近粒子的距离。在图3中,粒子308离粒子312越近,预期越多的光从粒子312的表面反射。此外,粒子308越亮,预期越多的光从粒子312的表面反射。诸如悬浮介质或粒子的材料和大小之类的其它参数可能影响反射多少光,因此可被用于计算预期从粒子表面反射的光的量。
除了从粒子表面反射的光之外,光也可通过粒子或粒子的表面折射。因为粒子与悬浮介质之间的折射系数不同,所以光可能以一个角度射入粒子而以另一个角度射出。因此,来自粒子308的光可能基本朝向粒子312传播,通过粒子312折射,并在光检测器108中结束。
在一些实施例中,由于一粒子接近于具有远远大得多的强度的粒子,该粒子可被丢弃。由于粒子308和312之间的接近程度和相对大的强度差,可从该测量中丢弃粒子312。通过丢弃已知具有误差的测量,可提高整个系统的准确度。在一些实施例中,可使用表来确定测量何时应被丢弃。相邻粒子越远,它就可以越强,而不丢弃对粒子的测量。由于全向辐射体的发射强度以距离的平方的速率衰减,所以相邻粒子的可允许强度可随着距离的平方而增加。表1示出了可用于确定何时应当丢弃一粒子的距离与强度之间的关系的一个示例。强度的标度仅以相对值示出,且不表示光强的实际单位。表1中的值的关系遵循光和距离的1/r^2预期损耗。例如,丢弃相距二十像素的粒子的阈值是丢弃相距十像素的粒子的阈值的四倍。该表作 为示例给出,并非作为限制。
表1
在一些实施例中,可使用其它的强度与距离的关系来确定是否应当丢弃粒子测量。例如,表2示出了可用于丢弃测量的相对强度。在该示例中,强度(也以相对关系示出)可经验地被导出,且可表示各个像素差的原始 值。例如,如果相距六个像素的粒子上的个体像素值比感兴趣的粒子上的峰值像素大7000个“单位”,则可丢弃该感兴趣的像素,因为相邻粒子的强度很可能不利地影响该测量。而且在该示例中,与感兴趣的粒子的峰值像素相距4个像素以内的任何相邻像素被忽略,因为那些邻近像素被认为处于感兴趣粒子自身的尺寸以内。此外,例如,如果该峰值到像素距离是20像素远,则不论它们的强度之间的差是多少,二者都应当被丢弃。
表2
在一些实施例中,可测量个体粒子,且可处理该测量以提高该测量的准确度。图4A是示出来自利用CCD检测器的粒子的测量的原始数据的图。该图是11像素乘以11像素,且示出了一个粒子。虽然可大概地辨别粒子的中心,但是该中心的准确度可能至多为一个像素或半个像素。该图像是通过利用光源104照射粒子而创建的。粒子110可具有处于粒子内部或在粒子表面之上的荧光材料。来自光源104的光114可导致荧光材料发出荧光并发射光116。然后光116可被光检测器108检测。该光检测器可以是CCD检测器,CCD检测器然后可向处理器118发送信息。图4A中示出的该信息是原始数据,意味着这是由光检测器108产生的未经任何处理的信息。处理器118获取该原始数据,并操纵该数据以创建有用的输出,诸如与粒子中包含的物质有关的信息。在一些实施例中,处理器可包括一个以上处理器。例如,如图1所示,光检测器108可具有处理器,该处理器执行一些量的处理以及信息到处理器118的通信。处理器118然后可获得该信息,并对其进行进一步处理以产生有用的输出。
图4B示出图4A中示出的被测量粒子的三维图形表示。如图4B中可见,该粒子的强度在粒子中心处明显较高,但该粒子的实际位置不容易测量。
在一个实施例中,通过对图4A的测量进行内插来创建5A的图像,该粒子的位置的准确度可被提高。图5A示出具有110像素乘以110像素的图像。图5A中包含的该信息是利用内插从图4A中的信息计算而来的。在一些实施例中,所使用的内插是样条内插。在一些实施例中,所使用的内插是多项式内插。此外,在一些实施例中,仅靠近粒子中心的区域被内插,这可减小该系统所需的资源。
使用内插的一个优势是更精确地定位粒子的中心。例如,在图5A中,可使用具有最高强度的像素来确定该粒子的中心。与图4A相比,可以约10倍以上的精度来确定该粒子的中心。该系统的一个优势是,可比单独利用检测器可能实现的结果更精确地确定粒子的中心。因此,具有有限分辨 率的CCD检测器可给出具有提高的分辨率的输出。这允许该系统具有较低分辨率的CCD检测器,这样的CCD检测器可能更便宜或具有更低噪声,或它可允许该系统实现比可获得的最高分辨率CCD检测器更高的分辨率。此外,内插方法可有助于补偿由光学器件引起的分辨率损失。在一些实施例中,透镜可有助于使系统更紧凑,但会不利地影响被测量粒子的分辨率。内插可补偿分辨率的损失。
在一些实施例中,可根据粒子的峰值来计算粒子的强度,因为预期分布可能是已知的。在一些实施例中,可通过对经内插图像求积分来测量粒子的强度,这样可导致测量强度的更高的分辨率。测得的粒子的强度包括从该粒子接收光的所有像素之和。因此,查明强度的一种方法是将所有的像素强度加到一起。与检测粒子的中心的更高分辨率相似,通过对经内插图像求积分,可在更高的分辨率下确定该粒子的强度。具体而言,通过将图4B中的所有像素的高度相加,可确定图4B中示出的粒子的强度。类似地,可将图5B中的所有像素的高度相加(并除以100,因为图5B中的点是图4B中的100倍),以在提高的分辨率下查明该粒子的强度。因为可在提高的准确度下确定被测量粒子的强度,所以提高了整个系统的准确度。可辨别不同粒子之间的不同强度水平,这样可允许辨别不同粒子之间的不同吸收水平。因为该系统的目标是测量荧光材料的量,所以荧光的强度的测量的准确度直接关联于该系统的性能。
在一些实施例中,可利用原始数据图像或经内插图像来计算粒子的分析表示。在该实施例中,可将诸如高斯曲线之类的曲线拟合至被测量点。由于该透镜的点扩散函数,所以该曲线的分布可以是高斯的。然后,可被表示为方程或矩阵的预期曲线可用于确定粒子的中心或粒子的强度。例如,粒子的中心是该曲线的导数等于零的位置。如果存在一个以上的导数等于零的点,则该图像可包含一个以上粒子。此外,可在该中心的某个半径范围内对该方程求积分,以确定该粒子的强度。
与粒子的中心的距离为r的点p处的强度可通过方程1来估计:
f ( r ) = a × e b × r 2    方程1
其中a和b是常数。具体而言,a是中心处的峰强度值,且b是衰减率。值b可在校准时间从一组N个数据点p1…pN中利用图2中示出的最小二乘法来估计,
Σ i = 1 N ( ln ( f ( | | p i - c | | ) ) - ln ( | | p i - c | | ) ) 2    方程2
其中c是粒子中心。注意,由于对数的性质,较小的值比较大的值对误差贡献更多。这具有的效果是,更接近粒子中心的值的权重比更远离的那些值的权重高。该权重是适当的,因为离中心越远,点越多——随着半径r1增加至r2,落在圆内的像素的数量增多(r1/r2)的平方。因此,相比于更远离的点,可对离粒子中心更近的点更感兴趣。
令I(p)为该图像中的点p的强度。令E(p)表示源自预期强度f(p)的误差:
E ( p ) = N ( | | p - c | | ) × ( | I ( p ) - f ( | | p - c | | ) | min { I ( p ) , f ( | | p - c | | ) } )
方程3
其中N(r)是用于使更接近粒子中心的像素的权重比更远离的像素的权重高的标准化函数。N(r)的一个特定选择是:
N ( r ) = 1 ln ( r ) r &GreaterEqual; e 1 0 < r < e    方程4
为了接受粒子的分类,可能需要:
&ForAll; p &Element; { p i . . . p N } , E ( p ) < &epsiv; 1    方程5
&Sigma; i = 1 N ( E ( p i ) ) < &epsiv; 2    方程6
对于其中点p1…pN位于粒子中心周围的指定半径内的一些恒定值ε1和ε2
在一些实施例中,可在优选的亚像素准确峰值位置的周围执行粒子鉴别程序,以量化该粒子是否显示出假设的高斯形状强度相似性。给定在该粒子的峰值位置q的一些指定半径以内的一组像素P,假定理想成像的粒子显示构建具有方程1的形式的高斯形状的强度分布,其中r是从P的p元素到q的欧几里得距离,a是q处的强度值,以及b是具有负号的强度衰减参数。用于鉴别粒子的算法测量强度(p)相对于f((||p-q||)在一些度量下的误差,并且累加P中的每个像素上的该误差以确保该误差小到足以继续。否则,从进一步处理中丢弃该粒子。为了获得更高的准确度,鉴别优选在亚像素图像坐标空间中进行。
图6A示出包含若干粒子的图像的原始数据。图6B示出三维渲染中的内插信息。粒子602可被准确地测量,且可给出与该粒子的强度有关的可靠信息。然而,其它粒子可能靠得太近,而无法提供可靠的信息。在一个实施例中,所公开的方法确定何时粒子应当被考虑并被用来产生输出,以及何时粒子应当被丢弃。在一个实施例中,基于粒子的峰值强度和该粒子的已知大小,计算预期分布。例如,如果所有粒子都具有特定大小,则可预测所测得的光的高斯分布。因此,通过测量该粒子的峰值强度,可估计该粒子的余下形状。然后可使用所估计的形状来确定测量是否包括来自一个以上粒子的光。例如,预期分布可预测与粒子中心相距两个像素远的一像素应当具有处于中心的像素的强度的50%。因此,如果在任何方向上相距两个像素远的像素具有中心像素的强度的80%,则可推断附近存在另一 粒子。在该情况下,可确定优选丢弃该测量,而不是对该粒子求积分以确定强度。如果存在贡献光的邻近粒子,则测得的强度将被虚假地夸大,且可导致不准确的测量。
图7示出通过光检测器108测量的彼此邻近的两个粒子702和704的曲线图。实线示出粒子702和704的测得强度。虚线示出粒子702的预期分布,该预期分布可通过粒子702的峰值和/或粒子702的左侧的斜率来计算。虚线可用于从粒子704的测量减去粒子702的贡献。另选地,虚线可用于确定粒子702和/或704的测量何时应当被丢弃。
在一些实施例中,可拍摄一组粒子的一个以上图像。例如,第二光源106可用于拍摄第三图像,其中第二光源106发出与来自第一光源104的光114的波长不同波长的光115。因为第二光源106在不同的波长下发出光115,所以它可用于检测可能存在于粒子110中的第二类型的荧光材料。因此,如果粒子110具有在第二光源106的光下发出荧光但在第一光源104的光下不发出荧光的材料,则第三图像可在第一图像不具有粒子的位置具有粒子。然而,在一些情况下,单个粒子可在第一图像和第三图像中被测量,且可被用于对准第一图像和第三图像。例如,如果第一图像和第三图像偏离几个像素,则如果第一图像中的粒子的中心偏离第三图像中的同一粒子的中心,则它们可被对准。在一些实施例中,一个以上粒子可被用于对准不同的图像。在一些实施例中,许多粒子可被用于对准图像,其中从许多粒子测得的偏离可被取平均。在一些实施例中,因为一些偏离会表示错误的测量,所以一些偏离可被丢弃且偏离的余下部分可被取平均。
以下的示意性流程图一般被陈述为逻辑流程图。因此,所描绘的顺序和标记的步骤指示所呈现方法的一个实施例。可理解在功能、逻辑或效果上与所说明方法的一个或一个以上步骤或其部分等效的其它步骤和方法。此外,所采用的格式和符号被提供用于说明该方法的逻辑步骤,且应理解为不是限制该方法的范围。虽然可在流程图中采用多种箭头类型和直线类型,但应理解它们不是为了限制相应方法的范围。实际上,一些箭头或其它连接线可用于仅指示该方法的逻辑流程。例如,箭头可指示所描绘方法的列举步骤之间的未指定时段的等待或监测周期。此外,特定方法进行的 顺序可以或可以不严格遵守所示相应步骤的顺序。
图8示出用于提高成像细胞分析技术中的测量准确度的方法800的一个实施例。在一个实施例中,方法800开始于步骤802。在步骤802,光源104用于照射粒子110,粒子110然后发出荧光并发射光,在检测器108中测量该光。在步骤804,利用相同的光检测器108测量来自第二粒子的光。在一些实施例中,802和804的测量同时完成。在步骤806,确定来自每个粒子的光的贡献。在一些实施例中,确定来自粒子的光的贡献的该步骤包括:基于已知参数和测得参数来计算该光的预期贡献。例如,已知参数可以是粒子的半径。测得参数可以是粒子的峰值强度。利用已知的参数和测得的参数,可计算该粒子的预期分布。例如,预期分布可以是如方程1所表示的高斯分布。在一些实施例中,可通过计算粒子的分析表示来确定预期分布。在一些实施例中,可使用逼近预期分布的启发方法。例如,可根据像素距离粒子中心的远近程度,来逼近像素的强度应当减少的特定百分比。在步骤808,利用预期分布,可从对另一粒子的测量中减去一个粒子的贡献。
在一些实施例中,可执行图像之间的对准步骤,以确保每个粒子与每个图像通道中的正确位置相关联,其中对准误差假定为x和/或y方向上的图像坐标的平移T。当可在图像通道中执行峰值搜索时,图像间对准算法使在图像通道上检测到的峰值对准。当可在一些但不是全部图像通道中执行峰值搜索时,图像间对准算法替代地使用所有通道上出现峰值的位置处的峰值的平均位置q作为不能执行峰值搜索的通道c中的粒子的位置的初始值。然后,通过允许沿两个轴按照1/s个亚像素步进(step)来扰动q直至+/-r个像素,并取产生最大光学参数的经扰动值p,来在c中精炼该位置q。对于每个粒子,图像间粒子移动被计算为向量q-p,且该向量被记录。因此,每个粒子建议其优选的对准偏移。在所有粒子已经建议了它们相应的优选对准偏移之后,满足平移T的统计上有效的全局偏移可被视为该向量建议空间中的主导集群。定位该主导集群,并且计算该集群的质心作为满足T的图像间对准向量。
在一些实施例中,图像间对准步骤可包括:通过使用边界框或边界圆 来找出多个粒子的中心。根据一个方法,具有特定尺寸(例如5像素×5像素)的所有可能的边界框被求和,并且将和高于预定值的框视为包含粒子的中心。在表面染料在粒子区域上的分布不均匀的情况下,该技术可能比简单地寻找最大像素大小更准确。例如,如果荧光染料分子不均匀地分布在粒子的表面上,从染料发出的最大光可能不是来自该粒子的中心,且测得的光可能不具有高斯分布。
图11A-11D示出边界区域方法的一些实施例。所描述的第一实施例是使用不同长度的边界框的方法。如果所选择的光学参数涉及根据约束Z对像素值进行求和,其中Z指定中心为p的长度为2*w+1的边界框内部的那些像素值,其中一些固定值r是所有w的上界,则该和应当通过如下地对和矩阵进行预计算来高效地计算。
令L=s*k+r。落在以p为中心的长度为N=2*L+1的边界框内的所有像素被复制到临时矩阵M,该临时矩阵M在其左(最小x)和上(最小y)边界上用0来缓冲(步骤A)。
考虑矩阵M的长度N+1的行R,其中我们标注R[-1]为左边的第0个条目。对于M中的每个R,进行如下操作:
将sum(和)初始化为0。
对于从0到N-1的每个整数i   (步骤B0)
更新sum=sum+R[i]
赋值R[i]=sum
对于任何给定k,R[k]表示矩阵M的行R中的k元素左侧且包括k元素的所有值之和。
现在考虑矩阵M的长度N+1的列C,其中我们标注C[-1]为最上面的第0个条目。对于M中的每个C,进行以下操作:
将该和(sum)初始化为0。
对于从0到N-1的每个整数   (步骤C0)
更新sum=sum+C[i]
赋值C[i]=sum
现在,在以p=<x,y>为中心的长度为2*w+1的边界框周围的图像中的 所有像素之和可计算为:
sum=M[u1,v1]+M[u0,v0]-M[u1,v0]-M[u0,v1]   (步骤D0)
其中:u0=(p-q).x+L-w-1, v0=(p-q).y+L-w-1
      u1=(p-q).x+L+w,   v1=(p-q).y+L+w
现在可高效地确定获得最大和的位置p。
作为示例,考虑如图11A中所示的在步骤A中复制像素值之后的矩阵1102,其中目标是找出边界框1104内部的像素之和。在对步骤B0和C0中描述的每行和每列执行求和之后,得到如图11B所示的矩阵1106,其中每个单元对应于图11A中的像素,且包含其自身以及其上方和左侧的所有像素之和。例如,图11B中的框1108是图11A中的框1105中的所有像素之和。一旦已计算矩阵1106,可更快地计算边界框之和。例如,为了求出图11A中的边界框1104之和,可简单地将框1108减去框1112、减去框1116、加上框1114。在该示例中,10224-5310-4472+2295=2737,这就是图11A中的边界框1104中的所有像素之和。利用边界框方法的一个优势是,可更快地求出所有可能的边界框之和,同时仍提供使用边界框相比于仅使用最大值的优势。
在另一实施例中,使用固定长度的边界框。可计算边界框之和并将其存储在矩阵中。例如,如果对像素施加的作为对光学参数的输入的限制Z指定了以p为中心的长度为2*r+1的边界框内部的像素,其中r为大于等于1的固定整数,则步骤B可如下地被修改:
现在考虑矩阵M的长度N+1的行R,其中我们标注R[-1]为最左侧的第0个条目。令R'为M的新行R。对于M中的每个R,进行以下操作:
令w=2*r
将sum(和)初始化为0。
对于从0到w-1的每个整数i
更新sum=sum+R[i]
赋值R'[i]=sum
                        (步骤B1)
对于从w到N-1的每个值i
更新sum=sum+R[i]
赋值R'[i]=sum
更新sum=sum-R[i-w]
步骤C可被修改为如下:
现在考虑矩阵M的长度N+1的列C,其中我们标注C[-1]为最上面的第0个条目。令C'为M的新列C。对于M中的每个C,进行以下操作:
令w=2*r
将sum(和)初始化为0。
对于从0到w-1的每个整数i
更新sum=sum+C[i]
赋值C'[i]=sum
                        (步骤C1)
对于从w到N-1的每个整数i
更新sum=sum+C[i]
赋值C'[i]=sum
更新sum=sum-C[i-w]
现在,在以p=<x,y>为中心的长度为2*r+1的边界框周围的图像中的所有像素之和可确定为:
sum=M[u1,v1]     (步骤D1)
其中u1=(p-q).x+L+r,以及v1=(p-q).y+L+r
例如,在已经在矩阵1102上计算步骤B1和C1之后,获得图11D中的矩阵1120。为了求出与边界框1122相对应的像素之和,可简单地参照框1124。使用该方法的一个优势是,在已经计算矩阵1120之后,求出边界框之和消耗非常少的资源或时间。
在第三实施例中,可使用不同直径的边界圆。在该实施例中,如果施加于像素的作为对光学参数的输入的限制Z指定以p为中心的直径为2*r+1(其中r是大于等于1的整数)的封闭圆内的像素,则可执行如本申请中描述的步骤A和B0至C0来获得图11B中的矩阵1106。接下来,通过执 行以下步骤,可确定在以p=x,y为中心的直径为2*r+1的封闭圆内的图像中的所有像素之和:
令u=(p-q).x+L
令v=(p-q).y+L
初始化sum=0
/*计算穿过中心的水平像素线的贡献*/
更新sum=sum+M[u+r,v]-M[u-r-1,v]
                              (步骤D2)
对于从1到r的每个y
//确定水平线与圆的交点
令s=floor(sqrt(r^2-y^2))
//计算中心以下的水平线的贡献
更新sum=sum+M[u+s,v+y]-M[u-s-1,v+y]
//计算中心以上的水平线的贡献
更新sum=sum+M[u+s,v-y]-M[u-s-1,v-y]。
在另一实施例中,可使用固定直径的边界圆。在一些实施例中,圆可给出对粒子分布的更好拟合。利用该实施例,如果对于上述限制Z的直径2*r+1的值r是固定的,则每个水平线与圆的交点可被预先计算并被存储在表中。因此,步骤D可被重写为:
令u=(p-q).x+L
令v=(p-q).y+L
初始化sum=0
/*计算穿过中心的水平像素线的贡献*/
令s=Table[0]
更新sum=sum+M[u+s,v]-M[u-s-1,v]
对于从1到Table.Length-1(表长度-1)的每个y(步骤D3)
//通过查找获得该线与圆的交点
令s=Table[y]
//计算中心以下的水平线的贡献
更新sum=sum+M[u+s,v+y]-M[u-s-1,v+y]
//计算中心以上的水平线的贡献
更新sum=sum+M[u+s,v-y]-M[u-s-1,v-y]
其中该表是在初始化期间通过以下步骤已经产生的:
设定Table.Length=r+1
对于从0到r的每个y
Table[i]=floor(sqrt(r^2-y^2))
图9示出用于确定是否使用被测量粒子以及如何对准两个图像的方法900的示意性框图。在步骤902,通过测量响应于来自光源104的照射而从粒子110发出的光,产生第一图像。在步骤904,第一图像被内插以产生第二图像。在一些实施例中,所使用的内插是样条内插。在步骤906,确定粒子的中心。通过找出第二图像中的具有最高值的像素,可确定粒子的中心。通过创建粒子的分析表示,也可确定粒子的中心。可将导数设为零,并对该方程求解以获得该中心的位置。在步骤908,可确定粒子的预期分布。在一些实施例中,预期分布可以是高斯分布。在步骤908,可将对该粒子的测量与预期分布作比较。如果对粒子的测量与预期部分不相对应,则可丢弃该测量。
在步骤912,可产生第三图像。通过将第二光源106照射在粒子上,可产生第三图像,其中第二光源106以与第一光源104不同的波长发出光115。在步骤914,可确定第三图像中的该粒子的中心。在一些实施例中,该步骤可进一步包括对第三图像进行内插以产生具有提高的分辨率的图像。该方法可类似于用于从第一图像产生第二图像的方法。在步骤916,计算第二图像与第三图像之间的偏离。在一些实施例中,该步骤包括找出在两个图像中都存在的至少一个粒子,并确定其偏离。最后,基于所计算出的图像之间的偏离,将第二和第三图像对准。
在图10中,描述了用于通过准确地测量背景信号来提高成像细胞分析技术计量的准确度的方法1000。在步骤1002,利用诸如CCD检测器之类的光检测器108测量响应于来自光源104的光的来自粒子110的光。利用CCD检测器的测量可包括对粒子的测量和对背景信号的测量二者。该背景 信号可包括背景光且可包括噪声。
在可选的步骤1002中,丢弃在被测量粒子的预定半径内的像素。可如上所述地确定粒子的中心,且半径可以是固定的。在一些实施例中,被排除的像素的半径可随着来自粒子的光的强度而增加。因此,在一些实施例中,粒子越亮,被丢弃的像素越多。因为目的是测量背景信号,所以对粒子的测量可能是没有帮助的。
在步骤1006,将背景测量分配为处于第25百分位的像素的测得强度。在一个实施例中,图像中的所有像素(包括被测粒子)被排序并按顺序放置。在一些实施例中,如步骤1004中描述,在粒子中心的预定半径内的像素被丢弃,且将余下的像素强度按顺序放置。通过将像素按顺序放置,较暗的像素被放置在列表的一端,且较亮的像素被放置在列表的另一端。因为每个像素中的测量将具有噪声分量,所以该列表上的最暗像素是背景信号加上负噪声信号。该列表中较高的像素就将是几乎没有或没有噪声的背景信号。该列表中更高的是具有背景信号加上正噪声分量的像素。最终,该列表顶部处的像素可以是已从光源(诸如粒子)接收光的像素(尽管这些像素可能通过步骤1004被最小化)。然后,处于第25百分位的像素的强度被分配为背景信号。例如,如果图像由100个像素组成,则所有100个像素被排序并输入列表。从底部起的第25个像素(第25个最暗的像素)将被分配为背景水平。使用第25百分位的一个优势是它更靠近低端,这样不太会包含来自诸如粒子之类的光源的光。然而,通过不处于最底部,测量几乎不包含噪声,或者不包含噪声。附加地,因为步骤1006仅需要对像素排序并选择一个像素,所以该步骤要求相对少的处理能力和资源。在一些实施例中,可使用不同的百分位。例如,在低噪声系统中,第10百分位可提供准确的背景信号。在其它系统中,可使用第30百分位。在一些实施例中,这些数量未实际被放置在列表中。替代地,该方法可通过使用排序统计方法来找出所需百分位中的值。在一些实施例中,可针对比整个检测器小的区域执行计算背景噪声的方法。例如,检测器区域可被划分成六个不同的分区,并可根据所描述的方法对每个传感器独立地计算背景信号。
在步骤1008,可从所有像素减去在步骤1006确定的背景信号。通过 减去背景信号,所剩下的仅有的信号是测得的粒子的信号。
鉴于本公开内容,可在不进行过度实验的情况下作出和执行本申请中公开和要求保护的所有方法。虽然已经按照优选实施例来描述了本发明的装置和方法,但本领域普通技术人员可显而易见,可对本申请中描述的方法和方法的步骤或步骤顺序应用多种变型,而不背离本发明的概念、精神和范围。此外,可对所公开的装置作出修改,且可从本申请描述的组件中排除或替代多个组件,并实现相同或相似的结果。对本领域普通技术人员显而易见的所有这些相似的替代和修改被视为在由所附权利要求所限定的本发明的精神、范围以及概念以内。

Claims (20)

1.一种方法,包括:
测量光检测器处的光,其中所测量的光包括背景信号和从一个或多个粒子发出的光两者;
确定对应于所测量的光的像素;且
确定所述背景信号的估计,其中确定所述估计以使得所述像素的所选百分比比所述估计更暗。
2.如权利要求1所述的方法,其特征在于,进一步包括:
在确定所述估计前,丢弃位于所述一个或多个粒子中的任意的预定半径内的任何像素,其中所丢弃的像素对于所述估计没有做出贡献。
3.如权利要求2所述的方法,其特征在于,所述预定半径对于所有一个或多个粒子而言是固定半径。
4.权利要求2所述的方法,其特征在于,所述预定半径是至少部分地基于从所述一个或多个粒子的每一个发出的光的强度的函数。
5.如权利要求4所述的方法,其特征在于,所述函数是从所述一个或多个粒子的每一个发出的光的强度的递增函数。
6.如权利要求1所述的方法,其特征在于,所述所选百分比是25%。
7.如权利要求1所述的方法,其特征在于,所述所选百分比是基于所述光检测器的噪声水平所选择的。
8.如权利要求1所述的方法,其特征在于,所述确定所述估计包括:
生成像素的顺序列表;且
基于所述顺序列表的百分点值来选择所述估计。
9.一种光学分析系统,包括:
光检测器,配置为测量来自所述光学分析系统内的一区域的光,其中所测量的光包括背景信号和从一个或多个粒子发出的光两者;和
处理器,耦合至所述光检测器,其中所述处理器配置为:
确定对应于所测量的光的像素;且
确定所述背景信号的估计,其中确定所述估计以使得所述像素的所选百分比比所述估计更暗。
10.如权利要求9所述的系统,其特征在于,所述系统是细胞分析系统。
11.如权利要求9所述的系统,其特征在于,所述处理器配置为确定对于在所述区域的多个分区的每一个中的背景信号的个别估计。
12.如权利要求9所述的系统,其特征在于,所述光检测器是CCD检测器。
13.如权利要求9所述的系统,其特征在于,所述光检测器是CMOS检测器。
14.如权利要求9所述的系统,其特征在于,所述光检测器是量子阱检测器。
15.一种光学分析系统,包括:
光检测器,配置为测量来自所述光学分析系统内的一区域的光,其中所测量的光包括背景信号和从一个或多个粒子发出的光两者;和
处理器,耦合至所述光检测器,其中所述处理器配置为:
确定对应于所测量的光的像素;且
确定所述背景信号的估计,其中确定所述估计以使得所述像素的所选百分比比所述估计更亮。
16.如权利要求15所述的系统,其特征在于,所述处理器进一步被配置为从每一个像素中减去所确定的估计。
17.如权利要求15所述的系统,其特征在于,由一个或多个粒子发出的光包括荧光。
18.如权利要求17所述的系统,其特征在于,所述一个或多个粒子具有耦合至所述粒子表面的荧光材料。
19.如权利要求15所述的系统,其特征在于,所述背景信号包括背景光信号。
20.如权利要求15所述的系统,其特征在于,所述背景信号包括噪声信号。
CN201510144425.4A 2010-06-30 2011-06-29 用于通过使用光分布来提高粒子成像设备中的测量精确度的装置、系统和方法 Active CN104764684B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/827,837 US8767069B2 (en) 2010-06-30 2010-06-30 Apparatus, system, and method for increasing measurement accuracy in a particle imaging device using light distribution
US12/827,837 2010-06-30
CN201180032277.7A CN103003683B (zh) 2010-06-30 2011-06-29 用于通过使用光分布来提高粒子成像设备中的测量精确度的装置、系统和方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201180032277.7A Division CN103003683B (zh) 2010-06-30 2011-06-29 用于通过使用光分布来提高粒子成像设备中的测量精确度的装置、系统和方法

Publications (2)

Publication Number Publication Date
CN104764684A true CN104764684A (zh) 2015-07-08
CN104764684B CN104764684B (zh) 2018-12-11

Family

ID=45399426

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201180032277.7A Active CN103003683B (zh) 2010-06-30 2011-06-29 用于通过使用光分布来提高粒子成像设备中的测量精确度的装置、系统和方法
CN201510144425.4A Active CN104764684B (zh) 2010-06-30 2011-06-29 用于通过使用光分布来提高粒子成像设备中的测量精确度的装置、系统和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201180032277.7A Active CN103003683B (zh) 2010-06-30 2011-06-29 用于通过使用光分布来提高粒子成像设备中的测量精确度的装置、系统和方法

Country Status (8)

Country Link
US (2) US8767069B2 (zh)
EP (1) EP2588846B1 (zh)
JP (2) JP5715249B2 (zh)
CN (2) CN103003683B (zh)
AU (1) AU2011279976B2 (zh)
CA (1) CA2803610A1 (zh)
HK (1) HK1212024A1 (zh)
WO (1) WO2012012168A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758837A (zh) * 2016-02-26 2016-07-13 天津大学 基于二维光谱数据的拉曼光谱背景噪声去除方法
CN107144520A (zh) * 2017-06-06 2017-09-08 深圳小孚医疗科技有限公司 用于显微成像粒子分析的粒子成像室和聚焦系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8009889B2 (en) * 2006-06-27 2011-08-30 Affymetrix, Inc. Feature intensity reconstruction of biological probe array
US8274656B2 (en) 2010-06-30 2012-09-25 Luminex Corporation Apparatus, system, and method for increasing measurement accuracy in a particle imaging device
US9425234B2 (en) * 2010-07-15 2016-08-23 Leigh E. Colby Quantum dot digital radiographic detection system
US9422159B2 (en) * 2010-07-15 2016-08-23 Leigh E. Colby Quantum dot digital radiographic detection system
CN104541152B (zh) * 2012-06-15 2017-08-25 卢米尼克斯股份有限公司 使用拟合选择标准的高斯残差的图像归一化装置、系统和方法
AU2018258259B2 (en) 2017-04-28 2022-09-01 Kimberly-Clark Worldwide, Inc. Tailored hemicellulose in non-wood fibers for tissue products
IT201800003984A1 (it) * 2018-03-27 2019-09-27 Crestoptics S P A Metodo di microscopia assistita da dispersione a super localizzazione e relativo apparato
LU100777B1 (de) * 2018-04-23 2019-10-23 Cytena Gmbh Verfahren zum Untersuchen einer Flüssigkeit, die wenigstens eine Zelle und/oder wenigstens ein Partikel enthält
WO2024111263A1 (ja) * 2022-11-24 2024-05-30 ソニーグループ株式会社 生体試料分析装置、生体試料分析システム、及び生体試料分析装置の状態の検証方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159642A (en) * 1990-07-13 1992-10-27 Toa Medical Electronics Co., Ltd. Particle image analyzing apparatus
JP2006194788A (ja) * 2005-01-14 2006-07-27 Sysmex Corp 粒子画像処理方法と装置およびそのプログラム
US20080007725A1 (en) * 2006-07-07 2008-01-10 Hitachi High-Technologies Corporation Method for detecting particles and defects and inspection equipment thereof
CN101268355A (zh) * 2005-09-21 2008-09-17 卢米尼克斯股份有限公司 图像数据处理的方法和系统

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194448A (ja) 1986-02-21 1987-08-26 Jeol Ltd 画像中における粒子像分析方法
JPH0827175B2 (ja) * 1986-12-10 1996-03-21 キヤノン株式会社 パタ−ン検出方法
JP2686274B2 (ja) * 1988-03-24 1997-12-08 東亜医用電子株式会社 細胞画像処理方法および装置
JPH03160349A (ja) * 1989-11-20 1991-07-10 Tokimec Inc ひび検出装置
JPH03228182A (ja) * 1990-02-02 1991-10-09 Nippon Telegr & Teleph Corp <Ntt> 画像閾値算出処理方法
US5329461A (en) * 1992-07-23 1994-07-12 Acrogen, Inc. Digital analyte detection system
US5736330A (en) 1995-10-11 1998-04-07 Luminex Corporation Method and compositions for flow cytometric determination of DNA sequences
EP0852004B1 (en) 1995-10-11 2011-01-19 Luminex Corporation Multiplexed analysis of clinical specimens
US5981180A (en) 1995-10-11 1999-11-09 Luminex Corporation Multiplexed analysis of clinical specimens apparatus and methods
US5790699A (en) * 1995-10-27 1998-08-04 Xerox Corporation Macrodetector based image conversion system
US6449562B1 (en) 1996-10-10 2002-09-10 Luminex Corporation Multiplexed analysis of clinical specimens apparatus and method
JPH10293094A (ja) * 1997-02-24 1998-11-04 Olympus Optical Co Ltd サイトメータ
HUP0003986A3 (en) 1997-10-14 2001-04-28 Luminex Corp Austin Precision fluorescently dyed particles and methods of making and using same
JP3735190B2 (ja) * 1997-10-28 2006-01-18 オリンパス株式会社 走査型サイトメータ
JP3383568B2 (ja) * 1998-01-20 2003-03-04 株式会社ダン 丸編生地用リンキング装置
WO1999037814A1 (en) 1998-01-22 1999-07-29 Luminex Corporation Microparticles with multiple fluorescent signals
JP4812937B2 (ja) * 1998-03-16 2011-11-09 ジーイー・ヘルスケア・バイオサイエンス・コーポレイション 共焦点顕微鏡イメージングシステム
JPH11271209A (ja) * 1998-03-24 1999-10-05 Olympus Optical Co Ltd 走査型サイトメータ
JP4089798B2 (ja) * 1998-04-13 2008-05-28 株式会社トプコン 表面検査装置
US6649414B1 (en) 1999-08-17 2003-11-18 Luminex Corporation Microparticles with multiple fluorescent signals and methods of using same
AU6779200A (en) 1999-08-17 2001-03-13 Luminex Corporation Encapsulation of fluorescent particles
US7130458B2 (en) * 2000-10-24 2006-10-31 Affymetrix, Inc. Computer software system, method, and product for scanned image alignment
US6763149B2 (en) * 2001-04-25 2004-07-13 Amnis Corporation Method and apparatus for correcting crosstalk and spatial resolution for multichannel imaging
JP4854879B2 (ja) * 2001-07-06 2012-01-18 オリンパス株式会社 走査型レーザー顕微鏡及びその画像取得方法
US7274809B2 (en) * 2002-08-29 2007-09-25 Perceptronix Medical, Inc. And British Columbia Cancer Agency Computerized methods and systems related to the detection of malignancy-associated changes (MAC) to detect cancer
KR101166180B1 (ko) * 2003-08-13 2012-07-18 루미넥스 코포레이션 유세포 분석기식 측정 시스템의 하나 이상의 파라미터의 제어 방법
JP2005098808A (ja) * 2003-09-24 2005-04-14 Aisin Seiki Co Ltd 生体情報検出装置
JP4102286B2 (ja) 2003-10-22 2008-06-18 シスメックス株式会社 粒子画像分析方法と装置およびそのプログラムと記録媒体
JP3929057B2 (ja) * 2004-03-31 2007-06-13 キヤノン株式会社 発光強度解析方法及び装置
US7751048B2 (en) * 2004-06-04 2010-07-06 California Institute Of Technology Optofluidic microscope device
JP2006153709A (ja) 2004-11-30 2006-06-15 Ohm Denki Kk 浮遊粒子分析装置および浮遊粒子分析方法
JP4418362B2 (ja) * 2004-12-28 2010-02-17 オリンパス株式会社 画像処理装置
JP4883936B2 (ja) * 2005-05-12 2012-02-22 オリンパス株式会社 走査型サイトメータの画像処理方法及び装置
JP2007114130A (ja) * 2005-10-24 2007-05-10 Tohoku Univ 位置解析方法及び位置解析装置
JP2007304044A (ja) * 2006-05-15 2007-11-22 Sysmex Corp 粒子画像分析装置
JPWO2007145091A1 (ja) * 2006-06-15 2009-10-29 株式会社ニコン 細胞培養装置
US7738094B2 (en) * 2007-01-26 2010-06-15 Becton, Dickinson And Company Method, system, and compositions for cell counting and analysis
CN101622522A (zh) * 2007-01-26 2010-01-06 贝克顿·迪金森公司 用于细胞计数和分析的方法、系统和组合物
US7916944B2 (en) * 2007-01-31 2011-03-29 Fuji Xerox Co., Ltd. System and method for feature level foreground segmentation
WO2008123610A1 (ja) * 2007-04-04 2008-10-16 Olympus Corporation 発光タンパクによる長期モニタリング方法および解析方法
CN104122191B (zh) * 2007-10-29 2020-02-18 希森美康株式会社 细胞分析仪及细胞分析方法
JP4873572B2 (ja) 2007-12-14 2012-02-08 Necトーキン株式会社 固体電解コンデンサとその製造方法
JP2011021948A (ja) 2009-07-14 2011-02-03 Nikon Corp 粒子径測定装置
FR2951542B1 (fr) * 2009-10-16 2011-12-02 Commissariat Energie Atomique Procede de detection optique d'objets micrometriques en solution
US8274656B2 (en) 2010-06-30 2012-09-25 Luminex Corporation Apparatus, system, and method for increasing measurement accuracy in a particle imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159642A (en) * 1990-07-13 1992-10-27 Toa Medical Electronics Co., Ltd. Particle image analyzing apparatus
JP2006194788A (ja) * 2005-01-14 2006-07-27 Sysmex Corp 粒子画像処理方法と装置およびそのプログラム
CN101268355A (zh) * 2005-09-21 2008-09-17 卢米尼克斯股份有限公司 图像数据处理的方法和系统
US20080007725A1 (en) * 2006-07-07 2008-01-10 Hitachi High-Technologies Corporation Method for detecting particles and defects and inspection equipment thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张大志等: ""基于排序跳变点的脉冲噪声检测与滤除算法"", 《计算机工程与应用》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758837A (zh) * 2016-02-26 2016-07-13 天津大学 基于二维光谱数据的拉曼光谱背景噪声去除方法
CN105758837B (zh) * 2016-02-26 2018-11-30 天津大学 基于二维光谱数据的拉曼光谱背景噪声去除方法
CN107144520A (zh) * 2017-06-06 2017-09-08 深圳小孚医疗科技有限公司 用于显微成像粒子分析的粒子成像室和聚焦系统
CN107144520B (zh) * 2017-06-06 2020-05-05 深圳小孚医疗科技有限公司 用于显微成像粒子分析的粒子成像室和聚焦系统

Also Published As

Publication number Publication date
JP5715249B2 (ja) 2015-05-07
EP2588846A4 (en) 2018-03-07
JP5986246B2 (ja) 2016-09-06
CN103003683A (zh) 2013-03-27
WO2012012168A3 (en) 2012-04-19
EP2588846A2 (en) 2013-05-08
US8767069B2 (en) 2014-07-01
HK1212024A1 (zh) 2016-06-03
CN104764684B (zh) 2018-12-11
US20120002040A1 (en) 2012-01-05
AU2011279976B2 (en) 2014-09-11
JP2015132622A (ja) 2015-07-23
CN103003683B (zh) 2015-04-15
AU2011279976A1 (en) 2013-02-07
JP2013530407A (ja) 2013-07-25
US20160369455A9 (en) 2016-12-22
WO2012012168A2 (en) 2012-01-26
EP2588846B1 (en) 2019-10-23
CA2803610A1 (en) 2012-01-26
US20150184343A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
CN103003683B (zh) 用于通过使用光分布来提高粒子成像设备中的测量精确度的装置、系统和方法
CN103003660B (zh) 用于提高颗粒成像设备中的测量准确度的装置、系统和方法
US9128055B2 (en) Information processing apparatus, information processing method, program, and method of correcting intensity of fluorescence spectrum
JP5870851B2 (ja) 情報処理装置、情報処理方法、及びプログラム
CN109863384A (zh) 基于图像的细胞分选系统和方法
US9063088B2 (en) Methods and systems for image data processing
JP7010293B2 (ja) 情報処理装置、情報処理方法及びプログラム
Hergenröder et al. 2.2 Virus Detection
Sarder Statistical Design And Imaging Of Position-Encoded 3D Microarrays
Sarder Statistical design and imaging of position-encoded three-dimensional microarrays

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1212024

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant